001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.Beta; 024import com.google.common.annotations.GwtCompatible; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.collect.Collections2.FilteredCollection; 029import com.google.common.math.IntMath; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import java.io.Serializable; 032import java.util.AbstractSet; 033import java.util.Arrays; 034import java.util.BitSet; 035import java.util.Collection; 036import java.util.Collections; 037import java.util.Comparator; 038import java.util.EnumSet; 039import java.util.HashSet; 040import java.util.Iterator; 041import java.util.LinkedHashSet; 042import java.util.List; 043import java.util.Map; 044import java.util.NavigableSet; 045import java.util.NoSuchElementException; 046import java.util.Set; 047import java.util.SortedSet; 048import java.util.TreeSet; 049import java.util.concurrent.ConcurrentHashMap; 050import java.util.concurrent.CopyOnWriteArraySet; 051import java.util.function.Consumer; 052import java.util.stream.Collector; 053import java.util.stream.Stream; 054import org.checkerframework.checker.nullness.qual.Nullable; 055 056/** 057 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts 058 * {@link Lists}, {@link Maps} and {@link Queues}. 059 * 060 * <p>See the Guava User Guide article on <a href= 061 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>. 062 * 063 * @author Kevin Bourrillion 064 * @author Jared Levy 065 * @author Chris Povirk 066 * @since 2.0 067 */ 068@GwtCompatible(emulated = true) 069public final class Sets { 070 private Sets() {} 071 072 /** 073 * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll} 074 * implementation. 075 */ 076 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 077 @Override 078 public boolean removeAll(Collection<?> c) { 079 return removeAllImpl(this, c); 080 } 081 082 @Override 083 public boolean retainAll(Collection<?> c) { 084 return super.retainAll(checkNotNull(c)); // GWT compatibility 085 } 086 } 087 088 /** 089 * Returns an immutable set instance containing the given enum elements. Internally, the returned 090 * set will be backed by an {@link EnumSet}. 091 * 092 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 093 * which the elements are provided to the method. 094 * 095 * @param anElement one of the elements the set should contain 096 * @param otherElements the rest of the elements the set should contain 097 * @return an immutable set containing those elements, minus duplicates 098 */ 099 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 100 @GwtCompatible(serializable = true) 101 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 102 E anElement, E... otherElements) { 103 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 104 } 105 106 /** 107 * Returns an immutable set instance containing the given enum elements. Internally, the returned 108 * set will be backed by an {@link EnumSet}. 109 * 110 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 111 * which the elements appear in the given collection. 112 * 113 * @param elements the elements, all of the same {@code enum} type, that the set should contain 114 * @return an immutable set containing those elements, minus duplicates 115 */ 116 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 117 @GwtCompatible(serializable = true) 118 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 119 if (elements instanceof ImmutableEnumSet) { 120 return (ImmutableEnumSet<E>) elements; 121 } else if (elements instanceof Collection) { 122 Collection<E> collection = (Collection<E>) elements; 123 if (collection.isEmpty()) { 124 return ImmutableSet.of(); 125 } else { 126 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 127 } 128 } else { 129 Iterator<E> itr = elements.iterator(); 130 if (itr.hasNext()) { 131 EnumSet<E> enumSet = EnumSet.of(itr.next()); 132 Iterators.addAll(enumSet, itr); 133 return ImmutableEnumSet.asImmutable(enumSet); 134 } else { 135 return ImmutableSet.of(); 136 } 137 } 138 } 139 140 /** 141 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 142 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 143 * resulting set will iterate over elements in their enum definition order, not encounter order. 144 * 145 * 146 * @since 21.0 147 */ 148 public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 149 return CollectCollectors.toImmutableEnumSet(); 150 } 151 152 /** 153 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 154 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 155 * accepts non-{@code Collection} iterables and empty iterables. 156 */ 157 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 158 Iterable<E> iterable, Class<E> elementType) { 159 EnumSet<E> set = EnumSet.noneOf(elementType); 160 Iterables.addAll(set, iterable); 161 return set; 162 } 163 164 // HashSet 165 166 /** 167 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 168 * 169 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code 170 * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider 171 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 172 * deterministic iteration behavior. 173 * 174 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 175 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 176 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 177 */ 178 public static <E> HashSet<E> newHashSet() { 179 return new HashSet<E>(); 180 } 181 182 /** 183 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 184 * 185 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 186 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 187 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 188 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 189 * deterministic iteration behavior. 190 * 191 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 192 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 193 * This method is not actually very useful and will likely be deprecated in the future. 194 */ 195 public static <E> HashSet<E> newHashSet(E... elements) { 196 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 197 Collections.addAll(set, elements); 198 return set; 199 } 200 201 /** 202 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 203 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 204 * Iterables#addAll}. 205 * 206 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 207 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 208 * FluentIterable} and call {@code elements.toSet()}.) 209 * 210 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 211 * instead. 212 * 213 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 214 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 215 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 216 * 217 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 218 */ 219 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 220 return (elements instanceof Collection) 221 ? new HashSet<E>((Collection<? extends E>) elements) 222 : newHashSet(elements.iterator()); 223 } 224 225 /** 226 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 227 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 228 * 229 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 230 * ImmutableSet#copyOf(Iterator)} instead. 231 * 232 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 233 * instead. 234 * 235 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 236 */ 237 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 238 HashSet<E> set = newHashSet(); 239 Iterators.addAll(set, elements); 240 return set; 241 } 242 243 /** 244 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 245 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 246 * is what most users want and expect it to do. 247 * 248 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 249 * 250 * @param expectedSize the number of elements you expect to add to the returned set 251 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 252 * without resizing 253 * @throws IllegalArgumentException if {@code expectedSize} is negative 254 */ 255 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 256 return new HashSet<E>(Maps.capacity(expectedSize)); 257 } 258 259 /** 260 * Creates a thread-safe set backed by a hash map. The set is backed by a {@link 261 * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees. 262 * 263 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 264 * set is serializable. 265 * 266 * @return a new, empty thread-safe {@code Set} 267 * @since 15.0 268 */ 269 public static <E> Set<E> newConcurrentHashSet() { 270 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 271 } 272 273 /** 274 * Creates a thread-safe set backed by a hash map and containing the given elements. The set is 275 * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency 276 * guarantees. 277 * 278 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 279 * set is serializable. 280 * 281 * @param elements the elements that the set should contain 282 * @return a new thread-safe set containing those elements (minus duplicates) 283 * @throws NullPointerException if {@code elements} or any of its contents is null 284 * @since 15.0 285 */ 286 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 287 Set<E> set = newConcurrentHashSet(); 288 Iterables.addAll(set, elements); 289 return set; 290 } 291 292 // LinkedHashSet 293 294 /** 295 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 296 * 297 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 298 * 299 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 300 * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of 301 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 302 * 303 * @return a new, empty {@code LinkedHashSet} 304 */ 305 public static <E> LinkedHashSet<E> newLinkedHashSet() { 306 return new LinkedHashSet<E>(); 307 } 308 309 /** 310 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 311 * 312 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 313 * ImmutableSet#copyOf(Iterable)} instead. 314 * 315 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 316 * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage 317 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 318 * 319 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 320 * 321 * @param elements the elements that the set should contain, in order 322 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 323 */ 324 public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) { 325 if (elements instanceof Collection) { 326 return new LinkedHashSet<E>((Collection<? extends E>) elements); 327 } 328 LinkedHashSet<E> set = newLinkedHashSet(); 329 Iterables.addAll(set, elements); 330 return set; 331 } 332 333 /** 334 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 335 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 336 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 337 * that the method isn't inadvertently <i>oversizing</i> the returned set. 338 * 339 * @param expectedSize the number of elements you expect to add to the returned set 340 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 341 * elements without resizing 342 * @throws IllegalArgumentException if {@code expectedSize} is negative 343 * @since 11.0 344 */ 345 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) { 346 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 347 } 348 349 // TreeSet 350 351 /** 352 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 353 * its elements. 354 * 355 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 356 * 357 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 358 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 359 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 360 * 361 * @return a new, empty {@code TreeSet} 362 */ 363 public static <E extends Comparable> TreeSet<E> newTreeSet() { 364 return new TreeSet<E>(); 365 } 366 367 /** 368 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 369 * natural ordering. 370 * 371 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 372 * instead. 373 * 374 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 375 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 376 * TreeSet} with that comparator. 377 * 378 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 379 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 380 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 381 * 382 * <p>This method is just a small convenience for creating an empty set and then calling {@link 383 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 384 * 385 * @param elements the elements that the set should contain 386 * @return a new {@code TreeSet} containing those elements (minus duplicates) 387 */ 388 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 389 TreeSet<E> set = newTreeSet(); 390 Iterables.addAll(set, elements); 391 return set; 392 } 393 394 /** 395 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 396 * 397 * <p><b>Note:</b> if mutability is not required, use {@code 398 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 399 * 400 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 401 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 402 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code 403 * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this 404 * factory rejects null. Clean your code accordingly. 405 * 406 * @param comparator the comparator to use to sort the set 407 * @return a new, empty {@code TreeSet} 408 * @throws NullPointerException if {@code comparator} is null 409 */ 410 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 411 return new TreeSet<E>(checkNotNull(comparator)); 412 } 413 414 /** 415 * Creates an empty {@code Set} that uses identity to determine equality. It compares object 416 * references, instead of calling {@code equals}, to determine whether a provided object matches 417 * an element in the set. For example, {@code contains} returns {@code false} when passed an 418 * object that equals a set member, but isn't the same instance. This behavior is similar to the 419 * way {@code IdentityHashMap} handles key lookups. 420 * 421 * @since 8.0 422 */ 423 public static <E> Set<E> newIdentityHashSet() { 424 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 425 } 426 427 /** 428 * Creates an empty {@code CopyOnWriteArraySet} instance. 429 * 430 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet} 431 * instead. 432 * 433 * @return a new, empty {@code CopyOnWriteArraySet} 434 * @since 12.0 435 */ 436 @GwtIncompatible // CopyOnWriteArraySet 437 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 438 return new CopyOnWriteArraySet<E>(); 439 } 440 441 /** 442 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 443 * 444 * @param elements the elements that the set should contain, in order 445 * @return a new {@code CopyOnWriteArraySet} containing those elements 446 * @since 12.0 447 */ 448 @GwtIncompatible // CopyOnWriteArraySet 449 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) { 450 // We copy elements to an ArrayList first, rather than incurring the 451 // quadratic cost of adding them to the COWAS directly. 452 Collection<? extends E> elementsCollection = 453 (elements instanceof Collection) 454 ? (Collection<? extends E>) elements 455 : Lists.newArrayList(elements); 456 return new CopyOnWriteArraySet<E>(elementsCollection); 457 } 458 459 /** 460 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 461 * collection. If the collection is an {@link EnumSet}, this method has the same behavior as 462 * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one 463 * element, in order to determine the element type. If the collection could be empty, use {@link 464 * #complementOf(Collection, Class)} instead of this method. 465 * 466 * @param collection the collection whose complement should be stored in the enum set 467 * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present 468 * in the given collection 469 * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and 470 * contains no elements 471 */ 472 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 473 if (collection instanceof EnumSet) { 474 return EnumSet.complementOf((EnumSet<E>) collection); 475 } 476 checkArgument( 477 !collection.isEmpty(), "collection is empty; use the other version of this method"); 478 Class<E> type = collection.iterator().next().getDeclaringClass(); 479 return makeComplementByHand(collection, type); 480 } 481 482 /** 483 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 484 * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input 485 * collection, as long as the elements are of enum type. 486 * 487 * @param collection the collection whose complement should be stored in the {@code EnumSet} 488 * @param type the type of the elements in the set 489 * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not 490 * present in the given collection 491 */ 492 public static <E extends Enum<E>> EnumSet<E> complementOf( 493 Collection<E> collection, Class<E> type) { 494 checkNotNull(collection); 495 return (collection instanceof EnumSet) 496 ? EnumSet.complementOf((EnumSet<E>) collection) 497 : makeComplementByHand(collection, type); 498 } 499 500 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 501 Collection<E> collection, Class<E> type) { 502 EnumSet<E> result = EnumSet.allOf(type); 503 result.removeAll(collection); 504 return result; 505 } 506 507 /** 508 * Returns a set backed by the specified map. The resulting set displays the same ordering, 509 * concurrency, and performance characteristics as the backing map. In essence, this factory 510 * method provides a {@link Set} implementation corresponding to any {@link Map} implementation. 511 * There is no need to use this method on a {@link Map} implementation that already has a 512 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link 513 * java.util.TreeMap}). 514 * 515 * <p>Each method invocation on the set returned by this method results in exactly one method 516 * invocation on the backing map or its {@code keySet} view, with one exception. The {@code 517 * addAll} method is implemented as a sequence of {@code put} invocations on the backing map. 518 * 519 * <p>The specified map must be empty at the time this method is invoked, and should not be 520 * accessed directly after this method returns. These conditions are ensured if the map is created 521 * empty, passed directly to this method, and no reference to the map is retained, as illustrated 522 * in the following code fragment: 523 * 524 * <pre>{@code 525 * Set<Object> identityHashSet = Sets.newSetFromMap( 526 * new IdentityHashMap<Object, Boolean>()); 527 * }</pre> 528 * 529 * <p>The returned set is serializable if the backing map is. 530 * 531 * @param map the backing map 532 * @return the set backed by the map 533 * @throws IllegalArgumentException if {@code map} is not empty 534 * @deprecated Use {@link Collections#newSetFromMap} instead. 535 */ 536 @Deprecated 537 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 538 return Collections.newSetFromMap(map); 539 } 540 541 /** 542 * An unmodifiable view of a set which may be backed by other sets; this view will change as the 543 * backing sets do. Contains methods to copy the data into a new set which will then remain 544 * stable. There is usually no reason to retain a reference of type {@code SetView}; typically, 545 * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 546 * {@link #copyInto} and forget the {@code SetView} itself. 547 * 548 * @since 2.0 549 */ 550 public abstract static class SetView<E> extends AbstractSet<E> { 551 private SetView() {} // no subclasses but our own 552 553 /** 554 * Returns an immutable copy of the current contents of this set view. Does not support null 555 * elements. 556 * 557 * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a 558 * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator 559 * that is inconsistent with {@link Object#equals(Object)}. 560 */ 561 public ImmutableSet<E> immutableCopy() { 562 return ImmutableSet.copyOf(this); 563 } 564 565 /** 566 * Copies the current contents of this set view into an existing set. This method has equivalent 567 * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the 568 * same notion of equivalence. 569 * 570 * @return a reference to {@code set}, for convenience 571 */ 572 // Note: S should logically extend Set<? super E> but can't due to either 573 // some javac bug or some weirdness in the spec, not sure which. 574 @CanIgnoreReturnValue 575 public <S extends Set<E>> S copyInto(S set) { 576 set.addAll(this); 577 return set; 578 } 579 580 /** 581 * Guaranteed to throw an exception and leave the collection unmodified. 582 * 583 * @throws UnsupportedOperationException always 584 * @deprecated Unsupported operation. 585 */ 586 @CanIgnoreReturnValue 587 @Deprecated 588 @Override 589 public final boolean add(E e) { 590 throw new UnsupportedOperationException(); 591 } 592 593 /** 594 * Guaranteed to throw an exception and leave the collection unmodified. 595 * 596 * @throws UnsupportedOperationException always 597 * @deprecated Unsupported operation. 598 */ 599 @CanIgnoreReturnValue 600 @Deprecated 601 @Override 602 public final boolean remove(Object object) { 603 throw new UnsupportedOperationException(); 604 } 605 606 /** 607 * Guaranteed to throw an exception and leave the collection unmodified. 608 * 609 * @throws UnsupportedOperationException always 610 * @deprecated Unsupported operation. 611 */ 612 @CanIgnoreReturnValue 613 @Deprecated 614 @Override 615 public final boolean addAll(Collection<? extends E> newElements) { 616 throw new UnsupportedOperationException(); 617 } 618 619 /** 620 * Guaranteed to throw an exception and leave the collection unmodified. 621 * 622 * @throws UnsupportedOperationException always 623 * @deprecated Unsupported operation. 624 */ 625 @CanIgnoreReturnValue 626 @Deprecated 627 @Override 628 public final boolean removeAll(Collection<?> oldElements) { 629 throw new UnsupportedOperationException(); 630 } 631 632 /** 633 * Guaranteed to throw an exception and leave the collection unmodified. 634 * 635 * @throws UnsupportedOperationException always 636 * @deprecated Unsupported operation. 637 */ 638 @CanIgnoreReturnValue 639 @Deprecated 640 @Override 641 public final boolean removeIf(java.util.function.Predicate<? super E> filter) { 642 throw new UnsupportedOperationException(); 643 } 644 645 /** 646 * Guaranteed to throw an exception and leave the collection unmodified. 647 * 648 * @throws UnsupportedOperationException always 649 * @deprecated Unsupported operation. 650 */ 651 @CanIgnoreReturnValue 652 @Deprecated 653 @Override 654 public final boolean retainAll(Collection<?> elementsToKeep) { 655 throw new UnsupportedOperationException(); 656 } 657 658 /** 659 * Guaranteed to throw an exception and leave the collection unmodified. 660 * 661 * @throws UnsupportedOperationException always 662 * @deprecated Unsupported operation. 663 */ 664 @Deprecated 665 @Override 666 public final void clear() { 667 throw new UnsupportedOperationException(); 668 } 669 670 /** 671 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 672 * 673 * @since 20.0 (present with return type {@link Iterator} since 2.0) 674 */ 675 @Override 676 public abstract UnmodifiableIterator<E> iterator(); 677 } 678 679 /** 680 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all 681 * elements that are contained in either backing set. Iterating over the returned set iterates 682 * first over all the elements of {@code set1}, then over each element of {@code set2}, in order, 683 * that is not contained in {@code set1}. 684 * 685 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 686 * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an 687 * {@code IdentityHashMap} all are). 688 */ 689 public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) { 690 checkNotNull(set1, "set1"); 691 checkNotNull(set2, "set2"); 692 693 return new SetView<E>() { 694 @Override 695 public int size() { 696 int size = set1.size(); 697 for (E e : set2) { 698 if (!set1.contains(e)) { 699 size++; 700 } 701 } 702 return size; 703 } 704 705 @Override 706 public boolean isEmpty() { 707 return set1.isEmpty() && set2.isEmpty(); 708 } 709 710 @Override 711 public UnmodifiableIterator<E> iterator() { 712 return new AbstractIterator<E>() { 713 final Iterator<? extends E> itr1 = set1.iterator(); 714 final Iterator<? extends E> itr2 = set2.iterator(); 715 716 @Override 717 protected E computeNext() { 718 if (itr1.hasNext()) { 719 return itr1.next(); 720 } 721 while (itr2.hasNext()) { 722 E e = itr2.next(); 723 if (!set1.contains(e)) { 724 return e; 725 } 726 } 727 return endOfData(); 728 } 729 }; 730 } 731 732 @Override 733 public Stream<E> stream() { 734 return Stream.concat(set1.stream(), set2.stream().filter(e -> !set1.contains(e))); 735 } 736 737 @Override 738 public Stream<E> parallelStream() { 739 return stream().parallel(); 740 } 741 742 @Override 743 public boolean contains(Object object) { 744 return set1.contains(object) || set2.contains(object); 745 } 746 747 @Override 748 public <S extends Set<E>> S copyInto(S set) { 749 set.addAll(set1); 750 set.addAll(set2); 751 return set; 752 } 753 754 @Override 755 public ImmutableSet<E> immutableCopy() { 756 return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); 757 } 758 }; 759 } 760 761 /** 762 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains 763 * all elements that are contained by both backing sets. The iteration order of the returned set 764 * matches that of {@code set1}. 765 * 766 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 767 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 768 * IdentityHashMap} all are). 769 * 770 * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of 771 * the two sets. If you have reason to believe one of your sets will generally be smaller than the 772 * other, pass it first. Unfortunately, since this method sets the generic type of the returned 773 * set based on the type of the first set passed, this could in rare cases force you to make a 774 * cast, for example: 775 * 776 * <pre>{@code 777 * Set<Object> aFewBadObjects = ... 778 * Set<String> manyBadStrings = ... 779 * 780 * // impossible for a non-String to be in the intersection 781 * SuppressWarnings("unchecked") 782 * Set<String> badStrings = (Set) Sets.intersection( 783 * aFewBadObjects, manyBadStrings); 784 * }</pre> 785 * 786 * <p>This is unfortunate, but should come up only very rarely. 787 */ 788 public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) { 789 checkNotNull(set1, "set1"); 790 checkNotNull(set2, "set2"); 791 792 return new SetView<E>() { 793 @Override 794 public UnmodifiableIterator<E> iterator() { 795 return new AbstractIterator<E>() { 796 final Iterator<E> itr = set1.iterator(); 797 798 @Override 799 protected E computeNext() { 800 while (itr.hasNext()) { 801 E e = itr.next(); 802 if (set2.contains(e)) { 803 return e; 804 } 805 } 806 return endOfData(); 807 } 808 }; 809 } 810 811 @Override 812 public Stream<E> stream() { 813 return set1.stream().filter(set2::contains); 814 } 815 816 @Override 817 public Stream<E> parallelStream() { 818 return set1.parallelStream().filter(set2::contains); 819 } 820 821 @Override 822 public int size() { 823 int size = 0; 824 for (E e : set1) { 825 if (set2.contains(e)) { 826 size++; 827 } 828 } 829 return size; 830 } 831 832 @Override 833 public boolean isEmpty() { 834 return Collections.disjoint(set2, set1); 835 } 836 837 @Override 838 public boolean contains(Object object) { 839 return set1.contains(object) && set2.contains(object); 840 } 841 842 @Override 843 public boolean containsAll(Collection<?> collection) { 844 return set1.containsAll(collection) && set2.containsAll(collection); 845 } 846 }; 847 } 848 849 /** 850 * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains 851 * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2} 852 * may also contain elements not present in {@code set1}; these are simply ignored. The iteration 853 * order of the returned set matches that of {@code set1}. 854 * 855 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 856 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 857 * IdentityHashMap} all are). 858 */ 859 public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) { 860 checkNotNull(set1, "set1"); 861 checkNotNull(set2, "set2"); 862 863 return new SetView<E>() { 864 @Override 865 public UnmodifiableIterator<E> iterator() { 866 return new AbstractIterator<E>() { 867 final Iterator<E> itr = set1.iterator(); 868 869 @Override 870 protected E computeNext() { 871 while (itr.hasNext()) { 872 E e = itr.next(); 873 if (!set2.contains(e)) { 874 return e; 875 } 876 } 877 return endOfData(); 878 } 879 }; 880 } 881 882 @Override 883 public Stream<E> stream() { 884 return set1.stream().filter(e -> !set2.contains(e)); 885 } 886 887 @Override 888 public Stream<E> parallelStream() { 889 return set1.parallelStream().filter(e -> !set2.contains(e)); 890 } 891 892 @Override 893 public int size() { 894 int size = 0; 895 for (E e : set1) { 896 if (!set2.contains(e)) { 897 size++; 898 } 899 } 900 return size; 901 } 902 903 @Override 904 public boolean isEmpty() { 905 return set2.containsAll(set1); 906 } 907 908 @Override 909 public boolean contains(Object element) { 910 return set1.contains(element) && !set2.contains(element); 911 } 912 }; 913 } 914 915 /** 916 * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set 917 * contains all elements that are contained in either {@code set1} or {@code set2} but not in 918 * both. The iteration order of the returned set is undefined. 919 * 920 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 921 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 922 * IdentityHashMap} all are). 923 * 924 * @since 3.0 925 */ 926 public static <E> SetView<E> symmetricDifference( 927 final Set<? extends E> set1, final Set<? extends E> set2) { 928 checkNotNull(set1, "set1"); 929 checkNotNull(set2, "set2"); 930 931 return new SetView<E>() { 932 @Override 933 public UnmodifiableIterator<E> iterator() { 934 final Iterator<? extends E> itr1 = set1.iterator(); 935 final Iterator<? extends E> itr2 = set2.iterator(); 936 return new AbstractIterator<E>() { 937 @Override 938 public E computeNext() { 939 while (itr1.hasNext()) { 940 E elem1 = itr1.next(); 941 if (!set2.contains(elem1)) { 942 return elem1; 943 } 944 } 945 while (itr2.hasNext()) { 946 E elem2 = itr2.next(); 947 if (!set1.contains(elem2)) { 948 return elem2; 949 } 950 } 951 return endOfData(); 952 } 953 }; 954 } 955 956 @Override 957 public int size() { 958 int size = 0; 959 for (E e : set1) { 960 if (!set2.contains(e)) { 961 size++; 962 } 963 } 964 for (E e : set2) { 965 if (!set1.contains(e)) { 966 size++; 967 } 968 } 969 return size; 970 } 971 972 @Override 973 public boolean isEmpty() { 974 return set1.equals(set2); 975 } 976 977 @Override 978 public boolean contains(Object element) { 979 return set1.contains(element) ^ set2.contains(element); 980 } 981 }; 982 } 983 984 /** 985 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live 986 * view of {@code unfiltered}; changes to one affect the other. 987 * 988 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 989 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 990 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 991 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 992 * that satisfy the filter will be removed from the underlying set. 993 * 994 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 995 * 996 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 997 * the underlying set and determine which elements satisfy the filter. When a live view is 998 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 999 * use the copy. 1000 * 1001 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1002 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1003 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1004 * Iterables#filter(Iterable, Class)} for related functionality.) 1005 * 1006 * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link 1007 * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage 1008 * you to migrate to streams. 1009 */ 1010 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 1011 public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) { 1012 if (unfiltered instanceof SortedSet) { 1013 return filter((SortedSet<E>) unfiltered, predicate); 1014 } 1015 if (unfiltered instanceof FilteredSet) { 1016 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1017 // collection. 1018 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1019 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1020 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 1021 } 1022 1023 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1024 } 1025 1026 /** 1027 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The 1028 * returned set is a live view of {@code unfiltered}; changes to one affect the other. 1029 * 1030 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1031 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1032 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1033 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1034 * that satisfy the filter will be removed from the underlying set. 1035 * 1036 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1037 * 1038 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1039 * the underlying set and determine which elements satisfy the filter. When a live view is 1040 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1041 * use the copy. 1042 * 1043 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1044 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1045 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1046 * Iterables#filter(Iterable, Class)} for related functionality.) 1047 * 1048 * @since 11.0 1049 */ 1050 public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1051 if (unfiltered instanceof FilteredSet) { 1052 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1053 // collection. 1054 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1055 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1056 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1057 } 1058 1059 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1060 } 1061 1062 /** 1063 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate. 1064 * The returned set is a live view of {@code unfiltered}; changes to one affect the other. 1065 * 1066 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1067 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1068 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1069 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1070 * that satisfy the filter will be removed from the underlying set. 1071 * 1072 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1073 * 1074 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1075 * the underlying set and determine which elements satisfy the filter. When a live view is 1076 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1077 * use the copy. 1078 * 1079 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1080 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1081 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1082 * Iterables#filter(Iterable, Class)} for related functionality.) 1083 * 1084 * @since 14.0 1085 */ 1086 @GwtIncompatible // NavigableSet 1087 @SuppressWarnings("unchecked") 1088 public static <E> NavigableSet<E> filter( 1089 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1090 if (unfiltered instanceof FilteredSet) { 1091 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1092 // collection. 1093 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1094 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1095 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1096 } 1097 1098 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1099 } 1100 1101 private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> { 1102 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1103 super(unfiltered, predicate); 1104 } 1105 1106 @Override 1107 public boolean equals(@Nullable Object object) { 1108 return equalsImpl(this, object); 1109 } 1110 1111 @Override 1112 public int hashCode() { 1113 return hashCodeImpl(this); 1114 } 1115 } 1116 1117 private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> { 1118 1119 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1120 super(unfiltered, predicate); 1121 } 1122 1123 @Override 1124 public Comparator<? super E> comparator() { 1125 return ((SortedSet<E>) unfiltered).comparator(); 1126 } 1127 1128 @Override 1129 public SortedSet<E> subSet(E fromElement, E toElement) { 1130 return new FilteredSortedSet<E>( 1131 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1132 } 1133 1134 @Override 1135 public SortedSet<E> headSet(E toElement) { 1136 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1137 } 1138 1139 @Override 1140 public SortedSet<E> tailSet(E fromElement) { 1141 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1142 } 1143 1144 @Override 1145 public E first() { 1146 return Iterators.find(unfiltered.iterator(), predicate); 1147 } 1148 1149 @Override 1150 public E last() { 1151 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1152 while (true) { 1153 E element = sortedUnfiltered.last(); 1154 if (predicate.apply(element)) { 1155 return element; 1156 } 1157 sortedUnfiltered = sortedUnfiltered.headSet(element); 1158 } 1159 } 1160 } 1161 1162 @GwtIncompatible // NavigableSet 1163 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 1164 implements NavigableSet<E> { 1165 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1166 super(unfiltered, predicate); 1167 } 1168 1169 NavigableSet<E> unfiltered() { 1170 return (NavigableSet<E>) unfiltered; 1171 } 1172 1173 @Override 1174 public @Nullable E lower(E e) { 1175 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1176 } 1177 1178 @Override 1179 public @Nullable E floor(E e) { 1180 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1181 } 1182 1183 @Override 1184 public E ceiling(E e) { 1185 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1186 } 1187 1188 @Override 1189 public E higher(E e) { 1190 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1191 } 1192 1193 @Override 1194 public E pollFirst() { 1195 return Iterables.removeFirstMatching(unfiltered(), predicate); 1196 } 1197 1198 @Override 1199 public E pollLast() { 1200 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1201 } 1202 1203 @Override 1204 public NavigableSet<E> descendingSet() { 1205 return Sets.filter(unfiltered().descendingSet(), predicate); 1206 } 1207 1208 @Override 1209 public Iterator<E> descendingIterator() { 1210 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1211 } 1212 1213 @Override 1214 public E last() { 1215 return Iterators.find(unfiltered().descendingIterator(), predicate); 1216 } 1217 1218 @Override 1219 public NavigableSet<E> subSet( 1220 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1221 return filter( 1222 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1223 } 1224 1225 @Override 1226 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1227 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1228 } 1229 1230 @Override 1231 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1232 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1233 } 1234 } 1235 1236 /** 1237 * Returns every possible list that can be formed by choosing one element from each of the given 1238 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1239 * product</a>" of the sets. For example: 1240 * 1241 * <pre>{@code 1242 * Sets.cartesianProduct(ImmutableList.of( 1243 * ImmutableSet.of(1, 2), 1244 * ImmutableSet.of("A", "B", "C"))) 1245 * }</pre> 1246 * 1247 * <p>returns a set containing six lists: 1248 * 1249 * <ul> 1250 * <li>{@code ImmutableList.of(1, "A")} 1251 * <li>{@code ImmutableList.of(1, "B")} 1252 * <li>{@code ImmutableList.of(1, "C")} 1253 * <li>{@code ImmutableList.of(2, "A")} 1254 * <li>{@code ImmutableList.of(2, "B")} 1255 * <li>{@code ImmutableList.of(2, "C")} 1256 * </ul> 1257 * 1258 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1259 * products that you would get from nesting for loops: 1260 * 1261 * <pre>{@code 1262 * for (B b0 : sets.get(0)) { 1263 * for (B b1 : sets.get(1)) { 1264 * ... 1265 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1266 * // operate on tuple 1267 * } 1268 * } 1269 * }</pre> 1270 * 1271 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1272 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1273 * list (counter-intuitive, but mathematically consistent). 1274 * 1275 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1276 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1277 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1278 * iterated are the individual lists created, and these are not retained after iteration. 1279 * 1280 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1281 * sets should appear in the resulting lists 1282 * @param <B> any common base class shared by all axes (often just {@link Object}) 1283 * @return the Cartesian product, as an immutable set containing immutable lists 1284 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1285 * provided set is null 1286 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1287 * @since 2.0 1288 */ 1289 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1290 return CartesianSet.create(sets); 1291 } 1292 1293 /** 1294 * Returns every possible list that can be formed by choosing one element from each of the given 1295 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1296 * product</a>" of the sets. For example: 1297 * 1298 * <pre>{@code 1299 * Sets.cartesianProduct( 1300 * ImmutableSet.of(1, 2), 1301 * ImmutableSet.of("A", "B", "C")) 1302 * }</pre> 1303 * 1304 * <p>returns a set containing six lists: 1305 * 1306 * <ul> 1307 * <li>{@code ImmutableList.of(1, "A")} 1308 * <li>{@code ImmutableList.of(1, "B")} 1309 * <li>{@code ImmutableList.of(1, "C")} 1310 * <li>{@code ImmutableList.of(2, "A")} 1311 * <li>{@code ImmutableList.of(2, "B")} 1312 * <li>{@code ImmutableList.of(2, "C")} 1313 * </ul> 1314 * 1315 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1316 * products that you would get from nesting for loops: 1317 * 1318 * <pre>{@code 1319 * for (B b0 : sets.get(0)) { 1320 * for (B b1 : sets.get(1)) { 1321 * ... 1322 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1323 * // operate on tuple 1324 * } 1325 * } 1326 * }</pre> 1327 * 1328 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1329 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1330 * list (counter-intuitive, but mathematically consistent). 1331 * 1332 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1333 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1334 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1335 * iterated are the individual lists created, and these are not retained after iteration. 1336 * 1337 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1338 * sets should appear in the resulting lists 1339 * @param <B> any common base class shared by all axes (often just {@link Object}) 1340 * @return the Cartesian product, as an immutable set containing immutable lists 1341 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1342 * provided set is null 1343 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1344 * @since 2.0 1345 */ 1346 @SafeVarargs 1347 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1348 return cartesianProduct(Arrays.asList(sets)); 1349 } 1350 1351 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1352 implements Set<List<E>> { 1353 private final transient ImmutableList<ImmutableSet<E>> axes; 1354 private final transient CartesianList<E> delegate; 1355 1356 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1357 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1358 for (Set<? extends E> set : sets) { 1359 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1360 if (copy.isEmpty()) { 1361 return ImmutableSet.of(); 1362 } 1363 axesBuilder.add(copy); 1364 } 1365 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1366 ImmutableList<List<E>> listAxes = 1367 new ImmutableList<List<E>>() { 1368 @Override 1369 public int size() { 1370 return axes.size(); 1371 } 1372 1373 @Override 1374 public List<E> get(int index) { 1375 return axes.get(index).asList(); 1376 } 1377 1378 @Override 1379 boolean isPartialView() { 1380 return true; 1381 } 1382 }; 1383 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1384 } 1385 1386 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1387 this.axes = axes; 1388 this.delegate = delegate; 1389 } 1390 1391 @Override 1392 protected Collection<List<E>> delegate() { 1393 return delegate; 1394 } 1395 1396 @Override 1397 public boolean contains(@Nullable Object object) { 1398 if (!(object instanceof List)) { 1399 return false; 1400 } 1401 List<?> list = (List<?>) object; 1402 if (list.size() != axes.size()) { 1403 return false; 1404 } 1405 int i = 0; 1406 for (Object o : list) { 1407 if (!axes.get(i).contains(o)) { 1408 return false; 1409 } 1410 i++; 1411 } 1412 return true; 1413 } 1414 1415 @Override 1416 public boolean equals(@Nullable Object object) { 1417 // Warning: this is broken if size() == 0, so it is critical that we 1418 // substitute an empty ImmutableSet to the user in place of this 1419 if (object instanceof CartesianSet) { 1420 CartesianSet<?> that = (CartesianSet<?>) object; 1421 return this.axes.equals(that.axes); 1422 } 1423 return super.equals(object); 1424 } 1425 1426 @Override 1427 public int hashCode() { 1428 // Warning: this is broken if size() == 0, so it is critical that we 1429 // substitute an empty ImmutableSet to the user in place of this 1430 1431 // It's a weird formula, but tests prove it works. 1432 int adjust = size() - 1; 1433 for (int i = 0; i < axes.size(); i++) { 1434 adjust *= 31; 1435 adjust = ~~adjust; 1436 // in GWT, we have to deal with integer overflow carefully 1437 } 1438 int hash = 1; 1439 for (Set<E> axis : axes) { 1440 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1441 1442 hash = ~~hash; 1443 } 1444 hash += adjust; 1445 return ~~hash; 1446 } 1447 } 1448 1449 /** 1450 * Returns the set of all possible subsets of {@code set}. For example, {@code 1451 * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}. 1452 * 1453 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1454 * set. The order in which these subsets appear in the outer set is undefined. Note that the power 1455 * set of the empty set is not the empty set, but a one-element set containing the empty set. 1456 * 1457 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1458 * are identical, even if the input set uses a different concept of equivalence. 1459 * 1460 * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code 1461 * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set 1462 * is merely copied. Only as the power set is iterated are the individual subsets created, and 1463 * these subsets themselves occupy only a small constant amount of memory. 1464 * 1465 * @param set the set of elements to construct a power set from 1466 * @return the power set, as an immutable set of immutable sets 1467 * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the 1468 * power set size to exceed the {@code int} range) 1469 * @throws NullPointerException if {@code set} is or contains {@code null} 1470 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a> 1471 * @since 4.0 1472 */ 1473 @GwtCompatible(serializable = false) 1474 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1475 return new PowerSet<E>(set); 1476 } 1477 1478 private static final class SubSet<E> extends AbstractSet<E> { 1479 private final ImmutableMap<E, Integer> inputSet; 1480 private final int mask; 1481 1482 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1483 this.inputSet = inputSet; 1484 this.mask = mask; 1485 } 1486 1487 @Override 1488 public Iterator<E> iterator() { 1489 return new UnmodifiableIterator<E>() { 1490 final ImmutableList<E> elements = inputSet.keySet().asList(); 1491 int remainingSetBits = mask; 1492 1493 @Override 1494 public boolean hasNext() { 1495 return remainingSetBits != 0; 1496 } 1497 1498 @Override 1499 public E next() { 1500 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1501 if (index == 32) { 1502 throw new NoSuchElementException(); 1503 } 1504 remainingSetBits &= ~(1 << index); 1505 return elements.get(index); 1506 } 1507 }; 1508 } 1509 1510 @Override 1511 public int size() { 1512 return Integer.bitCount(mask); 1513 } 1514 1515 @Override 1516 public boolean contains(@Nullable Object o) { 1517 Integer index = inputSet.get(o); 1518 return index != null && (mask & (1 << index)) != 0; 1519 } 1520 } 1521 1522 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1523 final ImmutableMap<E, Integer> inputSet; 1524 1525 PowerSet(Set<E> input) { 1526 checkArgument( 1527 input.size() <= 30, "Too many elements to create power set: %s > 30", input.size()); 1528 this.inputSet = Maps.indexMap(input); 1529 } 1530 1531 @Override 1532 public int size() { 1533 return 1 << inputSet.size(); 1534 } 1535 1536 @Override 1537 public boolean isEmpty() { 1538 return false; 1539 } 1540 1541 @Override 1542 public Iterator<Set<E>> iterator() { 1543 return new AbstractIndexedListIterator<Set<E>>(size()) { 1544 @Override 1545 protected Set<E> get(final int setBits) { 1546 return new SubSet<E>(inputSet, setBits); 1547 } 1548 }; 1549 } 1550 1551 @Override 1552 public boolean contains(@Nullable Object obj) { 1553 if (obj instanceof Set) { 1554 Set<?> set = (Set<?>) obj; 1555 return inputSet.keySet().containsAll(set); 1556 } 1557 return false; 1558 } 1559 1560 @Override 1561 public boolean equals(@Nullable Object obj) { 1562 if (obj instanceof PowerSet) { 1563 PowerSet<?> that = (PowerSet<?>) obj; 1564 return inputSet.keySet().equals(that.inputSet.keySet()); 1565 } 1566 return super.equals(obj); 1567 } 1568 1569 @Override 1570 public int hashCode() { 1571 /* 1572 * The sum of the sums of the hash codes in each subset is just the sum of 1573 * each input element's hash code times the number of sets that element 1574 * appears in. Each element appears in exactly half of the 2^n sets, so: 1575 */ 1576 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1577 } 1578 1579 @Override 1580 public String toString() { 1581 return "powerSet(" + inputSet + ")"; 1582 } 1583 } 1584 1585 /** 1586 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1587 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1588 * 1589 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1590 * set. The order in which these subsets appear in the outer set is undefined. 1591 * 1592 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1593 * are identical, even if the input set uses a different concept of equivalence. 1594 * 1595 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1596 * the result set is constructed, the input set is merely copied. Only as the result set is 1597 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1598 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1599 * {@code combinations} does not retain the individual subsets. 1600 * 1601 * @param set the set of elements to take combinations of 1602 * @param size the number of elements per combination 1603 * @return the set of all combinations of {@code size} elements from {@code set} 1604 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1605 * inclusive 1606 * @throws NullPointerException if {@code set} is or contains {@code null} 1607 * @since 23.0 1608 */ 1609 @Beta 1610 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1611 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1612 checkNonnegative(size, "size"); 1613 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1614 if (size == 0) { 1615 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1616 } else if (size == index.size()) { 1617 return ImmutableSet.<Set<E>>of(index.keySet()); 1618 } 1619 return new AbstractSet<Set<E>>() { 1620 @Override 1621 public boolean contains(@Nullable Object o) { 1622 if (o instanceof Set) { 1623 Set<?> s = (Set<?>) o; 1624 return s.size() == size && index.keySet().containsAll(s); 1625 } 1626 return false; 1627 } 1628 1629 @Override 1630 public Iterator<Set<E>> iterator() { 1631 return new AbstractIterator<Set<E>>() { 1632 final BitSet bits = new BitSet(index.size()); 1633 1634 @Override 1635 protected Set<E> computeNext() { 1636 if (bits.isEmpty()) { 1637 bits.set(0, size); 1638 } else { 1639 int firstSetBit = bits.nextSetBit(0); 1640 int bitToFlip = bits.nextClearBit(firstSetBit); 1641 1642 if (bitToFlip == index.size()) { 1643 return endOfData(); 1644 } 1645 1646 /* 1647 * The current set in sorted order looks like 1648 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1649 * where it does *not* contain bitToFlip. 1650 * 1651 * The next combination is 1652 * 1653 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1654 * 1655 * This is lexicographically next if you look at the combinations in descending order 1656 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1657 */ 1658 1659 bits.set(0, bitToFlip - firstSetBit - 1); 1660 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1661 bits.set(bitToFlip); 1662 } 1663 final BitSet copy = (BitSet) bits.clone(); 1664 return new AbstractSet<E>() { 1665 @Override 1666 public boolean contains(@Nullable Object o) { 1667 Integer i = index.get(o); 1668 return i != null && copy.get(i); 1669 } 1670 1671 @Override 1672 public Iterator<E> iterator() { 1673 return new AbstractIterator<E>() { 1674 int i = -1; 1675 1676 @Override 1677 protected E computeNext() { 1678 i = copy.nextSetBit(i + 1); 1679 if (i == -1) { 1680 return endOfData(); 1681 } 1682 return index.keySet().asList().get(i); 1683 } 1684 }; 1685 } 1686 1687 @Override 1688 public int size() { 1689 return size; 1690 } 1691 }; 1692 } 1693 }; 1694 } 1695 1696 @Override 1697 public int size() { 1698 return IntMath.binomial(index.size(), size); 1699 } 1700 1701 @Override 1702 public String toString() { 1703 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1704 } 1705 }; 1706 } 1707 1708 /** An implementation for {@link Set#hashCode()}. */ 1709 static int hashCodeImpl(Set<?> s) { 1710 int hashCode = 0; 1711 for (Object o : s) { 1712 hashCode += o != null ? o.hashCode() : 0; 1713 1714 hashCode = ~~hashCode; 1715 // Needed to deal with unusual integer overflow in GWT. 1716 } 1717 return hashCode; 1718 } 1719 1720 /** An implementation for {@link Set#equals(Object)}. */ 1721 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1722 if (s == object) { 1723 return true; 1724 } 1725 if (object instanceof Set) { 1726 Set<?> o = (Set<?>) object; 1727 1728 try { 1729 return s.size() == o.size() && s.containsAll(o); 1730 } catch (NullPointerException | ClassCastException ignored) { 1731 return false; 1732 } 1733 } 1734 return false; 1735 } 1736 1737 /** 1738 * Returns an unmodifiable view of the specified navigable set. This method allows modules to 1739 * provide users with "read-only" access to internal navigable sets. Query operations on the 1740 * returned set "read through" to the specified set, and attempts to modify the returned set, 1741 * whether direct or via its collection views, result in an {@code UnsupportedOperationException}. 1742 * 1743 * <p>The returned navigable set will be serializable if the specified navigable set is 1744 * serializable. 1745 * 1746 * @param set the navigable set for which an unmodifiable view is to be returned 1747 * @return an unmodifiable view of the specified navigable set 1748 * @since 12.0 1749 */ 1750 public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) { 1751 if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) { 1752 return set; 1753 } 1754 return new UnmodifiableNavigableSet<E>(set); 1755 } 1756 1757 static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E> 1758 implements NavigableSet<E>, Serializable { 1759 private final NavigableSet<E> delegate; 1760 private final SortedSet<E> unmodifiableDelegate; 1761 1762 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1763 this.delegate = checkNotNull(delegate); 1764 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1765 } 1766 1767 @Override 1768 protected SortedSet<E> delegate() { 1769 return unmodifiableDelegate; 1770 } 1771 1772 // default methods not forwarded by ForwardingSortedSet 1773 1774 @Override 1775 public boolean removeIf(java.util.function.Predicate<? super E> filter) { 1776 throw new UnsupportedOperationException(); 1777 } 1778 1779 @Override 1780 public Stream<E> stream() { 1781 return delegate.stream(); 1782 } 1783 1784 @Override 1785 public Stream<E> parallelStream() { 1786 return delegate.parallelStream(); 1787 } 1788 1789 @Override 1790 public void forEach(Consumer<? super E> action) { 1791 delegate.forEach(action); 1792 } 1793 1794 @Override 1795 public E lower(E e) { 1796 return delegate.lower(e); 1797 } 1798 1799 @Override 1800 public E floor(E e) { 1801 return delegate.floor(e); 1802 } 1803 1804 @Override 1805 public E ceiling(E e) { 1806 return delegate.ceiling(e); 1807 } 1808 1809 @Override 1810 public E higher(E e) { 1811 return delegate.higher(e); 1812 } 1813 1814 @Override 1815 public E pollFirst() { 1816 throw new UnsupportedOperationException(); 1817 } 1818 1819 @Override 1820 public E pollLast() { 1821 throw new UnsupportedOperationException(); 1822 } 1823 1824 private transient @Nullable UnmodifiableNavigableSet<E> descendingSet; 1825 1826 @Override 1827 public NavigableSet<E> descendingSet() { 1828 UnmodifiableNavigableSet<E> result = descendingSet; 1829 if (result == null) { 1830 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1831 result.descendingSet = this; 1832 } 1833 return result; 1834 } 1835 1836 @Override 1837 public Iterator<E> descendingIterator() { 1838 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1839 } 1840 1841 @Override 1842 public NavigableSet<E> subSet( 1843 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1844 return unmodifiableNavigableSet( 1845 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1846 } 1847 1848 @Override 1849 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1850 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1851 } 1852 1853 @Override 1854 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1855 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1856 } 1857 1858 private static final long serialVersionUID = 0; 1859 } 1860 1861 /** 1862 * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In 1863 * order to guarantee serial access, it is critical that <b>all</b> access to the backing 1864 * navigable set is accomplished through the returned navigable set (or its views). 1865 * 1866 * <p>It is imperative that the user manually synchronize on the returned sorted set when 1867 * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or 1868 * {@code tailSet} views. 1869 * 1870 * <pre>{@code 1871 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1872 * ... 1873 * synchronized (set) { 1874 * // Must be in the synchronized block 1875 * Iterator<E> it = set.iterator(); 1876 * while (it.hasNext()) { 1877 * foo(it.next()); 1878 * } 1879 * } 1880 * }</pre> 1881 * 1882 * <p>or: 1883 * 1884 * <pre>{@code 1885 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1886 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1887 * ... 1888 * synchronized (set) { // Note: set, not set2!!! 1889 * // Must be in the synchronized block 1890 * Iterator<E> it = set2.descendingIterator(); 1891 * while (it.hasNext()) 1892 * foo(it.next()); 1893 * } 1894 * } 1895 * }</pre> 1896 * 1897 * <p>Failure to follow this advice may result in non-deterministic behavior. 1898 * 1899 * <p>The returned navigable set will be serializable if the specified navigable set is 1900 * serializable. 1901 * 1902 * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set. 1903 * @return a synchronized view of the specified navigable set. 1904 * @since 13.0 1905 */ 1906 @GwtIncompatible // NavigableSet 1907 public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) { 1908 return Synchronized.navigableSet(navigableSet); 1909 } 1910 1911 /** Remove each element in an iterable from a set. */ 1912 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1913 boolean changed = false; 1914 while (iterator.hasNext()) { 1915 changed |= set.remove(iterator.next()); 1916 } 1917 return changed; 1918 } 1919 1920 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1921 checkNotNull(collection); // for GWT 1922 if (collection instanceof Multiset) { 1923 collection = ((Multiset<?>) collection).elementSet(); 1924 } 1925 /* 1926 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1927 * is just more than the set's size. We augment the test by 1928 * assuming that sets have fast contains() performance, and other 1929 * collections don't. See 1930 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1931 */ 1932 if (collection instanceof Set && collection.size() > set.size()) { 1933 return Iterators.removeAll(set.iterator(), collection); 1934 } else { 1935 return removeAllImpl(set, collection.iterator()); 1936 } 1937 } 1938 1939 @GwtIncompatible // NavigableSet 1940 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 1941 private final NavigableSet<E> forward; 1942 1943 DescendingSet(NavigableSet<E> forward) { 1944 this.forward = forward; 1945 } 1946 1947 @Override 1948 protected NavigableSet<E> delegate() { 1949 return forward; 1950 } 1951 1952 @Override 1953 public E lower(E e) { 1954 return forward.higher(e); 1955 } 1956 1957 @Override 1958 public E floor(E e) { 1959 return forward.ceiling(e); 1960 } 1961 1962 @Override 1963 public E ceiling(E e) { 1964 return forward.floor(e); 1965 } 1966 1967 @Override 1968 public E higher(E e) { 1969 return forward.lower(e); 1970 } 1971 1972 @Override 1973 public E pollFirst() { 1974 return forward.pollLast(); 1975 } 1976 1977 @Override 1978 public E pollLast() { 1979 return forward.pollFirst(); 1980 } 1981 1982 @Override 1983 public NavigableSet<E> descendingSet() { 1984 return forward; 1985 } 1986 1987 @Override 1988 public Iterator<E> descendingIterator() { 1989 return forward.iterator(); 1990 } 1991 1992 @Override 1993 public NavigableSet<E> subSet( 1994 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1995 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 1996 } 1997 1998 @Override 1999 public SortedSet<E> subSet(E fromElement, E toElement) { 2000 return standardSubSet(fromElement, toElement); 2001 } 2002 2003 @Override 2004 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 2005 return forward.tailSet(toElement, inclusive).descendingSet(); 2006 } 2007 2008 @Override 2009 public SortedSet<E> headSet(E toElement) { 2010 return standardHeadSet(toElement); 2011 } 2012 2013 @Override 2014 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 2015 return forward.headSet(fromElement, inclusive).descendingSet(); 2016 } 2017 2018 @Override 2019 public SortedSet<E> tailSet(E fromElement) { 2020 return standardTailSet(fromElement); 2021 } 2022 2023 @SuppressWarnings("unchecked") 2024 @Override 2025 public Comparator<? super E> comparator() { 2026 Comparator<? super E> forwardComparator = forward.comparator(); 2027 if (forwardComparator == null) { 2028 return (Comparator) Ordering.natural().reverse(); 2029 } else { 2030 return reverse(forwardComparator); 2031 } 2032 } 2033 2034 // If we inline this, we get a javac error. 2035 private static <T> Ordering<T> reverse(Comparator<T> forward) { 2036 return Ordering.from(forward).reverse(); 2037 } 2038 2039 @Override 2040 public E first() { 2041 return forward.last(); 2042 } 2043 2044 @Override 2045 public E last() { 2046 return forward.first(); 2047 } 2048 2049 @Override 2050 public Iterator<E> iterator() { 2051 return forward.descendingIterator(); 2052 } 2053 2054 @Override 2055 public Object[] toArray() { 2056 return standardToArray(); 2057 } 2058 2059 @Override 2060 public <T> T[] toArray(T[] array) { 2061 return standardToArray(array); 2062 } 2063 2064 @Override 2065 public String toString() { 2066 return standardToString(); 2067 } 2068 } 2069 2070 /** 2071 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2072 * 2073 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link 2074 * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link 2075 * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object, 2076 * boolean) headSet()}) to actually construct the view. Consult these methods for a full 2077 * description of the returned view's behavior. 2078 * 2079 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2080 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link 2081 * Comparator}, which can violate the natural ordering. Using this method (or in general using 2082 * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior. 2083 * 2084 * @since 20.0 2085 */ 2086 @Beta 2087 @GwtIncompatible // NavigableSet 2088 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2089 NavigableSet<K> set, Range<K> range) { 2090 if (set.comparator() != null 2091 && set.comparator() != Ordering.natural() 2092 && range.hasLowerBound() 2093 && range.hasUpperBound()) { 2094 checkArgument( 2095 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2096 "set is using a custom comparator which is inconsistent with the natural ordering."); 2097 } 2098 if (range.hasLowerBound() && range.hasUpperBound()) { 2099 return set.subSet( 2100 range.lowerEndpoint(), 2101 range.lowerBoundType() == BoundType.CLOSED, 2102 range.upperEndpoint(), 2103 range.upperBoundType() == BoundType.CLOSED); 2104 } else if (range.hasLowerBound()) { 2105 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2106 } else if (range.hasUpperBound()) { 2107 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2108 } 2109 return checkNotNull(set); 2110 } 2111}