001/*
002 * Copyright (C) 2014 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.graph;
018
019import com.google.common.annotations.Beta;
020import com.google.errorprone.annotations.DoNotMock;
021import java.util.Set;
022import org.checkerframework.checker.nullness.compatqual.NullableDecl;
023
024/**
025 * An interface for <a
026 * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data,
027 * whose edges are unique objects.
028 *
029 * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes.
030 *
031 * <p>There are three primary interfaces provided to represent graphs. In order of increasing
032 * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally
033 * prefer the simplest interface that satisfies your use case. See the <a
034 * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type">
035 * "Choosing the right graph type"</a> section of the Guava User Guide for more details.
036 *
037 * <h3>Capabilities</h3>
038 *
039 * <p>{@code Network} supports the following use cases (<a
040 * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of
041 * terms</a>):
042 *
043 * <ul>
044 *   <li>directed graphs
045 *   <li>undirected graphs
046 *   <li>graphs that do/don't allow parallel edges
047 *   <li>graphs that do/don't allow self-loops
048 *   <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered
049 *   <li>graphs whose edges are unique objects
050 * </ul>
051 *
052 * <h3>Building a {@code Network}</h3>
053 *
054 * <p>The implementation classes that {@code common.graph} provides are not public, by design. To
055 * create an instance of one of the built-in implementations of {@code Network}, use the {@link
056 * NetworkBuilder} class:
057 *
058 * <pre>{@code
059 * MutableNetwork<Integer, MyEdge> graph = NetworkBuilder.directed().build();
060 * }</pre>
061 *
062 * <p>{@link NetworkBuilder#build()} returns an instance of {@link MutableNetwork}, which is a
063 * subtype of {@code Network} that provides methods for adding and removing nodes and edges. If you
064 * do not need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the
065 * graph), you should use the non-mutating {@link Network} interface, or an {@link
066 * ImmutableNetwork}.
067 *
068 * <p>You can create an immutable copy of an existing {@code Network} using {@link
069 * ImmutableNetwork#copyOf(Network)}:
070 *
071 * <pre>{@code
072 * ImmutableNetwork<Integer, MyEdge> immutableGraph = ImmutableNetwork.copyOf(graph);
073 * }</pre>
074 *
075 * <p>Instances of {@link ImmutableNetwork} do not implement {@link MutableNetwork} (obviously!) and
076 * are contractually guaranteed to be unmodifiable and thread-safe.
077 *
078 * <p>The Guava User Guide has <a
079 * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more
080 * information on (and examples of) building graphs</a>.
081 *
082 * <h3>Additional documentation</h3>
083 *
084 * <p>See the Guava User Guide for the {@code common.graph} package (<a
085 * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for
086 * additional documentation, including:
087 *
088 * <ul>
089 *   <li><a
090 *       href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence">
091 *       {@code equals()}, {@code hashCode()}, and graph equivalence</a>
092 *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization">
093 *       Synchronization policy</a>
094 *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes
095 *       for implementors</a>
096 * </ul>
097 *
098 * @author James Sexton
099 * @author Joshua O'Madadhain
100 * @param <N> Node parameter type
101 * @param <E> Edge parameter type
102 * @since 20.0
103 */
104@Beta
105@DoNotMock("Use NetworkBuilder to create a real instance")
106public interface Network<N, E> extends SuccessorsFunction<N>, PredecessorsFunction<N> {
107  //
108  // Network-level accessors
109  //
110
111  /** Returns all nodes in this network, in the order specified by {@link #nodeOrder()}. */
112  Set<N> nodes();
113
114  /** Returns all edges in this network, in the order specified by {@link #edgeOrder()}. */
115  Set<E> edges();
116
117  /**
118   * Returns a live view of this network as a {@link Graph}. The resulting {@link Graph} will have
119   * an edge connecting node A to node B if this {@link Network} has an edge connecting A to B.
120   *
121   * <p>If this network {@link #allowsParallelEdges() allows parallel edges}, parallel edges will be
122   * treated as if collapsed into a single edge. For example, the {@link #degree(Object)} of a node
123   * in the {@link Graph} view may be less than the degree of the same node in this {@link Network}.
124   */
125  Graph<N> asGraph();
126
127  //
128  // Network properties
129  //
130
131  /**
132   * Returns true if the edges in this network are directed. Directed edges connect a {@link
133   * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while
134   * undirected edges connect a pair of nodes to each other.
135   */
136  boolean isDirected();
137
138  /**
139   * Returns true if this network allows parallel edges. Attempting to add a parallel edge to a
140   * network that does not allow them will throw an {@link IllegalArgumentException}.
141   */
142  boolean allowsParallelEdges();
143
144  /**
145   * Returns true if this network allows self-loops (edges that connect a node to itself).
146   * Attempting to add a self-loop to a network that does not allow them will throw an {@link
147   * IllegalArgumentException}.
148   */
149  boolean allowsSelfLoops();
150
151  /** Returns the order of iteration for the elements of {@link #nodes()}. */
152  ElementOrder<N> nodeOrder();
153
154  /** Returns the order of iteration for the elements of {@link #edges()}. */
155  ElementOrder<E> edgeOrder();
156
157  //
158  // Element-level accessors
159  //
160
161  /**
162   * Returns the nodes which have an incident edge in common with {@code node} in this network.
163   *
164   * <p>This is equal to the union of {@link #predecessors(Object)} and {@link #successors(Object)}.
165   *
166   * @throws IllegalArgumentException if {@code node} is not an element of this network
167   */
168  Set<N> adjacentNodes(N node);
169
170  /**
171   * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
172   * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge.
173   *
174   * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
175   *
176   * @throws IllegalArgumentException if {@code node} is not an element of this network
177   */
178  @Override
179  Set<N> predecessors(N node);
180
181  /**
182   * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
183   * {@code node}'s outgoing edges in the direction (if any) of the edge.
184   *
185   * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
186   *
187   * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing
188   * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}.
189   *
190   * @throws IllegalArgumentException if {@code node} is not an element of this network
191   */
192  @Override
193  Set<N> successors(N node);
194
195  /**
196   * Returns the edges whose {@link #incidentNodes(Object) incident nodes} in this network include
197   * {@code node}.
198   *
199   * <p>This is equal to the union of {@link #inEdges(Object)} and {@link #outEdges(Object)}.
200   *
201   * @throws IllegalArgumentException if {@code node} is not an element of this network
202   */
203  Set<E> incidentEdges(N node);
204
205  /**
206   * Returns all edges in this network which can be traversed in the direction (if any) of the edge
207   * to end at {@code node}.
208   *
209   * <p>In a directed network, an incoming edge's {@link EndpointPair#target()} equals {@code node}.
210   *
211   * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
212   *
213   * @throws IllegalArgumentException if {@code node} is not an element of this network
214   */
215  Set<E> inEdges(N node);
216
217  /**
218   * Returns all edges in this network which can be traversed in the direction (if any) of the edge
219   * starting from {@code node}.
220   *
221   * <p>In a directed network, an outgoing edge's {@link EndpointPair#source()} equals {@code node}.
222   *
223   * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
224   *
225   * @throws IllegalArgumentException if {@code node} is not an element of this network
226   */
227  Set<E> outEdges(N node);
228
229  /**
230   * Returns the count of {@code node}'s {@link #incidentEdges(Object) incident edges}, counting
231   * self-loops twice (equivalently, the number of times an edge touches {@code node}).
232   *
233   * <p>For directed networks, this is equal to {@code inDegree(node) + outDegree(node)}.
234   *
235   * <p>For undirected networks, this is equal to {@code incidentEdges(node).size()} + (number of
236   * self-loops incident to {@code node}).
237   *
238   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
239   *
240   * @throws IllegalArgumentException if {@code node} is not an element of this network
241   */
242  int degree(N node);
243
244  /**
245   * Returns the count of {@code node}'s {@link #inEdges(Object) incoming edges} in a directed
246   * network. In an undirected network, returns the {@link #degree(Object)}.
247   *
248   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
249   *
250   * @throws IllegalArgumentException if {@code node} is not an element of this network
251   */
252  int inDegree(N node);
253
254  /**
255   * Returns the count of {@code node}'s {@link #outEdges(Object) outgoing edges} in a directed
256   * network. In an undirected network, returns the {@link #degree(Object)}.
257   *
258   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
259   *
260   * @throws IllegalArgumentException if {@code node} is not an element of this network
261   */
262  int outDegree(N node);
263
264  /**
265   * Returns the nodes which are the endpoints of {@code edge} in this network.
266   *
267   * @throws IllegalArgumentException if {@code edge} is not an element of this network
268   */
269  EndpointPair<N> incidentNodes(E edge);
270
271  /**
272   * Returns the edges which have an {@link #incidentNodes(Object) incident node} in common with
273   * {@code edge}. An edge is not considered adjacent to itself.
274   *
275   * @throws IllegalArgumentException if {@code edge} is not an element of this network
276   */
277  Set<E> adjacentEdges(E edge);
278
279  /**
280   * Returns the set of edges that each directly connect {@code nodeU} to {@code nodeV}.
281   *
282   * <p>In an undirected network, this is equal to {@code edgesConnecting(nodeV, nodeU)}.
283   *
284   * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}.
285   * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set
286   * will contain at most one edge (equivalent to {@code edgeConnecting(nodeU, nodeV).asSet()}).
287   *
288   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
289   *     network
290   */
291  Set<E> edgesConnecting(N nodeU, N nodeV);
292
293  /**
294   * Returns the set of edges that each directly connect {@code endpoints} (in the order, if any,
295   * specified by {@code endpoints}).
296   *
297   * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}.
298   * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set
299   * will contain at most one edge (equivalent to {@code edgeConnecting(endpoints).asSet()}).
300   *
301   * <p>If this network is directed, {@code endpoints} must be ordered.
302   *
303   * @throws IllegalArgumentException if either endpoint is not an element of this network
304   * @throws IllegalArgumentException if the endpoints are unordered and the graph is directed
305   * @since 27.1
306   */
307  Set<E> edgesConnecting(EndpointPair<N> endpoints);
308
309  /**
310   * Returns the single edge that directly connects {@code nodeU} to {@code nodeV}, if one is
311   * present, or {@code null} if no such edge exists.
312   *
313   * <p>In an undirected network, this is equal to {@code edgeConnectingOrNull(nodeV, nodeU)}.
314   *
315   * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
316   *     to {@code nodeV}
317   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
318   *     network
319   * @since 23.0
320   */
321  @NullableDecl
322  E edgeConnectingOrNull(N nodeU, N nodeV);
323
324  /**
325   * Returns the single edge that directly connects {@code endpoints} (in the order, if any,
326   * specified by {@code endpoints}), if one is present, or {@code null} if no such edge exists.
327   *
328   * <p>If this graph is directed, the endpoints must be ordered.
329   *
330   * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
331   *     to {@code nodeV}
332   * @throws IllegalArgumentException if either endpoint is not an element of this network
333   * @throws IllegalArgumentException if the endpoints are unordered and the graph is directed
334   * @since 27.1
335   */
336  @NullableDecl
337  E edgeConnectingOrNull(EndpointPair<N> endpoints);
338
339  /**
340   * Returns true if there is an edge that directly connects {@code nodeU} to {@code nodeV}. This is
341   * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}, and to
342   * {@code edgeConnectingOrNull(nodeU, nodeV) != null}.
343   *
344   * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}.
345   *
346   * @since 23.0
347   */
348  boolean hasEdgeConnecting(N nodeU, N nodeV);
349
350  /**
351   * Returns true if there is an edge that directly connects {@code endpoints} (in the order, if
352   * any, specified by {@code endpoints}).
353   *
354   * <p>Unlike the other {@code EndpointPair}-accepting methods, this method does not throw if the
355   * endpoints are unordered and the graph is directed; it simply returns {@code false}. This is for
356   * consistency with {@link Graph#hasEdgeConnecting(EndpointPair)} and {@link
357   * ValueGraph#hasEdgeConnecting(EndpointPair)}.
358   *
359   * @since 27.1
360   */
361  boolean hasEdgeConnecting(EndpointPair<N> endpoints);
362
363  //
364  // Network identity
365  //
366
367  /**
368   * Returns {@code true} iff {@code object} is a {@link Network} that has the same elements and the
369   * same structural relationships as those in this network.
370   *
371   * <p>Thus, two networks A and B are equal if <b>all</b> of the following are true:
372   *
373   * <ul>
374   *   <li>A and B have equal {@link #isDirected() directedness}.
375   *   <li>A and B have equal {@link #nodes() node sets}.
376   *   <li>A and B have equal {@link #edges() edge sets}.
377   *   <li>Every edge in A and B connects the same nodes in the same direction (if any).
378   * </ul>
379   *
380   * <p>Network properties besides {@link #isDirected() directedness} do <b>not</b> affect equality.
381   * For example, two networks may be considered equal even if one allows parallel edges and the
382   * other doesn't. Additionally, the order in which nodes or edges are added to the network, and
383   * the order in which they are iterated over, are irrelevant.
384   *
385   * <p>A reference implementation of this is provided by {@link AbstractNetwork#equals(Object)}.
386   */
387  @Override
388  boolean equals(@NullableDecl Object object);
389
390  /**
391   * Returns the hash code for this network. The hash code of a network is defined as the hash code
392   * of a map from each of its {@link #edges() edges} to their {@link #incidentNodes(Object)
393   * incident nodes}.
394   *
395   * <p>A reference implementation of this is provided by {@link AbstractNetwork#hashCode()}.
396   */
397  @Override
398  int hashCode();
399}