001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Function; 024import com.google.common.base.Objects; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Iterables; 027import com.google.common.collect.Iterators; 028import com.google.common.collect.Maps; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.util.Collection; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.Map; 034import java.util.Set; 035import org.checkerframework.checker.nullness.compatqual.NullableDecl; 036 037/** 038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 039 * 040 * @author James Sexton 041 * @author Joshua O'Madadhain 042 * @since 20.0 043 */ 044@Beta 045public final class Graphs { 046 047 private Graphs() {} 048 049 // Graph query methods 050 051 /** 052 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 053 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 054 * and ending with the same node. 055 * 056 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 057 */ 058 public static <N> boolean hasCycle(Graph<N> graph) { 059 int numEdges = graph.edges().size(); 060 if (numEdges == 0) { 061 return false; // An edge-free graph is acyclic by definition. 062 } 063 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 064 return true; // Optimization for the undirected case: at least one cycle must exist. 065 } 066 067 Map<Object, NodeVisitState> visitedNodes = 068 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 069 for (N node : graph.nodes()) { 070 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 071 return true; 072 } 073 } 074 return false; 075 } 076 077 /** 078 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 079 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 080 * starting and ending with the same node. 081 * 082 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 083 */ 084 public static boolean hasCycle(Network<?, ?> network) { 085 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 086 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 087 if (!network.isDirected() 088 && network.allowsParallelEdges() 089 && network.edges().size() > network.asGraph().edges().size()) { 090 return true; 091 } 092 return hasCycle(network.asGraph()); 093 } 094 095 /** 096 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 097 * already visited (following only outgoing edges and without reusing edges), we know there's a 098 * cycle in the graph. 099 */ 100 private static <N> boolean subgraphHasCycle( 101 Graph<N> graph, 102 Map<Object, NodeVisitState> visitedNodes, 103 N node, 104 @NullableDecl N previousNode) { 105 NodeVisitState state = visitedNodes.get(node); 106 if (state == NodeVisitState.COMPLETE) { 107 return false; 108 } 109 if (state == NodeVisitState.PENDING) { 110 return true; 111 } 112 113 visitedNodes.put(node, NodeVisitState.PENDING); 114 for (N nextNode : graph.successors(node)) { 115 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 116 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 117 return true; 118 } 119 } 120 visitedNodes.put(node, NodeVisitState.COMPLETE); 121 return false; 122 } 123 124 /** 125 * Determines whether an edge has already been used during traversal. In the directed case a cycle 126 * is always detected before reusing an edge, so no special logic is required. In the undirected 127 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 128 * from B to A). 129 */ 130 private static boolean canTraverseWithoutReusingEdge( 131 Graph<?> graph, Object nextNode, @NullableDecl Object previousNode) { 132 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 133 return true; 134 } 135 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 136 // edges, so this traversal would require reusing the undirected AB edge. 137 return false; 138 } 139 140 /** 141 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 142 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 143 * Object) reachable} from node A. 144 * 145 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 146 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 147 * be updated after modifications to {@code graph}. 148 */ 149 // TODO(b/31438252): Consider potential optimizations for this algorithm. 150 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 151 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 152 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 153 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 154 155 if (graph.isDirected()) { 156 // Note: works for both directed and undirected graphs, but we only use in the directed case. 157 for (N node : graph.nodes()) { 158 for (N reachableNode : reachableNodes(graph, node)) { 159 transitiveClosure.putEdge(node, reachableNode); 160 } 161 } 162 } else { 163 // An optimization for the undirected case: for every node B reachable from node A, 164 // node A and node B have the same reachability set. 165 Set<N> visitedNodes = new HashSet<N>(); 166 for (N node : graph.nodes()) { 167 if (!visitedNodes.contains(node)) { 168 Set<N> reachableNodes = reachableNodes(graph, node); 169 visitedNodes.addAll(reachableNodes); 170 int pairwiseMatch = 1; // start at 1 to include self-loops 171 for (N nodeU : reachableNodes) { 172 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 173 transitiveClosure.putEdge(nodeU, nodeV); 174 } 175 } 176 } 177 } 178 } 179 180 return transitiveClosure; 181 } 182 183 /** 184 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 185 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 186 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 187 * 188 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 189 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 190 * not be updated after modifications to {@code graph}. 191 * 192 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 193 */ 194 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 195 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 196 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 197 } 198 199 // Graph mutation methods 200 201 // Graph view methods 202 203 /** 204 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 205 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 206 */ 207 public static <N> Graph<N> transpose(Graph<N> graph) { 208 if (!graph.isDirected()) { 209 return graph; // the transpose of an undirected graph is an identical graph 210 } 211 212 if (graph instanceof TransposedGraph) { 213 return ((TransposedGraph<N>) graph).graph; 214 } 215 216 return new TransposedGraph<N>(graph); 217 } 218 219 /** 220 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 221 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 222 */ 223 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 224 if (!graph.isDirected()) { 225 return graph; // the transpose of an undirected graph is an identical graph 226 } 227 228 if (graph instanceof TransposedValueGraph) { 229 return ((TransposedValueGraph<N, V>) graph).graph; 230 } 231 232 return new TransposedValueGraph<>(graph); 233 } 234 235 /** 236 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 237 * properties remain intact, and further updates to {@code network} will be reflected in the view. 238 */ 239 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 240 if (!network.isDirected()) { 241 return network; // the transpose of an undirected network is an identical network 242 } 243 244 if (network instanceof TransposedNetwork) { 245 return ((TransposedNetwork<N, E>) network).network; 246 } 247 248 return new TransposedNetwork<>(network); 249 } 250 251 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 252 if (endpoints.isOrdered()) { 253 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 254 } 255 return endpoints; 256 } 257 258 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 259 // AbstractGraph) derives its behavior from calling successors(). 260 private static class TransposedGraph<N> extends ForwardingGraph<N> { 261 private final Graph<N> graph; 262 263 TransposedGraph(Graph<N> graph) { 264 this.graph = graph; 265 } 266 267 @Override 268 protected Graph<N> delegate() { 269 return graph; 270 } 271 272 @Override 273 public Set<N> predecessors(N node) { 274 return delegate().successors(node); // transpose 275 } 276 277 @Override 278 public Set<N> successors(N node) { 279 return delegate().predecessors(node); // transpose 280 } 281 282 @Override 283 public Set<EndpointPair<N>> incidentEdges(N node) { 284 return new IncidentEdgeSet<N>(this, node) { 285 @Override 286 public Iterator<EndpointPair<N>> iterator() { 287 return Iterators.transform( 288 delegate().incidentEdges(node).iterator(), 289 new Function<EndpointPair<N>, EndpointPair<N>>() { 290 @Override 291 public EndpointPair<N> apply(EndpointPair<N> edge) { 292 return EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU()); 293 } 294 }); 295 } 296 }; 297 } 298 299 @Override 300 public int inDegree(N node) { 301 return delegate().outDegree(node); // transpose 302 } 303 304 @Override 305 public int outDegree(N node) { 306 return delegate().inDegree(node); // transpose 307 } 308 309 @Override 310 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 311 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 312 } 313 314 @Override 315 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 316 return delegate().hasEdgeConnecting(transpose(endpoints)); 317 } 318 } 319 320 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 321 // AbstractValueGraph) derives its behavior from calling successors(). 322 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 323 private final ValueGraph<N, V> graph; 324 325 TransposedValueGraph(ValueGraph<N, V> graph) { 326 this.graph = graph; 327 } 328 329 @Override 330 protected ValueGraph<N, V> delegate() { 331 return graph; 332 } 333 334 @Override 335 public Set<N> predecessors(N node) { 336 return delegate().successors(node); // transpose 337 } 338 339 @Override 340 public Set<N> successors(N node) { 341 return delegate().predecessors(node); // transpose 342 } 343 344 @Override 345 public int inDegree(N node) { 346 return delegate().outDegree(node); // transpose 347 } 348 349 @Override 350 public int outDegree(N node) { 351 return delegate().inDegree(node); // transpose 352 } 353 354 @Override 355 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 356 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 357 } 358 359 @Override 360 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 361 return delegate().hasEdgeConnecting(transpose(endpoints)); 362 } 363 364 @Override 365 @NullableDecl 366 public V edgeValueOrDefault(N nodeU, N nodeV, @NullableDecl V defaultValue) { 367 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 368 } 369 370 @Override 371 @NullableDecl 372 public V edgeValueOrDefault(EndpointPair<N> endpoints, @NullableDecl V defaultValue) { 373 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 374 } 375 } 376 377 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 378 private final Network<N, E> network; 379 380 TransposedNetwork(Network<N, E> network) { 381 this.network = network; 382 } 383 384 @Override 385 protected Network<N, E> delegate() { 386 return network; 387 } 388 389 @Override 390 public Set<N> predecessors(N node) { 391 return delegate().successors(node); // transpose 392 } 393 394 @Override 395 public Set<N> successors(N node) { 396 return delegate().predecessors(node); // transpose 397 } 398 399 @Override 400 public int inDegree(N node) { 401 return delegate().outDegree(node); // transpose 402 } 403 404 @Override 405 public int outDegree(N node) { 406 return delegate().inDegree(node); // transpose 407 } 408 409 @Override 410 public Set<E> inEdges(N node) { 411 return delegate().outEdges(node); // transpose 412 } 413 414 @Override 415 public Set<E> outEdges(N node) { 416 return delegate().inEdges(node); // transpose 417 } 418 419 @Override 420 public EndpointPair<N> incidentNodes(E edge) { 421 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 422 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 423 } 424 425 @Override 426 public Set<E> edgesConnecting(N nodeU, N nodeV) { 427 return delegate().edgesConnecting(nodeV, nodeU); // transpose 428 } 429 430 @Override 431 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 432 return delegate().edgesConnecting(transpose(endpoints)); 433 } 434 435 @Override 436 public E edgeConnectingOrNull(N nodeU, N nodeV) { 437 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 438 } 439 440 @Override 441 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 442 return delegate().edgeConnectingOrNull(transpose(endpoints)); 443 } 444 445 @Override 446 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 447 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 448 } 449 450 @Override 451 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 452 return delegate().hasEdgeConnecting(transpose(endpoints)); 453 } 454 } 455 456 // Graph copy methods 457 458 /** 459 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 460 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 461 * from {@code graph} for which both nodes are contained by {@code nodes}. 462 * 463 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 464 */ 465 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 466 MutableGraph<N> subgraph = 467 (nodes instanceof Collection) 468 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 469 : GraphBuilder.from(graph).build(); 470 for (N node : nodes) { 471 subgraph.addNode(node); 472 } 473 for (N node : subgraph.nodes()) { 474 for (N successorNode : graph.successors(node)) { 475 if (subgraph.nodes().contains(successorNode)) { 476 subgraph.putEdge(node, successorNode); 477 } 478 } 479 } 480 return subgraph; 481 } 482 483 /** 484 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 485 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 486 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 487 * nodes}. 488 * 489 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 490 */ 491 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 492 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 493 MutableValueGraph<N, V> subgraph = 494 (nodes instanceof Collection) 495 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 496 : ValueGraphBuilder.from(graph).build(); 497 for (N node : nodes) { 498 subgraph.addNode(node); 499 } 500 for (N node : subgraph.nodes()) { 501 for (N successorNode : graph.successors(node)) { 502 if (subgraph.nodes().contains(successorNode)) { 503 subgraph.putEdgeValue( 504 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 505 } 506 } 507 } 508 return subgraph; 509 } 510 511 /** 512 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 513 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 514 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 515 * both contained by {@code nodes}. 516 * 517 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 518 */ 519 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 520 Network<N, E> network, Iterable<? extends N> nodes) { 521 MutableNetwork<N, E> subgraph = 522 (nodes instanceof Collection) 523 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 524 : NetworkBuilder.from(network).build(); 525 for (N node : nodes) { 526 subgraph.addNode(node); 527 } 528 for (N node : subgraph.nodes()) { 529 for (E edge : network.outEdges(node)) { 530 N successorNode = network.incidentNodes(edge).adjacentNode(node); 531 if (subgraph.nodes().contains(successorNode)) { 532 subgraph.addEdge(node, successorNode, edge); 533 } 534 } 535 } 536 return subgraph; 537 } 538 539 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 540 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 541 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 542 for (N node : graph.nodes()) { 543 copy.addNode(node); 544 } 545 for (EndpointPair<N> edge : graph.edges()) { 546 copy.putEdge(edge.nodeU(), edge.nodeV()); 547 } 548 return copy; 549 } 550 551 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 552 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 553 MutableValueGraph<N, V> copy = 554 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 555 for (N node : graph.nodes()) { 556 copy.addNode(node); 557 } 558 for (EndpointPair<N> edge : graph.edges()) { 559 copy.putEdgeValue( 560 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 561 } 562 return copy; 563 } 564 565 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 566 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 567 MutableNetwork<N, E> copy = 568 NetworkBuilder.from(network) 569 .expectedNodeCount(network.nodes().size()) 570 .expectedEdgeCount(network.edges().size()) 571 .build(); 572 for (N node : network.nodes()) { 573 copy.addNode(node); 574 } 575 for (E edge : network.edges()) { 576 EndpointPair<N> endpointPair = network.incidentNodes(edge); 577 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 578 } 579 return copy; 580 } 581 582 @CanIgnoreReturnValue 583 static int checkNonNegative(int value) { 584 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 585 return value; 586 } 587 588 @CanIgnoreReturnValue 589 static long checkNonNegative(long value) { 590 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 591 return value; 592 } 593 594 @CanIgnoreReturnValue 595 static int checkPositive(int value) { 596 checkArgument(value > 0, "Not true that %s is positive.", value); 597 return value; 598 } 599 600 @CanIgnoreReturnValue 601 static long checkPositive(long value) { 602 checkArgument(value > 0, "Not true that %s is positive.", value); 603 return value; 604 } 605 606 /** 607 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 608 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 609 * been already explored. Any node that has not been explored will not have a state at all. 610 */ 611 private enum NodeVisitState { 612 PENDING, 613 COMPLETE 614 } 615}