001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.collect.CollectPreconditions.checkNonnegative; 021 022import com.google.common.annotations.GwtCompatible; 023import com.google.common.annotations.VisibleForTesting; 024import com.google.common.base.Function; 025import com.google.errorprone.annotations.CanIgnoreReturnValue; 026import java.util.ArrayList; 027import java.util.Arrays; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.Comparator; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.List; 034import java.util.Map.Entry; 035import java.util.NoSuchElementException; 036import java.util.SortedMap; 037import java.util.SortedSet; 038import java.util.TreeSet; 039import java.util.concurrent.ConcurrentMap; 040import java.util.concurrent.atomic.AtomicInteger; 041import org.checkerframework.checker.nullness.compatqual.NullableDecl; 042 043/** 044 * A comparator, with additional methods to support common operations. This is an "enriched" version 045 * of {@code Comparator} for pre-Java-8 users, in the same sense that {@link FluentIterable} is an 046 * enriched {@link Iterable} for pre-Java-8 users. 047 * 048 * <h3>Three types of methods</h3> 049 * 050 * Like other fluent types, there are three types of methods present: methods for <i>acquiring</i>, 051 * <i>chaining</i>, and <i>using</i>. 052 * 053 * <h4>Acquiring</h4> 054 * 055 * <p>The common ways to get an instance of {@code Ordering} are: 056 * 057 * <ul> 058 * <li>Subclass it and implement {@link #compare} instead of implementing {@link Comparator} 059 * directly 060 * <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link #from(Comparator)} 061 * <li>Use the natural ordering, {@link Ordering#natural} 062 * </ul> 063 * 064 * <h4>Chaining</h4> 065 * 066 * <p>Then you can use the <i>chaining</i> methods to get an altered version of that {@code 067 * Ordering}, including: 068 * 069 * <ul> 070 * <li>{@link #reverse} 071 * <li>{@link #compound(Comparator)} 072 * <li>{@link #onResultOf(Function)} 073 * <li>{@link #nullsFirst} / {@link #nullsLast} 074 * </ul> 075 * 076 * <h4>Using</h4> 077 * 078 * <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} is required, or use 079 * any of its special operations, such as: 080 * 081 * <ul> 082 * <li>{@link #immutableSortedCopy} 083 * <li>{@link #isOrdered} / {@link #isStrictlyOrdered} 084 * <li>{@link #min} / {@link #max} 085 * </ul> 086 * 087 * <h3>Understanding complex orderings</h3> 088 * 089 * <p>Complex chained orderings like the following example can be challenging to understand. 090 * 091 * <pre>{@code 092 * Ordering<Foo> ordering = 093 * Ordering.natural() 094 * .nullsFirst() 095 * .onResultOf(getBarFunction) 096 * .nullsLast(); 097 * }</pre> 098 * 099 * Note that each chaining method returns a new ordering instance which is backed by the previous 100 * instance, but has the chance to act on values <i>before</i> handing off to that backing instance. 101 * As a result, it usually helps to read chained ordering expressions <i>backwards</i>. For example, 102 * when {@code compare} is called on the above ordering: 103 * 104 * <ol> 105 * <li>First, if only one {@code Foo} is null, that null value is treated as <i>greater</i> 106 * <li>Next, non-null {@code Foo} values are passed to {@code getBarFunction} (we will be 107 * comparing {@code Bar} values from now on) 108 * <li>Next, if only one {@code Bar} is null, that null value is treated as <i>lesser</i> 109 * <li>Finally, natural ordering is used (i.e. the result of {@code Bar.compareTo(Bar)} is 110 * returned) 111 * </ol> 112 * 113 * <p>Alas, {@link #reverse} is a little different. As you read backwards through a chain and 114 * encounter a call to {@code reverse}, continue working backwards until a result is determined, and 115 * then reverse that result. 116 * 117 * <h3>Additional notes</h3> 118 * 119 * <p>Except as noted, the orderings returned by the factory methods of this class are serializable 120 * if and only if the provided instances that back them are. For example, if {@code ordering} and 121 * {@code function} can themselves be serialized, then {@code ordering.onResultOf(function)} can as 122 * well. 123 * 124 * <h3>For Java 8 users</h3> 125 * 126 * <p>If you are using Java 8, this class is now obsolete. Most of its functionality is now provided 127 * by {@link java.util.stream.Stream Stream} and by {@link Comparator} itself, and the rest can now 128 * be found as static methods in our new {@link Comparators} class. See each method below for 129 * further instructions. Whenever possible, you should change any references of type {@code 130 * Ordering} to be of type {@code Comparator} instead. However, at this time we have no plan to 131 * <i>deprecate</i> this class. 132 * 133 * <p>Many replacements involve adopting {@code Stream}, and these changes can sometimes make your 134 * code verbose. Whenever following this advice, you should check whether {@code Stream} could be 135 * adopted more comprehensively in your code; the end result may be quite a bit simpler. 136 * 137 * <h3>See also</h3> 138 * 139 * <p>See the Guava User Guide article on <a href= 140 * "https://github.com/google/guava/wiki/OrderingExplained">{@code Ordering}</a>. 141 * 142 * @author Jesse Wilson 143 * @author Kevin Bourrillion 144 * @since 2.0 145 */ 146@GwtCompatible 147public abstract class Ordering<T> implements Comparator<T> { 148 // Natural order 149 150 /** 151 * Returns a serializable ordering that uses the natural order of the values. The ordering throws 152 * a {@link NullPointerException} when passed a null parameter. 153 * 154 * <p>The type specification is {@code <C extends Comparable>}, instead of the technically correct 155 * {@code <C extends Comparable<? super C>>}, to support legacy types from before Java 5. 156 * 157 * <p><b>Java 8 users:</b> use {@link Comparator#naturalOrder} instead. 158 */ 159 @GwtCompatible(serializable = true) 160 @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this?? 161 public static <C extends Comparable> Ordering<C> natural() { 162 return (Ordering<C>) NaturalOrdering.INSTANCE; 163 } 164 165 // Static factories 166 167 /** 168 * Returns an ordering based on an <i>existing</i> comparator instance. Note that it is 169 * unnecessary to create a <i>new</i> anonymous inner class implementing {@code Comparator} just 170 * to pass it in here. Instead, simply subclass {@code Ordering} and implement its {@code compare} 171 * method directly. 172 * 173 * <p><b>Java 8 users:</b> this class is now obsolete as explained in the class documentation, so 174 * there is no need to use this method. 175 * 176 * @param comparator the comparator that defines the order 177 * @return comparator itself if it is already an {@code Ordering}; otherwise an ordering that 178 * wraps that comparator 179 */ 180 @GwtCompatible(serializable = true) 181 public static <T> Ordering<T> from(Comparator<T> comparator) { 182 return (comparator instanceof Ordering) 183 ? (Ordering<T>) comparator 184 : new ComparatorOrdering<T>(comparator); 185 } 186 187 /** 188 * Simply returns its argument. 189 * 190 * @deprecated no need to use this 191 */ 192 @GwtCompatible(serializable = true) 193 @Deprecated 194 public static <T> Ordering<T> from(Ordering<T> ordering) { 195 return checkNotNull(ordering); 196 } 197 198 /** 199 * Returns an ordering that compares objects according to the order in which they appear in the 200 * given list. Only objects present in the list (according to {@link Object#equals}) may be 201 * compared. This comparator imposes a "partial ordering" over the type {@code T}. Subsequent 202 * changes to the {@code valuesInOrder} list will have no effect on the returned comparator. Null 203 * values in the list are not supported. 204 * 205 * <p>The returned comparator throws a {@link ClassCastException} when it receives an input 206 * parameter that isn't among the provided values. 207 * 208 * <p>The generated comparator is serializable if all the provided values are serializable. 209 * 210 * @param valuesInOrder the values that the returned comparator will be able to compare, in the 211 * order the comparator should induce 212 * @return the comparator described above 213 * @throws NullPointerException if any of the provided values is null 214 * @throws IllegalArgumentException if {@code valuesInOrder} contains any duplicate values 215 * (according to {@link Object#equals}) 216 */ 217 // TODO(kevinb): provide replacement 218 @GwtCompatible(serializable = true) 219 public static <T> Ordering<T> explicit(List<T> valuesInOrder) { 220 return new ExplicitOrdering<T>(valuesInOrder); 221 } 222 223 /** 224 * Returns an ordering that compares objects according to the order in which they are given to 225 * this method. Only objects present in the argument list (according to {@link Object#equals}) may 226 * be compared. This comparator imposes a "partial ordering" over the type {@code T}. Null values 227 * in the argument list are not supported. 228 * 229 * <p>The returned comparator throws a {@link ClassCastException} when it receives an input 230 * parameter that isn't among the provided values. 231 * 232 * <p>The generated comparator is serializable if all the provided values are serializable. 233 * 234 * @param leastValue the value which the returned comparator should consider the "least" of all 235 * values 236 * @param remainingValuesInOrder the rest of the values that the returned comparator will be able 237 * to compare, in the order the comparator should follow 238 * @return the comparator described above 239 * @throws NullPointerException if any of the provided values is null 240 * @throws IllegalArgumentException if any duplicate values (according to {@link 241 * Object#equals(Object)}) are present among the method arguments 242 */ 243 // TODO(kevinb): provide replacement 244 @GwtCompatible(serializable = true) 245 public static <T> Ordering<T> explicit(T leastValue, T... remainingValuesInOrder) { 246 return explicit(Lists.asList(leastValue, remainingValuesInOrder)); 247 } 248 249 // Ordering<Object> singletons 250 251 /** 252 * Returns an ordering which treats all values as equal, indicating "no ordering." Passing this 253 * ordering to any <i>stable</i> sort algorithm results in no change to the order of elements. 254 * Note especially that {@link #sortedCopy} and {@link #immutableSortedCopy} are stable, and in 255 * the returned instance these are implemented by simply copying the source list. 256 * 257 * <p>Example: 258 * 259 * <pre>{@code 260 * Ordering.allEqual().nullsLast().sortedCopy( 261 * asList(t, null, e, s, null, t, null)) 262 * }</pre> 263 * 264 * <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns {@code [t, e, s, t, 265 * null, null, null]} regardless of the true comparison order of those three values (which might 266 * not even implement {@link Comparable} at all). 267 * 268 * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with equals</i> (as 269 * defined {@linkplain Comparator here}). Avoid its use in APIs, such as {@link 270 * TreeSet#TreeSet(Comparator)}, where such consistency is expected. 271 * 272 * <p>The returned comparator is serializable. 273 * 274 * <p><b>Java 8 users:</b> Use the lambda expression {@code (a, b) -> 0} instead (in certain cases 275 * you may need to cast that to {@code Comparator<YourType>}). 276 * 277 * @since 13.0 278 */ 279 @GwtCompatible(serializable = true) 280 @SuppressWarnings("unchecked") 281 public static Ordering<Object> allEqual() { 282 return AllEqualOrdering.INSTANCE; 283 } 284 285 /** 286 * Returns an ordering that compares objects by the natural ordering of their string 287 * representations as returned by {@code toString()}. It does not support null values. 288 * 289 * <p>The comparator is serializable. 290 * 291 * <p><b>Java 8 users:</b> Use {@code Comparator.comparing(Object::toString)} instead. 292 */ 293 @GwtCompatible(serializable = true) 294 public static Ordering<Object> usingToString() { 295 return UsingToStringOrdering.INSTANCE; 296 } 297 298 /** 299 * Returns an arbitrary ordering over all objects, for which {@code compare(a, b) == 0} implies 300 * {@code a == b} (identity equality). There is no meaning whatsoever to the order imposed, but it 301 * is constant for the life of the VM. 302 * 303 * <p>Because the ordering is identity-based, it is not "consistent with {@link 304 * Object#equals(Object)}" as defined by {@link Comparator}. Use caution when building a {@link 305 * SortedSet} or {@link SortedMap} from it, as the resulting collection will not behave exactly 306 * according to spec. 307 * 308 * <p>This ordering is not serializable, as its implementation relies on {@link 309 * System#identityHashCode(Object)}, so its behavior cannot be preserved across serialization. 310 * 311 * @since 2.0 312 */ 313 // TODO(kevinb): copy to Comparators, etc. 314 public static Ordering<Object> arbitrary() { 315 return ArbitraryOrderingHolder.ARBITRARY_ORDERING; 316 } 317 318 private static class ArbitraryOrderingHolder { 319 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering(); 320 } 321 322 @VisibleForTesting 323 static class ArbitraryOrdering extends Ordering<Object> { 324 325 private final AtomicInteger counter = new AtomicInteger(0); 326 private final ConcurrentMap<Object, Integer> uids = 327 Platform.tryWeakKeys(new MapMaker()).makeMap(); 328 329 private Integer getUid(Object obj) { 330 Integer uid = uids.get(obj); 331 if (uid == null) { 332 // One or more integer values could be skipped in the event of a race 333 // to generate a UID for the same object from multiple threads, but 334 // that shouldn't be a problem. 335 uid = counter.getAndIncrement(); 336 Integer alreadySet = uids.putIfAbsent(obj, uid); 337 if (alreadySet != null) { 338 uid = alreadySet; 339 } 340 } 341 return uid; 342 } 343 344 @Override 345 public int compare(Object left, Object right) { 346 if (left == right) { 347 return 0; 348 } else if (left == null) { 349 return -1; 350 } else if (right == null) { 351 return 1; 352 } 353 int leftCode = identityHashCode(left); 354 int rightCode = identityHashCode(right); 355 if (leftCode != rightCode) { 356 return leftCode < rightCode ? -1 : 1; 357 } 358 359 // identityHashCode collision (rare, but not as rare as you'd think) 360 int result = getUid(left).compareTo(getUid(right)); 361 if (result == 0) { 362 throw new AssertionError(); // extremely, extremely unlikely. 363 } 364 return result; 365 } 366 367 @Override 368 public String toString() { 369 return "Ordering.arbitrary()"; 370 } 371 372 /* 373 * We need to be able to mock identityHashCode() calls for tests, because it 374 * can take 1-10 seconds to find colliding objects. Mocking frameworks that 375 * can do magic to mock static method calls still can't do so for a system 376 * class, so we need the indirection. In production, Hotspot should still 377 * recognize that the call is 1-morphic and should still be willing to 378 * inline it if necessary. 379 */ 380 int identityHashCode(Object object) { 381 return System.identityHashCode(object); 382 } 383 } 384 385 // Constructor 386 387 /** 388 * Constructs a new instance of this class (only invokable by the subclass constructor, typically 389 * implicit). 390 */ 391 protected Ordering() {} 392 393 // Instance-based factories (and any static equivalents) 394 395 /** 396 * Returns the reverse of this ordering; the {@code Ordering} equivalent to {@link 397 * Collections#reverseOrder(Comparator)}. 398 * 399 * <p><b>Java 8 users:</b> Use {@code thisComparator.reversed()} instead. 400 */ 401 // type parameter <S> lets us avoid the extra <String> in statements like: 402 // Ordering<String> o = Ordering.<String>natural().reverse(); 403 @GwtCompatible(serializable = true) 404 public <S extends T> Ordering<S> reverse() { 405 return new ReverseOrdering<S>(this); 406 } 407 408 /** 409 * Returns an ordering that treats {@code null} as less than all other values and uses {@code 410 * this} to compare non-null values. 411 * 412 * <p><b>Java 8 users:</b> Use {@code Comparator.nullsFirst(thisComparator)} instead. 413 */ 414 // type parameter <S> lets us avoid the extra <String> in statements like: 415 // Ordering<String> o = Ordering.<String>natural().nullsFirst(); 416 @GwtCompatible(serializable = true) 417 public <S extends T> Ordering<S> nullsFirst() { 418 return new NullsFirstOrdering<S>(this); 419 } 420 421 /** 422 * Returns an ordering that treats {@code null} as greater than all other values and uses this 423 * ordering to compare non-null values. 424 * 425 * <p><b>Java 8 users:</b> Use {@code Comparator.nullsLast(thisComparator)} instead. 426 */ 427 // type parameter <S> lets us avoid the extra <String> in statements like: 428 // Ordering<String> o = Ordering.<String>natural().nullsLast(); 429 @GwtCompatible(serializable = true) 430 public <S extends T> Ordering<S> nullsLast() { 431 return new NullsLastOrdering<S>(this); 432 } 433 434 /** 435 * Returns a new ordering on {@code F} which orders elements by first applying a function to them, 436 * then comparing those results using {@code this}. For example, to compare objects by their 437 * string forms, in a case-insensitive manner, use: 438 * 439 * <pre>{@code 440 * Ordering.from(String.CASE_INSENSITIVE_ORDER) 441 * .onResultOf(Functions.toStringFunction()) 442 * }</pre> 443 * 444 * <p><b>Java 8 users:</b> Use {@code Comparator.comparing(function, thisComparator)} instead (you 445 * can omit the comparator if it is the natural order). 446 */ 447 @GwtCompatible(serializable = true) 448 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) { 449 return new ByFunctionOrdering<>(function, this); 450 } 451 452 <T2 extends T> Ordering<Entry<T2, ?>> onKeys() { 453 return onResultOf(Maps.<T2>keyFunction()); 454 } 455 456 /** 457 * Returns an ordering which first uses the ordering {@code this}, but which in the event of a 458 * "tie", then delegates to {@code secondaryComparator}. For example, to sort a bug list first by 459 * status and second by priority, you might use {@code byStatus.compound(byPriority)}. For a 460 * compound ordering with three or more components, simply chain multiple calls to this method. 461 * 462 * <p>An ordering produced by this method, or a chain of calls to this method, is equivalent to 463 * one created using {@link Ordering#compound(Iterable)} on the same component comparators. 464 * 465 * <p><b>Java 8 users:</b> Use {@code thisComparator.thenComparing(secondaryComparator)} instead. 466 * Depending on what {@code secondaryComparator} is, one of the other overloads of {@code 467 * thenComparing} may be even more useful. 468 */ 469 @GwtCompatible(serializable = true) 470 public <U extends T> Ordering<U> compound(Comparator<? super U> secondaryComparator) { 471 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator)); 472 } 473 474 /** 475 * Returns an ordering which tries each given comparator in order until a non-zero result is 476 * found, returning that result, and returning zero only if all comparators return zero. The 477 * returned ordering is based on the state of the {@code comparators} iterable at the time it was 478 * provided to this method. 479 * 480 * <p>The returned ordering is equivalent to that produced using {@code 481 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}. 482 * 483 * <p><b>Warning:</b> Supplying an argument with undefined iteration order, such as a {@link 484 * HashSet}, will produce non-deterministic results. 485 * 486 * <p><b>Java 8 users:</b> Use a chain of calls to {@link Comparator#thenComparing(Comparator)}, 487 * or {@code comparatorCollection.stream().reduce(Comparator::thenComparing).get()} (if the 488 * collection might be empty, also provide a default comparator as the {@code identity} parameter 489 * to {@code reduce}). 490 * 491 * @param comparators the comparators to try in order 492 */ 493 @GwtCompatible(serializable = true) 494 public static <T> Ordering<T> compound(Iterable<? extends Comparator<? super T>> comparators) { 495 return new CompoundOrdering<T>(comparators); 496 } 497 498 /** 499 * Returns a new ordering which sorts iterables by comparing corresponding elements pairwise until 500 * a nonzero result is found; imposes "dictionary order". If the end of one iterable is reached, 501 * but not the other, the shorter iterable is considered to be less than the longer one. For 502 * example, a lexicographical natural ordering over integers considers {@code [] < [1] < [1, 1] < 503 * [1, 2] < [2]}. 504 * 505 * <p>Note that {@code ordering.lexicographical().reverse()} is not equivalent to {@code 506 * ordering.reverse().lexicographical()} (consider how each would order {@code [1]} and {@code [1, 507 * 1]}). 508 * 509 * <p><b>Java 8 users:</b> Use {@link Comparators#lexicographical(Comparator)} instead. 510 * 511 * @since 2.0 512 */ 513 @GwtCompatible(serializable = true) 514 // type parameter <S> lets us avoid the extra <String> in statements like: 515 // Ordering<Iterable<String>> o = 516 // Ordering.<String>natural().lexicographical(); 517 public <S extends T> Ordering<Iterable<S>> lexicographical() { 518 /* 519 * Note that technically the returned ordering should be capable of 520 * handling not just {@code Iterable<S>} instances, but also any {@code 521 * Iterable<? extends S>}. However, the need for this comes up so rarely 522 * that it doesn't justify making everyone else deal with the very ugly 523 * wildcard. 524 */ 525 return new LexicographicalOrdering<S>(this); 526 } 527 528 // Regular instance methods 529 530 // Override to add @NullableDecl 531 @CanIgnoreReturnValue // TODO(kak): Consider removing this 532 @Override 533 public abstract int compare(@NullableDecl T left, @NullableDecl T right); 534 535 /** 536 * Returns the least of the specified values according to this ordering. If there are multiple 537 * least values, the first of those is returned. The iterator will be left exhausted: its {@code 538 * hasNext()} method will return {@code false}. 539 * 540 * <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).min(thisComparator).get()} instead 541 * (but note that it does not guarantee which tied minimum element is returned). 542 * 543 * @param iterator the iterator whose minimum element is to be determined 544 * @throws NoSuchElementException if {@code iterator} is empty 545 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 546 * ordering. 547 * @since 11.0 548 */ 549 public <E extends T> E min(Iterator<E> iterator) { 550 // let this throw NoSuchElementException as necessary 551 E minSoFar = iterator.next(); 552 553 while (iterator.hasNext()) { 554 minSoFar = min(minSoFar, iterator.next()); 555 } 556 557 return minSoFar; 558 } 559 560 /** 561 * Returns the least of the specified values according to this ordering. If there are multiple 562 * least values, the first of those is returned. 563 * 564 * <p><b>Java 8 users:</b> If {@code iterable} is a {@link Collection}, use {@code 565 * Collections.min(collection, thisComparator)} instead. Otherwise, use {@code 566 * Streams.stream(iterable).min(thisComparator).get()} instead. Note that these alternatives do 567 * not guarantee which tied minimum element is returned) 568 * 569 * @param iterable the iterable whose minimum element is to be determined 570 * @throws NoSuchElementException if {@code iterable} is empty 571 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 572 * ordering. 573 */ 574 public <E extends T> E min(Iterable<E> iterable) { 575 return min(iterable.iterator()); 576 } 577 578 /** 579 * Returns the lesser of the two values according to this ordering. If the values compare as 0, 580 * the first is returned. 581 * 582 * <p><b>Implementation note:</b> this method is invoked by the default implementations of the 583 * other {@code min} overloads, so overriding it will affect their behavior. 584 * 585 * <p><b>Note:</b> Consider using {@code Comparators.min(a, b, thisComparator)} instead. If {@code 586 * thisComparator} is {@link Ordering#natural}, then use {@code Comparators.min(a, b)}. 587 * 588 * @param a value to compare, returned if less than or equal to b. 589 * @param b value to compare. 590 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 591 * ordering. 592 */ 593 public <E extends T> E min(@NullableDecl E a, @NullableDecl E b) { 594 return (compare(a, b) <= 0) ? a : b; 595 } 596 597 /** 598 * Returns the least of the specified values according to this ordering. If there are multiple 599 * least values, the first of those is returned. 600 * 601 * <p><b>Java 8 users:</b> Use {@code Collections.min(Arrays.asList(a, b, c...), thisComparator)} 602 * instead (but note that it does not guarantee which tied minimum element is returned). 603 * 604 * @param a value to compare, returned if less than or equal to the rest. 605 * @param b value to compare 606 * @param c value to compare 607 * @param rest values to compare 608 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 609 * ordering. 610 */ 611 public <E extends T> E min(@NullableDecl E a, @NullableDecl E b, @NullableDecl E c, E... rest) { 612 E minSoFar = min(min(a, b), c); 613 614 for (E r : rest) { 615 minSoFar = min(minSoFar, r); 616 } 617 618 return minSoFar; 619 } 620 621 /** 622 * Returns the greatest of the specified values according to this ordering. If there are multiple 623 * greatest values, the first of those is returned. The iterator will be left exhausted: its 624 * {@code hasNext()} method will return {@code false}. 625 * 626 * <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).max(thisComparator).get()} instead 627 * (but note that it does not guarantee which tied maximum element is returned). 628 * 629 * @param iterator the iterator whose maximum element is to be determined 630 * @throws NoSuchElementException if {@code iterator} is empty 631 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 632 * ordering. 633 * @since 11.0 634 */ 635 public <E extends T> E max(Iterator<E> iterator) { 636 // let this throw NoSuchElementException as necessary 637 E maxSoFar = iterator.next(); 638 639 while (iterator.hasNext()) { 640 maxSoFar = max(maxSoFar, iterator.next()); 641 } 642 643 return maxSoFar; 644 } 645 646 /** 647 * Returns the greatest of the specified values according to this ordering. If there are multiple 648 * greatest values, the first of those is returned. 649 * 650 * <p><b>Java 8 users:</b> If {@code iterable} is a {@link Collection}, use {@code 651 * Collections.max(collection, thisComparator)} instead. Otherwise, use {@code 652 * Streams.stream(iterable).max(thisComparator).get()} instead. Note that these alternatives do 653 * not guarantee which tied maximum element is returned) 654 * 655 * @param iterable the iterable whose maximum element is to be determined 656 * @throws NoSuchElementException if {@code iterable} is empty 657 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 658 * ordering. 659 */ 660 public <E extends T> E max(Iterable<E> iterable) { 661 return max(iterable.iterator()); 662 } 663 664 /** 665 * Returns the greater of the two values according to this ordering. If the values compare as 0, 666 * the first is returned. 667 * 668 * <p><b>Implementation note:</b> this method is invoked by the default implementations of the 669 * other {@code max} overloads, so overriding it will affect their behavior. 670 * 671 * <p><b>Note:</b> Consider using {@code Comparators.max(a, b, thisComparator)} instead. If {@code 672 * thisComparator} is {@link Ordering#natural}, then use {@code Comparators.max(a, b)}. 673 * 674 * @param a value to compare, returned if greater than or equal to b. 675 * @param b value to compare. 676 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 677 * ordering. 678 */ 679 public <E extends T> E max(@NullableDecl E a, @NullableDecl E b) { 680 return (compare(a, b) >= 0) ? a : b; 681 } 682 683 /** 684 * Returns the greatest of the specified values according to this ordering. If there are multiple 685 * greatest values, the first of those is returned. 686 * 687 * <p><b>Java 8 users:</b> Use {@code Collections.max(Arrays.asList(a, b, c...), thisComparator)} 688 * instead (but note that it does not guarantee which tied maximum element is returned). 689 * 690 * @param a value to compare, returned if greater than or equal to the rest. 691 * @param b value to compare 692 * @param c value to compare 693 * @param rest values to compare 694 * @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this 695 * ordering. 696 */ 697 public <E extends T> E max(@NullableDecl E a, @NullableDecl E b, @NullableDecl E c, E... rest) { 698 E maxSoFar = max(max(a, b), c); 699 700 for (E r : rest) { 701 maxSoFar = max(maxSoFar, r); 702 } 703 704 return maxSoFar; 705 } 706 707 /** 708 * Returns the {@code k} least elements of the given iterable according to this ordering, in order 709 * from least to greatest. If there are fewer than {@code k} elements present, all will be 710 * included. 711 * 712 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 713 * elements are equivalent, it is undefined which will come first. 714 * 715 * <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava, 716 * use {@code Streams.stream(iterable).collect(Comparators.least(k, thisComparator))} instead. 717 * 718 * @return an immutable {@code RandomAccess} list of the {@code k} least elements in ascending 719 * order 720 * @throws IllegalArgumentException if {@code k} is negative 721 * @since 8.0 722 */ 723 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) { 724 if (iterable instanceof Collection) { 725 Collection<E> collection = (Collection<E>) iterable; 726 if (collection.size() <= 2L * k) { 727 // In this case, just dumping the collection to an array and sorting is 728 // faster than using the implementation for Iterator, which is 729 // specialized for k much smaller than n. 730 731 @SuppressWarnings("unchecked") // c only contains E's and doesn't escape 732 E[] array = (E[]) collection.toArray(); 733 Arrays.sort(array, this); 734 if (array.length > k) { 735 array = Arrays.copyOf(array, k); 736 } 737 return Collections.unmodifiableList(Arrays.asList(array)); 738 } 739 } 740 return leastOf(iterable.iterator(), k); 741 } 742 743 /** 744 * Returns the {@code k} least elements from the given iterator according to this ordering, in 745 * order from least to greatest. If there are fewer than {@code k} elements present, all will be 746 * included. 747 * 748 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 749 * elements are equivalent, it is undefined which will come first. 750 * 751 * <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).collect(Comparators.least(k, 752 * thisComparator))} instead. 753 * 754 * @return an immutable {@code RandomAccess} list of the {@code k} least elements in ascending 755 * order 756 * @throws IllegalArgumentException if {@code k} is negative 757 * @since 14.0 758 */ 759 public <E extends T> List<E> leastOf(Iterator<E> iterator, int k) { 760 checkNotNull(iterator); 761 checkNonnegative(k, "k"); 762 763 if (k == 0 || !iterator.hasNext()) { 764 return Collections.emptyList(); 765 } else if (k >= Integer.MAX_VALUE / 2) { 766 // k is really large; just do a straightforward sorted-copy-and-sublist 767 ArrayList<E> list = Lists.newArrayList(iterator); 768 Collections.sort(list, this); 769 if (list.size() > k) { 770 list.subList(k, list.size()).clear(); 771 } 772 list.trimToSize(); 773 return Collections.unmodifiableList(list); 774 } else { 775 TopKSelector<E> selector = TopKSelector.least(k, this); 776 selector.offerAll(iterator); 777 return selector.topK(); 778 } 779 } 780 781 /** 782 * Returns the {@code k} greatest elements of the given iterable according to this ordering, in 783 * order from greatest to least. If there are fewer than {@code k} elements present, all will be 784 * included. 785 * 786 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 787 * elements are equivalent, it is undefined which will come first. 788 * 789 * <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava, 790 * use {@code Streams.stream(iterable).collect(Comparators.greatest(k, thisComparator))} instead. 791 * 792 * @return an immutable {@code RandomAccess} list of the {@code k} greatest elements in 793 * <i>descending order</i> 794 * @throws IllegalArgumentException if {@code k} is negative 795 * @since 8.0 796 */ 797 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) { 798 // TODO(kevinb): see if delegation is hurting performance noticeably 799 // TODO(kevinb): if we change this implementation, add full unit tests. 800 return reverse().leastOf(iterable, k); 801 } 802 803 /** 804 * Returns the {@code k} greatest elements from the given iterator according to this ordering, in 805 * order from greatest to least. If there are fewer than {@code k} elements present, all will be 806 * included. 807 * 808 * <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple 809 * elements are equivalent, it is undefined which will come first. 810 * 811 * <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).collect(Comparators.greatest(k, 812 * thisComparator))} instead. 813 * 814 * @return an immutable {@code RandomAccess} list of the {@code k} greatest elements in 815 * <i>descending order</i> 816 * @throws IllegalArgumentException if {@code k} is negative 817 * @since 14.0 818 */ 819 public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) { 820 return reverse().leastOf(iterator, k); 821 } 822 823 /** 824 * Returns a <b>mutable</b> list containing {@code elements} sorted by this ordering; use this 825 * only when the resulting list may need further modification, or may contain {@code null}. The 826 * input is not modified. The returned list is serializable and has random access. 827 * 828 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard elements that are 829 * duplicates according to the comparator. The sort performed is <i>stable</i>, meaning that such 830 * elements will appear in the returned list in the same order they appeared in {@code elements}. 831 * 832 * <p><b>Performance note:</b> According to our 833 * benchmarking 834 * on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in both time and space) 835 * than this method, and this method in turn generally performs better than copying the list and 836 * calling {@link Collections#sort(List)}. 837 */ 838 // TODO(kevinb): rerun benchmarks including new options 839 public <E extends T> List<E> sortedCopy(Iterable<E> elements) { 840 @SuppressWarnings("unchecked") // does not escape, and contains only E's 841 E[] array = (E[]) Iterables.toArray(elements); 842 Arrays.sort(array, this); 843 return Lists.newArrayList(Arrays.asList(array)); 844 } 845 846 /** 847 * Returns an <b>immutable</b> list containing {@code elements} sorted by this ordering. The input 848 * is not modified. 849 * 850 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard elements that are 851 * duplicates according to the comparator. The sort performed is <i>stable</i>, meaning that such 852 * elements will appear in the returned list in the same order they appeared in {@code elements}. 853 * 854 * <p><b>Performance note:</b> According to our 855 * benchmarking 856 * on Open JDK 7, this method is the most efficient way to make a sorted copy of a collection. 857 * 858 * @throws NullPointerException if any element of {@code elements} is {@code null} 859 * @since 3.0 860 */ 861 // TODO(kevinb): rerun benchmarks including new options 862 public <E extends T> ImmutableList<E> immutableSortedCopy(Iterable<E> elements) { 863 return ImmutableList.sortedCopyOf(this, elements); 864 } 865 866 /** 867 * Returns {@code true} if each element in {@code iterable} after the first is greater than or 868 * equal to the element that preceded it, according to this ordering. Note that this is always 869 * true when the iterable has fewer than two elements. 870 * 871 * <p><b>Java 8 users:</b> Use the equivalent {@link Comparators#isInOrder(Iterable, Comparator)} 872 * instead, since the rest of {@code Ordering} is mostly obsolete (as explained in the class 873 * documentation). 874 */ 875 public boolean isOrdered(Iterable<? extends T> iterable) { 876 Iterator<? extends T> it = iterable.iterator(); 877 if (it.hasNext()) { 878 T prev = it.next(); 879 while (it.hasNext()) { 880 T next = it.next(); 881 if (compare(prev, next) > 0) { 882 return false; 883 } 884 prev = next; 885 } 886 } 887 return true; 888 } 889 890 /** 891 * Returns {@code true} if each element in {@code iterable} after the first is <i>strictly</i> 892 * greater than the element that preceded it, according to this ordering. Note that this is always 893 * true when the iterable has fewer than two elements. 894 * 895 * <p><b>Java 8 users:</b> Use the equivalent {@link Comparators#isInStrictOrder(Iterable, 896 * Comparator)} instead, since the rest of {@code Ordering} is mostly obsolete (as explained in 897 * the class documentation). 898 */ 899 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) { 900 Iterator<? extends T> it = iterable.iterator(); 901 if (it.hasNext()) { 902 T prev = it.next(); 903 while (it.hasNext()) { 904 T next = it.next(); 905 if (compare(prev, next) >= 0) { 906 return false; 907 } 908 prev = next; 909 } 910 } 911 return true; 912 } 913 914 /** 915 * {@link Collections#binarySearch(List, Object, Comparator) Searches} {@code sortedList} for 916 * {@code key} using the binary search algorithm. The list must be sorted using this ordering. 917 * 918 * @param sortedList the list to be searched 919 * @param key the key to be searched for 920 * @deprecated Use {@link Collections#binarySearch(List, Object, Comparator)} directly. 921 */ 922 @Deprecated 923 public int binarySearch(List<? extends T> sortedList, @NullableDecl T key) { 924 return Collections.binarySearch(sortedList, key, this); 925 } 926 927 /** 928 * Exception thrown by a {@link Ordering#explicit(List)} or {@link Ordering#explicit(Object, 929 * Object[])} comparator when comparing a value outside the set of values it can compare. 930 * Extending {@link ClassCastException} may seem odd, but it is required. 931 */ 932 @VisibleForTesting 933 static class IncomparableValueException extends ClassCastException { 934 final Object value; 935 936 IncomparableValueException(Object value) { 937 super("Cannot compare value: " + value); 938 this.value = value; 939 } 940 941 private static final long serialVersionUID = 0; 942 } 943 944 // Never make these public 945 static final int LEFT_IS_GREATER = 1; 946 static final int RIGHT_IS_GREATER = -1; 947}