001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkElementIndex;
021import static com.google.common.base.Preconditions.checkNotNull;
022import static com.google.common.base.Preconditions.checkPositionIndex;
023import static com.google.common.base.Preconditions.checkPositionIndexes;
024import static com.google.common.base.Preconditions.checkState;
025import static com.google.common.collect.CollectPreconditions.checkNonnegative;
026import static com.google.common.collect.CollectPreconditions.checkRemove;
027
028import com.google.common.annotations.Beta;
029import com.google.common.annotations.GwtCompatible;
030import com.google.common.annotations.GwtIncompatible;
031import com.google.common.annotations.VisibleForTesting;
032import com.google.common.base.Function;
033import com.google.common.base.Objects;
034import com.google.common.math.IntMath;
035import com.google.common.primitives.Ints;
036import java.io.Serializable;
037import java.math.RoundingMode;
038import java.util.AbstractList;
039import java.util.AbstractSequentialList;
040import java.util.ArrayList;
041import java.util.Arrays;
042import java.util.Collection;
043import java.util.Collections;
044import java.util.Iterator;
045import java.util.LinkedList;
046import java.util.List;
047import java.util.ListIterator;
048import java.util.NoSuchElementException;
049import java.util.RandomAccess;
050import java.util.concurrent.CopyOnWriteArrayList;
051import java.util.function.Predicate;
052import org.checkerframework.checker.nullness.qual.Nullable;
053
054/**
055 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
056 * {@link Sets}, {@link Maps} and {@link Queues}.
057 *
058 * <p>See the Guava User Guide article on <a href=
059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> {@code Lists}</a>.
060 *
061 * @author Kevin Bourrillion
062 * @author Mike Bostock
063 * @author Louis Wasserman
064 * @since 2.0
065 */
066@GwtCompatible(emulated = true)
067public final class Lists {
068  private Lists() {}
069
070  // ArrayList
071
072  /**
073   * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier).
074   *
075   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead.
076   *
077   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
078   * deprecated. Instead, use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor}
079   * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
080   */
081  @GwtCompatible(serializable = true)
082  public static <E> ArrayList<E> newArrayList() {
083    return new ArrayList<>();
084  }
085
086  /**
087   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements.
088   *
089   * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or
090   * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
091   * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
092   * might be null, or you need support for {@link List#set(int, Object)}, use {@link
093   * Arrays#asList}.
094   *
095   * <p>Note that even when you do need the ability to add or remove, this method provides only a
096   * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
097   * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
098   * not actually very useful and will likely be deprecated in the future.
099   */
100  @SafeVarargs
101  @GwtCompatible(serializable = true)
102  public static <E> ArrayList<E> newArrayList(E... elements) {
103    checkNotNull(elements); // for GWT
104    // Avoid integer overflow when a large array is passed in
105    int capacity = computeArrayListCapacity(elements.length);
106    ArrayList<E> list = new ArrayList<>(capacity);
107    Collections.addAll(list, elements);
108    return list;
109  }
110
111  /**
112   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
113   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
114   *
115   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
116   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
117   * FluentIterable} and call {@code elements.toList()}.)
118   *
119   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
120   * need this method. Use the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection)
121   * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
122   * syntax</a>.
123   */
124  @GwtCompatible(serializable = true)
125  public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) {
126    checkNotNull(elements); // for GWT
127    // Let ArrayList's sizing logic work, if possible
128    return (elements instanceof Collection)
129        ? new ArrayList<>((Collection<? extends E>) elements)
130        : newArrayList(elements.iterator());
131  }
132
133  /**
134   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
135   * shortcut for creating an empty list and then calling {@link Iterators#addAll}.
136   *
137   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
138   * ImmutableList#copyOf(Iterator)} instead.
139   */
140  @GwtCompatible(serializable = true)
141  public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) {
142    ArrayList<E> list = newArrayList();
143    Iterators.addAll(list, elements);
144    return list;
145  }
146
147  @VisibleForTesting
148  static int computeArrayListCapacity(int arraySize) {
149    checkNonnegative(arraySize, "arraySize");
150
151    // TODO(kevinb): Figure out the right behavior, and document it
152    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
153  }
154
155  /**
156   * Creates an {@code ArrayList} instance backed by an array with the specified initial size;
157   * simply delegates to {@link ArrayList#ArrayList(int)}.
158   *
159   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
160   * deprecated. Instead, use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)}
161   * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
162   * (Unlike here, there is no risk of overload ambiguity, since the {@code ArrayList} constructors
163   * very wisely did not accept varargs.)
164   *
165   * @param initialArraySize the exact size of the initial backing array for the returned array list
166   *     ({@code ArrayList} documentation calls this value the "capacity")
167   * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
168   *     reaches {@code initialArraySize + 1}
169   * @throws IllegalArgumentException if {@code initialArraySize} is negative
170   */
171  @GwtCompatible(serializable = true)
172  public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) {
173    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
174    return new ArrayList<>(initialArraySize);
175  }
176
177  /**
178   * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an
179   * unspecified amount of padding; you almost certainly mean to call {@link
180   * #newArrayListWithCapacity} (see that method for further advice on usage).
181   *
182   * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want
183   * some amount of padding, it's best if you choose your desired amount explicitly.
184   *
185   * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
186   * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
187   *     elements
188   * @throws IllegalArgumentException if {@code estimatedSize} is negative
189   */
190  @GwtCompatible(serializable = true)
191  public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) {
192    return new ArrayList<>(computeArrayListCapacity(estimatedSize));
193  }
194
195  // LinkedList
196
197  /**
198   * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier).
199   *
200   * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()}
201   * instead.
202   *
203   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
204   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
205   * spent a lot of time benchmarking your specific needs, use one of those instead.
206   *
207   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
208   * deprecated. Instead, use the {@code LinkedList} {@linkplain LinkedList#LinkedList()
209   * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
210   * syntax</a>.
211   */
212  @GwtCompatible(serializable = true)
213  public static <E> LinkedList<E> newLinkedList() {
214    return new LinkedList<>();
215  }
216
217  /**
218   * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin
219   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
220   *
221   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
222   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
223   * FluentIterable} and call {@code elements.toList()}.)
224   *
225   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
226   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
227   * spent a lot of time benchmarking your specific needs, use one of those instead.
228   *
229   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
230   * need this method. Use the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection)
231   * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
232   * syntax</a>.
233   */
234  @GwtCompatible(serializable = true)
235  public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) {
236    LinkedList<E> list = newLinkedList();
237    Iterables.addAll(list, elements);
238    return list;
239  }
240
241  /**
242   * Creates an empty {@code CopyOnWriteArrayList} instance.
243   *
244   * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList}
245   * instead.
246   *
247   * @return a new, empty {@code CopyOnWriteArrayList}
248   * @since 12.0
249   */
250  @GwtIncompatible // CopyOnWriteArrayList
251  public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
252    return new CopyOnWriteArrayList<>();
253  }
254
255  /**
256   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
257   *
258   * @param elements the elements that the list should contain, in order
259   * @return a new {@code CopyOnWriteArrayList} containing those elements
260   * @since 12.0
261   */
262  @GwtIncompatible // CopyOnWriteArrayList
263  public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
264      Iterable<? extends E> elements) {
265    // We copy elements to an ArrayList first, rather than incurring the
266    // quadratic cost of adding them to the COWAL directly.
267    Collection<? extends E> elementsCollection =
268        (elements instanceof Collection)
269            ? (Collection<? extends E>) elements
270            : newArrayList(elements);
271    return new CopyOnWriteArrayList<>(elementsCollection);
272  }
273
274  /**
275   * Returns an unmodifiable list containing the specified first element and backed by the specified
276   * array of additional elements. Changes to the {@code rest} array will be reflected in the
277   * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
278   *
279   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
280   * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
281   *
282   * <p>The returned list is serializable and implements {@link RandomAccess}.
283   *
284   * @param first the first element
285   * @param rest an array of additional elements, possibly empty
286   * @return an unmodifiable list containing the specified elements
287   */
288  public static <E> List<E> asList(@Nullable E first, E[] rest) {
289    return new OnePlusArrayList<>(first, rest);
290  }
291
292  /**
293   * Returns an unmodifiable list containing the specified first and second element, and backed by
294   * the specified array of additional elements. Changes to the {@code rest} array will be reflected
295   * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
296   *
297   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
298   * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
299   * argument count.
300   *
301   * <p>The returned list is serializable and implements {@link RandomAccess}.
302   *
303   * @param first the first element
304   * @param second the second element
305   * @param rest an array of additional elements, possibly empty
306   * @return an unmodifiable list containing the specified elements
307   */
308  public static <E> List<E> asList(@Nullable E first, @Nullable E second, E[] rest) {
309    return new TwoPlusArrayList<>(first, second, rest);
310  }
311
312  /** @see Lists#asList(Object, Object[]) */
313  private static class OnePlusArrayList<E> extends AbstractList<E>
314      implements Serializable, RandomAccess {
315    final @Nullable E first;
316    final E[] rest;
317
318    OnePlusArrayList(@Nullable E first, E[] rest) {
319      this.first = first;
320      this.rest = checkNotNull(rest);
321    }
322
323    @Override
324    public int size() {
325      return IntMath.saturatedAdd(rest.length, 1);
326    }
327
328    @Override
329    public E get(int index) {
330      // check explicitly so the IOOBE will have the right message
331      checkElementIndex(index, size());
332      return (index == 0) ? first : rest[index - 1];
333    }
334
335    private static final long serialVersionUID = 0;
336  }
337
338  /** @see Lists#asList(Object, Object, Object[]) */
339  private static class TwoPlusArrayList<E> extends AbstractList<E>
340      implements Serializable, RandomAccess {
341    final @Nullable E first;
342    final @Nullable E second;
343    final E[] rest;
344
345    TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) {
346      this.first = first;
347      this.second = second;
348      this.rest = checkNotNull(rest);
349    }
350
351    @Override
352    public int size() {
353      return IntMath.saturatedAdd(rest.length, 2);
354    }
355
356    @Override
357    public E get(int index) {
358      switch (index) {
359        case 0:
360          return first;
361        case 1:
362          return second;
363        default:
364          // check explicitly so the IOOBE will have the right message
365          checkElementIndex(index, size());
366          return rest[index - 2];
367      }
368    }
369
370    private static final long serialVersionUID = 0;
371  }
372
373  /**
374   * Returns every possible list that can be formed by choosing one element from each of the given
375   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
376   * product</a>" of the lists. For example:
377   *
378   * <pre>{@code
379   * Lists.cartesianProduct(ImmutableList.of(
380   *     ImmutableList.of(1, 2),
381   *     ImmutableList.of("A", "B", "C")))
382   * }</pre>
383   *
384   * <p>returns a list containing six lists in the following order:
385   *
386   * <ul>
387   *   <li>{@code ImmutableList.of(1, "A")}
388   *   <li>{@code ImmutableList.of(1, "B")}
389   *   <li>{@code ImmutableList.of(1, "C")}
390   *   <li>{@code ImmutableList.of(2, "A")}
391   *   <li>{@code ImmutableList.of(2, "B")}
392   *   <li>{@code ImmutableList.of(2, "C")}
393   * </ul>
394   *
395   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
396   * products that you would get from nesting for loops:
397   *
398   * <pre>{@code
399   * for (B b0 : lists.get(0)) {
400   *   for (B b1 : lists.get(1)) {
401   *     ...
402   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
403   *     // operate on tuple
404   *   }
405   * }
406   * }</pre>
407   *
408   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
409   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
410   * list (counter-intuitive, but mathematically consistent).
411   *
412   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
413   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
414   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
415   * is iterated are the individual lists created, and these are not retained after iteration.
416   *
417   * @param lists the lists to choose elements from, in the order that the elements chosen from
418   *     those lists should appear in the resulting lists
419   * @param <B> any common base class shared by all axes (often just {@link Object})
420   * @return the Cartesian product, as an immutable list containing immutable lists
421   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
422   *     {@link Integer#MAX_VALUE}
423   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
424   *     a provided list is null
425   * @since 19.0
426   */
427  public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) {
428    return CartesianList.create(lists);
429  }
430
431  /**
432   * Returns every possible list that can be formed by choosing one element from each of the given
433   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
434   * product</a>" of the lists. For example:
435   *
436   * <pre>{@code
437   * Lists.cartesianProduct(ImmutableList.of(
438   *     ImmutableList.of(1, 2),
439   *     ImmutableList.of("A", "B", "C")))
440   * }</pre>
441   *
442   * <p>returns a list containing six lists in the following order:
443   *
444   * <ul>
445   *   <li>{@code ImmutableList.of(1, "A")}
446   *   <li>{@code ImmutableList.of(1, "B")}
447   *   <li>{@code ImmutableList.of(1, "C")}
448   *   <li>{@code ImmutableList.of(2, "A")}
449   *   <li>{@code ImmutableList.of(2, "B")}
450   *   <li>{@code ImmutableList.of(2, "C")}
451   * </ul>
452   *
453   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
454   * products that you would get from nesting for loops:
455   *
456   * <pre>{@code
457   * for (B b0 : lists.get(0)) {
458   *   for (B b1 : lists.get(1)) {
459   *     ...
460   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
461   *     // operate on tuple
462   *   }
463   * }
464   * }</pre>
465   *
466   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
467   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
468   * list (counter-intuitive, but mathematically consistent).
469   *
470   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
471   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
472   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
473   * is iterated are the individual lists created, and these are not retained after iteration.
474   *
475   * @param lists the lists to choose elements from, in the order that the elements chosen from
476   *     those lists should appear in the resulting lists
477   * @param <B> any common base class shared by all axes (often just {@link Object})
478   * @return the Cartesian product, as an immutable list containing immutable lists
479   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
480   *     {@link Integer#MAX_VALUE}
481   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
482   *     a provided list is null
483   * @since 19.0
484   */
485  @SafeVarargs
486  public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) {
487    return cartesianProduct(Arrays.asList(lists));
488  }
489
490  /**
491   * Returns a list that applies {@code function} to each element of {@code fromList}. The returned
492   * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
493   * in the returned list and vice versa.
494   *
495   * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored
496   * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
497   * in the returned list.
498   *
499   * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list
500   * to be a view, but it means that the function will be applied many times for bulk operations
501   * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
502   * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
503   * view, copy the returned list into a new list of your choosing.
504   *
505   * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
506   * list is threadsafe if the supplied list and function are.
507   *
508   * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link
509   * Collections2#transform} or {@link Iterables#transform}.
510   *
511   * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList},
512   * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This
513   * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>.
514   * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
515   * serialize the copy. Other methods similar to this do not implement serialization at all for
516   * this reason.
517   *
518   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
519   * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
520   * to migrate to streams.
521   */
522  public static <F, T> List<T> transform(
523      List<F> fromList, Function<? super F, ? extends T> function) {
524    return (fromList instanceof RandomAccess)
525        ? new TransformingRandomAccessList<>(fromList, function)
526        : new TransformingSequentialList<>(fromList, function);
527  }
528
529  /**
530   * Implementation of a sequential transforming list.
531   *
532   * @see Lists#transform
533   */
534  private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T>
535      implements Serializable {
536    final List<F> fromList;
537    final Function<? super F, ? extends T> function;
538
539    TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) {
540      this.fromList = checkNotNull(fromList);
541      this.function = checkNotNull(function);
542    }
543
544    /**
545     * The default implementation inherited is based on iteration and removal of each element which
546     * can be overkill. That's why we forward this call directly to the backing list.
547     */
548    @Override
549    public void clear() {
550      fromList.clear();
551    }
552
553    @Override
554    public int size() {
555      return fromList.size();
556    }
557
558    @Override
559    public ListIterator<T> listIterator(final int index) {
560      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
561        @Override
562        T transform(F from) {
563          return function.apply(from);
564        }
565      };
566    }
567
568    @Override
569    public boolean removeIf(Predicate<? super T> filter) {
570      checkNotNull(filter);
571      return fromList.removeIf(element -> filter.test(function.apply(element)));
572    }
573
574    private static final long serialVersionUID = 0;
575  }
576
577  /**
578   * Implementation of a transforming random access list. We try to make as many of these methods
579   * pass-through to the source list as possible so that the performance characteristics of the
580   * source list and transformed list are similar.
581   *
582   * @see Lists#transform
583   */
584  private static class TransformingRandomAccessList<F, T> extends AbstractList<T>
585      implements RandomAccess, Serializable {
586    final List<F> fromList;
587    final Function<? super F, ? extends T> function;
588
589    TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) {
590      this.fromList = checkNotNull(fromList);
591      this.function = checkNotNull(function);
592    }
593
594    @Override
595    public void clear() {
596      fromList.clear();
597    }
598
599    @Override
600    public T get(int index) {
601      return function.apply(fromList.get(index));
602    }
603
604    @Override
605    public Iterator<T> iterator() {
606      return listIterator();
607    }
608
609    @Override
610    public ListIterator<T> listIterator(int index) {
611      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
612        @Override
613        T transform(F from) {
614          return function.apply(from);
615        }
616      };
617    }
618
619    @Override
620    public boolean isEmpty() {
621      return fromList.isEmpty();
622    }
623
624    @Override
625    public boolean removeIf(Predicate<? super T> filter) {
626      checkNotNull(filter);
627      return fromList.removeIf(element -> filter.test(function.apply(element)));
628    }
629
630    @Override
631    public T remove(int index) {
632      return function.apply(fromList.remove(index));
633    }
634
635    @Override
636    public int size() {
637      return fromList.size();
638    }
639
640    private static final long serialVersionUID = 0;
641  }
642
643  /**
644   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
645   * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
646   * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
647   * containing two inner lists of three and two elements, all in the original order.
648   *
649   * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner
650   * lists are sublist views of the original list, produced on demand using {@link List#subList(int,
651   * int)}, and are subject to all the usual caveats about modification as explained in that API.
652   *
653   * @param list the list to return consecutive sublists of
654   * @param size the desired size of each sublist (the last may be smaller)
655   * @return a list of consecutive sublists
656   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
657   */
658  public static <T> List<List<T>> partition(List<T> list, int size) {
659    checkNotNull(list);
660    checkArgument(size > 0);
661    return (list instanceof RandomAccess)
662        ? new RandomAccessPartition<>(list, size)
663        : new Partition<>(list, size);
664  }
665
666  private static class Partition<T> extends AbstractList<List<T>> {
667    final List<T> list;
668    final int size;
669
670    Partition(List<T> list, int size) {
671      this.list = list;
672      this.size = size;
673    }
674
675    @Override
676    public List<T> get(int index) {
677      checkElementIndex(index, size());
678      int start = index * size;
679      int end = Math.min(start + size, list.size());
680      return list.subList(start, end);
681    }
682
683    @Override
684    public int size() {
685      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
686    }
687
688    @Override
689    public boolean isEmpty() {
690      return list.isEmpty();
691    }
692  }
693
694  private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess {
695    RandomAccessPartition(List<T> list, int size) {
696      super(list, size);
697    }
698  }
699
700  /**
701   * Returns a view of the specified string as an immutable list of {@code Character} values.
702   *
703   * @since 7.0
704   */
705  public static ImmutableList<Character> charactersOf(String string) {
706    return new StringAsImmutableList(checkNotNull(string));
707  }
708
709  /**
710   * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing
711   * {@code sequence} as a sequence of Unicode code units. The view does not support any
712   * modification operations, but reflects any changes to the underlying character sequence.
713   *
714   * @param sequence the character sequence to view as a {@code List} of characters
715   * @return an {@code List<Character>} view of the character sequence
716   * @since 7.0
717   */
718  @Beta
719  public static List<Character> charactersOf(CharSequence sequence) {
720    return new CharSequenceAsList(checkNotNull(sequence));
721  }
722
723  @SuppressWarnings("serial") // serialized using ImmutableList serialization
724  private static final class StringAsImmutableList extends ImmutableList<Character> {
725
726    private final String string;
727
728    StringAsImmutableList(String string) {
729      this.string = string;
730    }
731
732    @Override
733    public int indexOf(@Nullable Object object) {
734      return (object instanceof Character) ? string.indexOf((Character) object) : -1;
735    }
736
737    @Override
738    public int lastIndexOf(@Nullable Object object) {
739      return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
740    }
741
742    @Override
743    public ImmutableList<Character> subList(int fromIndex, int toIndex) {
744      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
745      return charactersOf(string.substring(fromIndex, toIndex));
746    }
747
748    @Override
749    boolean isPartialView() {
750      return false;
751    }
752
753    @Override
754    public Character get(int index) {
755      checkElementIndex(index, size()); // for GWT
756      return string.charAt(index);
757    }
758
759    @Override
760    public int size() {
761      return string.length();
762    }
763  }
764
765  private static final class CharSequenceAsList extends AbstractList<Character> {
766    private final CharSequence sequence;
767
768    CharSequenceAsList(CharSequence sequence) {
769      this.sequence = sequence;
770    }
771
772    @Override
773    public Character get(int index) {
774      checkElementIndex(index, size()); // for GWT
775      return sequence.charAt(index);
776    }
777
778    @Override
779    public int size() {
780      return sequence.length();
781    }
782  }
783
784  /**
785   * Returns a reversed view of the specified list. For example, {@code
786   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
787   * list is backed by this list, so changes in the returned list are reflected in this list, and
788   * vice-versa. The returned list supports all of the optional list operations supported by this
789   * list.
790   *
791   * <p>The returned list is random-access if the specified list is random access.
792   *
793   * @since 7.0
794   */
795  public static <T> List<T> reverse(List<T> list) {
796    if (list instanceof ImmutableList) {
797      return ((ImmutableList<T>) list).reverse();
798    } else if (list instanceof ReverseList) {
799      return ((ReverseList<T>) list).getForwardList();
800    } else if (list instanceof RandomAccess) {
801      return new RandomAccessReverseList<>(list);
802    } else {
803      return new ReverseList<>(list);
804    }
805  }
806
807  private static class ReverseList<T> extends AbstractList<T> {
808    private final List<T> forwardList;
809
810    ReverseList(List<T> forwardList) {
811      this.forwardList = checkNotNull(forwardList);
812    }
813
814    List<T> getForwardList() {
815      return forwardList;
816    }
817
818    private int reverseIndex(int index) {
819      int size = size();
820      checkElementIndex(index, size);
821      return (size - 1) - index;
822    }
823
824    private int reversePosition(int index) {
825      int size = size();
826      checkPositionIndex(index, size);
827      return size - index;
828    }
829
830    @Override
831    public void add(int index, @Nullable T element) {
832      forwardList.add(reversePosition(index), element);
833    }
834
835    @Override
836    public void clear() {
837      forwardList.clear();
838    }
839
840    @Override
841    public T remove(int index) {
842      return forwardList.remove(reverseIndex(index));
843    }
844
845    @Override
846    protected void removeRange(int fromIndex, int toIndex) {
847      subList(fromIndex, toIndex).clear();
848    }
849
850    @Override
851    public T set(int index, @Nullable T element) {
852      return forwardList.set(reverseIndex(index), element);
853    }
854
855    @Override
856    public T get(int index) {
857      return forwardList.get(reverseIndex(index));
858    }
859
860    @Override
861    public int size() {
862      return forwardList.size();
863    }
864
865    @Override
866    public List<T> subList(int fromIndex, int toIndex) {
867      checkPositionIndexes(fromIndex, toIndex, size());
868      return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
869    }
870
871    @Override
872    public Iterator<T> iterator() {
873      return listIterator();
874    }
875
876    @Override
877    public ListIterator<T> listIterator(int index) {
878      int start = reversePosition(index);
879      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
880      return new ListIterator<T>() {
881
882        boolean canRemoveOrSet;
883
884        @Override
885        public void add(T e) {
886          forwardIterator.add(e);
887          forwardIterator.previous();
888          canRemoveOrSet = false;
889        }
890
891        @Override
892        public boolean hasNext() {
893          return forwardIterator.hasPrevious();
894        }
895
896        @Override
897        public boolean hasPrevious() {
898          return forwardIterator.hasNext();
899        }
900
901        @Override
902        public T next() {
903          if (!hasNext()) {
904            throw new NoSuchElementException();
905          }
906          canRemoveOrSet = true;
907          return forwardIterator.previous();
908        }
909
910        @Override
911        public int nextIndex() {
912          return reversePosition(forwardIterator.nextIndex());
913        }
914
915        @Override
916        public T previous() {
917          if (!hasPrevious()) {
918            throw new NoSuchElementException();
919          }
920          canRemoveOrSet = true;
921          return forwardIterator.next();
922        }
923
924        @Override
925        public int previousIndex() {
926          return nextIndex() - 1;
927        }
928
929        @Override
930        public void remove() {
931          checkRemove(canRemoveOrSet);
932          forwardIterator.remove();
933          canRemoveOrSet = false;
934        }
935
936        @Override
937        public void set(T e) {
938          checkState(canRemoveOrSet);
939          forwardIterator.set(e);
940        }
941      };
942    }
943  }
944
945  private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess {
946    RandomAccessReverseList(List<T> forwardList) {
947      super(forwardList);
948    }
949  }
950
951  /** An implementation of {@link List#hashCode()}. */
952  static int hashCodeImpl(List<?> list) {
953    // TODO(lowasser): worth optimizing for RandomAccess?
954    int hashCode = 1;
955    for (Object o : list) {
956      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
957
958      hashCode = ~~hashCode;
959      // needed to deal with GWT integer overflow
960    }
961    return hashCode;
962  }
963
964  /** An implementation of {@link List#equals(Object)}. */
965  static boolean equalsImpl(List<?> thisList, @Nullable Object other) {
966    if (other == checkNotNull(thisList)) {
967      return true;
968    }
969    if (!(other instanceof List)) {
970      return false;
971    }
972    List<?> otherList = (List<?>) other;
973    int size = thisList.size();
974    if (size != otherList.size()) {
975      return false;
976    }
977    if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
978      // avoid allocation and use the faster loop
979      for (int i = 0; i < size; i++) {
980        if (!Objects.equal(thisList.get(i), otherList.get(i))) {
981          return false;
982        }
983      }
984      return true;
985    } else {
986      return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
987    }
988  }
989
990  /** An implementation of {@link List#addAll(int, Collection)}. */
991  static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) {
992    boolean changed = false;
993    ListIterator<E> listIterator = list.listIterator(index);
994    for (E e : elements) {
995      listIterator.add(e);
996      changed = true;
997    }
998    return changed;
999  }
1000
1001  /** An implementation of {@link List#indexOf(Object)}. */
1002  static int indexOfImpl(List<?> list, @Nullable Object element) {
1003    if (list instanceof RandomAccess) {
1004      return indexOfRandomAccess(list, element);
1005    } else {
1006      ListIterator<?> listIterator = list.listIterator();
1007      while (listIterator.hasNext()) {
1008        if (Objects.equal(element, listIterator.next())) {
1009          return listIterator.previousIndex();
1010        }
1011      }
1012      return -1;
1013    }
1014  }
1015
1016  private static int indexOfRandomAccess(List<?> list, @Nullable Object element) {
1017    int size = list.size();
1018    if (element == null) {
1019      for (int i = 0; i < size; i++) {
1020        if (list.get(i) == null) {
1021          return i;
1022        }
1023      }
1024    } else {
1025      for (int i = 0; i < size; i++) {
1026        if (element.equals(list.get(i))) {
1027          return i;
1028        }
1029      }
1030    }
1031    return -1;
1032  }
1033
1034  /** An implementation of {@link List#lastIndexOf(Object)}. */
1035  static int lastIndexOfImpl(List<?> list, @Nullable Object element) {
1036    if (list instanceof RandomAccess) {
1037      return lastIndexOfRandomAccess(list, element);
1038    } else {
1039      ListIterator<?> listIterator = list.listIterator(list.size());
1040      while (listIterator.hasPrevious()) {
1041        if (Objects.equal(element, listIterator.previous())) {
1042          return listIterator.nextIndex();
1043        }
1044      }
1045      return -1;
1046    }
1047  }
1048
1049  private static int lastIndexOfRandomAccess(List<?> list, @Nullable Object element) {
1050    if (element == null) {
1051      for (int i = list.size() - 1; i >= 0; i--) {
1052        if (list.get(i) == null) {
1053          return i;
1054        }
1055      }
1056    } else {
1057      for (int i = list.size() - 1; i >= 0; i--) {
1058        if (element.equals(list.get(i))) {
1059          return i;
1060        }
1061      }
1062    }
1063    return -1;
1064  }
1065
1066  /** Returns an implementation of {@link List#listIterator(int)}. */
1067  static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) {
1068    return new AbstractListWrapper<>(list).listIterator(index);
1069  }
1070
1071  /** An implementation of {@link List#subList(int, int)}. */
1072  static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) {
1073    List<E> wrapper;
1074    if (list instanceof RandomAccess) {
1075      wrapper =
1076          new RandomAccessListWrapper<E>(list) {
1077            @Override
1078            public ListIterator<E> listIterator(int index) {
1079              return backingList.listIterator(index);
1080            }
1081
1082            private static final long serialVersionUID = 0;
1083          };
1084    } else {
1085      wrapper =
1086          new AbstractListWrapper<E>(list) {
1087            @Override
1088            public ListIterator<E> listIterator(int index) {
1089              return backingList.listIterator(index);
1090            }
1091
1092            private static final long serialVersionUID = 0;
1093          };
1094    }
1095    return wrapper.subList(fromIndex, toIndex);
1096  }
1097
1098  private static class AbstractListWrapper<E> extends AbstractList<E> {
1099    final List<E> backingList;
1100
1101    AbstractListWrapper(List<E> backingList) {
1102      this.backingList = checkNotNull(backingList);
1103    }
1104
1105    @Override
1106    public void add(int index, E element) {
1107      backingList.add(index, element);
1108    }
1109
1110    @Override
1111    public boolean addAll(int index, Collection<? extends E> c) {
1112      return backingList.addAll(index, c);
1113    }
1114
1115    @Override
1116    public E get(int index) {
1117      return backingList.get(index);
1118    }
1119
1120    @Override
1121    public E remove(int index) {
1122      return backingList.remove(index);
1123    }
1124
1125    @Override
1126    public E set(int index, E element) {
1127      return backingList.set(index, element);
1128    }
1129
1130    @Override
1131    public boolean contains(Object o) {
1132      return backingList.contains(o);
1133    }
1134
1135    @Override
1136    public int size() {
1137      return backingList.size();
1138    }
1139  }
1140
1141  private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E>
1142      implements RandomAccess {
1143    RandomAccessListWrapper(List<E> backingList) {
1144      super(backingList);
1145    }
1146  }
1147
1148  /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
1149  static <T> List<T> cast(Iterable<T> iterable) {
1150    return (List<T>) iterable;
1151  }
1152}