001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.cache; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkState; 020 021import com.google.common.annotations.GwtCompatible; 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.base.Ascii; 024import com.google.common.base.Equivalence; 025import com.google.common.base.MoreObjects; 026import com.google.common.base.Supplier; 027import com.google.common.base.Suppliers; 028import com.google.common.base.Ticker; 029import com.google.common.cache.AbstractCache.SimpleStatsCounter; 030import com.google.common.cache.AbstractCache.StatsCounter; 031import com.google.common.cache.LocalCache.Strength; 032import com.google.errorprone.annotations.CheckReturnValue; 033import com.google.j2objc.annotations.J2ObjCIncompatible; 034import java.util.ConcurrentModificationException; 035import java.util.IdentityHashMap; 036import java.util.Map; 037import java.util.concurrent.ConcurrentHashMap; 038import java.util.concurrent.TimeUnit; 039import java.util.logging.Level; 040import java.util.logging.Logger; 041import org.checkerframework.checker.nullness.qual.Nullable; 042 043/** 044 * A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 045 * following features: 046 * 047 * <ul> 048 * <li>automatic loading of entries into the cache 049 * <li>least-recently-used eviction when a maximum size is exceeded 050 * <li>time-based expiration of entries, measured since last access or last write 051 * <li>keys automatically wrapped in {@code WeakReference} 052 * <li>values automatically wrapped in {@code WeakReference} or {@code SoftReference} 053 * <li>notification of evicted (or otherwise removed) entries 054 * <li>accumulation of cache access statistics 055 * </ul> 056 * 057 * 058 * <p>These features are all optional; caches can be created using all or none of them. By default 059 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 060 * 061 * <p>Usage example: 062 * 063 * <pre>{@code 064 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 065 * .maximumSize(10000) 066 * .expireAfterWrite(Duration.ofMinutes(10)) 067 * .removalListener(MY_LISTENER) 068 * .build( 069 * new CacheLoader<Key, Graph>() { 070 * public Graph load(Key key) throws AnyException { 071 * return createExpensiveGraph(key); 072 * } 073 * }); 074 * }</pre> 075 * 076 * <p>Or equivalently, 077 * 078 * <pre>{@code 079 * // In real life this would come from a command-line flag or config file 080 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 081 * 082 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 083 * .removalListener(MY_LISTENER) 084 * .build( 085 * new CacheLoader<Key, Graph>() { 086 * public Graph load(Key key) throws AnyException { 087 * return createExpensiveGraph(key); 088 * } 089 * }); 090 * }</pre> 091 * 092 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 093 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 094 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 095 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 096 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 097 * are reflected in that iterator. These iterators never throw {@link 098 * ConcurrentModificationException}. 099 * 100 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the {@link 101 * Object#equals equals} method) to determine equality for keys or values. However, if {@link 102 * #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for keys. 103 * Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses identity 104 * comparisons for values. 105 * 106 * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long) 107 * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite 108 * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys 109 * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are 110 * requested. 111 * 112 * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long) 113 * maximumWeight} is requested entries may be evicted on each cache modification. 114 * 115 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess 116 * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional 117 * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by {@link 118 * Cache#size}, but will never be visible to read or write operations. 119 * 120 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain 121 * #softValues softValues} are requested, it is possible for a key or value present in the cache to 122 * be reclaimed by the garbage collector. Entries with reclaimed keys or values may be removed from 123 * the cache on each cache modification, on occasional cache accesses, or on calls to {@link 124 * Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be visible to 125 * read or write operations. 126 * 127 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 128 * will be performed during write operations, or during occasional read operations in the absence of 129 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 130 * calling it should not be necessary with a high throughput cache. Only caches built with 131 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 132 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, {@linkplain 133 * #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic maintenance. 134 * 135 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 136 * retain all the configuration properties of the original cache. Note that the serialized form does 137 * <i>not</i> include cache contents, but only configuration. 138 * 139 * <p>See the Guava User Guide article on <a 140 * href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level 141 * explanation. 142 * 143 * @param <K> the most general key type this builder will be able to create caches for. This is 144 * normally {@code Object} unless it is constrained by using a method like {@code 145 * #removalListener} 146 * @param <V> the most general value type this builder will be able to create caches for. This is 147 * normally {@code Object} unless it is constrained by using a method like {@code 148 * #removalListener} 149 * @author Charles Fry 150 * @author Kevin Bourrillion 151 * @since 10.0 152 */ 153@GwtCompatible(emulated = true) 154public final class CacheBuilder<K, V> { 155 private static final int DEFAULT_INITIAL_CAPACITY = 16; 156 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 157 158 @SuppressWarnings("GoodTime") // should be a java.time.Duration 159 private static final int DEFAULT_EXPIRATION_NANOS = 0; 160 161 @SuppressWarnings("GoodTime") // should be a java.time.Duration 162 private static final int DEFAULT_REFRESH_NANOS = 0; 163 164 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = 165 Suppliers.ofInstance( 166 new StatsCounter() { 167 @Override 168 public void recordHits(int count) {} 169 170 @Override 171 public void recordMisses(int count) {} 172 173 @SuppressWarnings("GoodTime") // b/122668874 174 @Override 175 public void recordLoadSuccess(long loadTime) {} 176 177 @SuppressWarnings("GoodTime") // b/122668874 178 @Override 179 public void recordLoadException(long loadTime) {} 180 181 @Override 182 public void recordEviction() {} 183 184 @Override 185 public CacheStats snapshot() { 186 return EMPTY_STATS; 187 } 188 }); 189 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 190 191 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 192 new Supplier<StatsCounter>() { 193 @Override 194 public StatsCounter get() { 195 return new SimpleStatsCounter(); 196 } 197 }; 198 199 enum NullListener implements RemovalListener<Object, Object> { 200 INSTANCE; 201 202 @Override 203 public void onRemoval(RemovalNotification<Object, Object> notification) {} 204 } 205 206 enum OneWeigher implements Weigher<Object, Object> { 207 INSTANCE; 208 209 @Override 210 public int weigh(Object key, Object value) { 211 return 1; 212 } 213 } 214 215 static final Ticker NULL_TICKER = 216 new Ticker() { 217 @Override 218 public long read() { 219 return 0; 220 } 221 }; 222 223 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 224 225 static final int UNSET_INT = -1; 226 227 boolean strictParsing = true; 228 229 int initialCapacity = UNSET_INT; 230 int concurrencyLevel = UNSET_INT; 231 long maximumSize = UNSET_INT; 232 long maximumWeight = UNSET_INT; 233 @Nullable Weigher<? super K, ? super V> weigher; 234 235 @Nullable Strength keyStrength; 236 @Nullable Strength valueStrength; 237 238 @SuppressWarnings("GoodTime") // should be a java.time.Duration 239 long expireAfterWriteNanos = UNSET_INT; 240 241 @SuppressWarnings("GoodTime") // should be a java.time.Duration 242 long expireAfterAccessNanos = UNSET_INT; 243 244 @SuppressWarnings("GoodTime") // should be a java.time.Duration 245 long refreshNanos = UNSET_INT; 246 247 @Nullable Equivalence<Object> keyEquivalence; 248 @Nullable Equivalence<Object> valueEquivalence; 249 250 @Nullable RemovalListener<? super K, ? super V> removalListener; 251 @Nullable Ticker ticker; 252 253 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 254 255 private CacheBuilder() {} 256 257 /** 258 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 259 * strong values, and no automatic eviction of any kind. 260 * 261 * <p>Note that while this return type is {@code CacheBuilder<Object, Object>}, type parameters on 262 * the {@link #build} methods allow you to create a cache of any key and value type desired. 263 */ 264 public static CacheBuilder<Object, Object> newBuilder() { 265 return new CacheBuilder<>(); 266 } 267 268 /** 269 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 270 * 271 * @since 12.0 272 */ 273 @GwtIncompatible // To be supported 274 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 275 return spec.toCacheBuilder().lenientParsing(); 276 } 277 278 /** 279 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 280 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 281 * 282 * @param spec a String in the format specified by {@link CacheBuilderSpec} 283 * @since 12.0 284 */ 285 @GwtIncompatible // To be supported 286 public static CacheBuilder<Object, Object> from(String spec) { 287 return from(CacheBuilderSpec.parse(spec)); 288 } 289 290 /** 291 * Enables lenient parsing. Useful for tests and spec parsing. 292 * 293 * @return this {@code CacheBuilder} instance (for chaining) 294 */ 295 @GwtIncompatible // To be supported 296 CacheBuilder<K, V> lenientParsing() { 297 strictParsing = false; 298 return this; 299 } 300 301 /** 302 * Sets a custom {@code Equivalence} strategy for comparing keys. 303 * 304 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 305 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 306 * 307 * @return this {@code CacheBuilder} instance (for chaining) 308 */ 309 @GwtIncompatible // To be supported 310 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 311 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 312 keyEquivalence = checkNotNull(equivalence); 313 return this; 314 } 315 316 Equivalence<Object> getKeyEquivalence() { 317 return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 318 } 319 320 /** 321 * Sets a custom {@code Equivalence} strategy for comparing values. 322 * 323 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 324 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 325 * otherwise. 326 * 327 * @return this {@code CacheBuilder} instance (for chaining) 328 */ 329 @GwtIncompatible // To be supported 330 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 331 checkState( 332 valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence); 333 this.valueEquivalence = checkNotNull(equivalence); 334 return this; 335 } 336 337 Equivalence<Object> getValueEquivalence() { 338 return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 339 } 340 341 /** 342 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 343 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 344 * having a hash table of size eight. Providing a large enough estimate at construction time 345 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 346 * high wastes memory. 347 * 348 * @return this {@code CacheBuilder} instance (for chaining) 349 * @throws IllegalArgumentException if {@code initialCapacity} is negative 350 * @throws IllegalStateException if an initial capacity was already set 351 */ 352 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 353 checkState( 354 this.initialCapacity == UNSET_INT, 355 "initial capacity was already set to %s", 356 this.initialCapacity); 357 checkArgument(initialCapacity >= 0); 358 this.initialCapacity = initialCapacity; 359 return this; 360 } 361 362 int getInitialCapacity() { 363 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 364 } 365 366 /** 367 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 368 * table is internally partitioned to try to permit the indicated number of concurrent updates 369 * without contention. Because assignment of entries to these partitions is not necessarily 370 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 371 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 372 * higher value than you need can waste space and time, and a significantly lower value can lead 373 * to thread contention. But overestimates and underestimates within an order of magnitude do not 374 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 375 * at a time, but since read operations and cache loading computations can proceed concurrently, 376 * this still yields higher concurrency than full synchronization. 377 * 378 * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 379 * value, you should always choose it explicitly. 380 * 381 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 382 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 383 * write, and twice for each cache loading computation (once prior to loading the new value, and 384 * once after loading completes). Much internal cache management is performed at the segment 385 * granularity. For example, access queues and write queues are kept per segment when they are 386 * required by the selected eviction algorithm. As such, when writing unit tests it is not 387 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 388 * behavior. 389 * 390 * <p>Note that future implementations may abandon segment locking in favor of more advanced 391 * concurrency controls. 392 * 393 * @return this {@code CacheBuilder} instance (for chaining) 394 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 395 * @throws IllegalStateException if a concurrency level was already set 396 */ 397 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 398 checkState( 399 this.concurrencyLevel == UNSET_INT, 400 "concurrency level was already set to %s", 401 this.concurrencyLevel); 402 checkArgument(concurrencyLevel > 0); 403 this.concurrencyLevel = concurrencyLevel; 404 return this; 405 } 406 407 int getConcurrencyLevel() { 408 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 409 } 410 411 /** 412 * Specifies the maximum number of entries the cache may contain. 413 * 414 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 415 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 416 * resulting segment inside the cache <i>independently</i> limits its own size to approximately 417 * {@code maximumSize / concurrencyLevel}. 418 * 419 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 420 * For example, the cache may evict an entry because it hasn't been used recently or very often. 421 * 422 * <p>If {@code maximumSize} is zero, elements will be evicted immediately after being loaded into 423 * cache. This can be useful in testing, or to disable caching temporarily. 424 * 425 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 426 * 427 * @param maximumSize the maximum size of the cache 428 * @return this {@code CacheBuilder} instance (for chaining) 429 * @throws IllegalArgumentException if {@code maximumSize} is negative 430 * @throws IllegalStateException if a maximum size or weight was already set 431 */ 432 public CacheBuilder<K, V> maximumSize(long maximumSize) { 433 checkState( 434 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 435 checkState( 436 this.maximumWeight == UNSET_INT, 437 "maximum weight was already set to %s", 438 this.maximumWeight); 439 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 440 checkArgument(maximumSize >= 0, "maximum size must not be negative"); 441 this.maximumSize = maximumSize; 442 return this; 443 } 444 445 /** 446 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 447 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 448 * corresponding call to {@link #weigher} prior to calling {@link #build}. 449 * 450 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 451 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 452 * resulting segment inside the cache <i>independently</i> limits its own weight to approximately 453 * {@code maximumWeight / concurrencyLevel}. 454 * 455 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 456 * For example, the cache may evict an entry because it hasn't been used recently or very often. 457 * 458 * <p>If {@code maximumWeight} is zero, elements will be evicted immediately after being loaded 459 * into cache. This can be useful in testing, or to disable caching temporarily. 460 * 461 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 462 * effect on selecting which entry should be evicted next. 463 * 464 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 465 * 466 * @param maximumWeight the maximum total weight of entries the cache may contain 467 * @return this {@code CacheBuilder} instance (for chaining) 468 * @throws IllegalArgumentException if {@code maximumWeight} is negative 469 * @throws IllegalStateException if a maximum weight or size was already set 470 * @since 11.0 471 */ 472 @GwtIncompatible // To be supported 473 public CacheBuilder<K, V> maximumWeight(long maximumWeight) { 474 checkState( 475 this.maximumWeight == UNSET_INT, 476 "maximum weight was already set to %s", 477 this.maximumWeight); 478 checkState( 479 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 480 checkArgument(maximumWeight >= 0, "maximum weight must not be negative"); 481 this.maximumWeight = maximumWeight; 482 return this; 483 } 484 485 /** 486 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into 487 * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use 488 * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling 489 * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and 490 * are thus effectively static during the lifetime of a cache entry. 491 * 492 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 493 * (though it still may be evicted by other means). 494 * 495 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 496 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 497 * original reference or the returned reference may be used to complete configuration and build 498 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 499 * building caches whose key or value types are incompatible with the types accepted by the 500 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 501 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 502 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 503 * 504 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a 505 * cache whose key or value type is incompatible with the weigher, you will likely experience a 506 * {@link ClassCastException} at some <i>undefined</i> point in the future. 507 * 508 * @param weigher the weigher to use in calculating the weight of cache entries 509 * @return this {@code CacheBuilder} instance (for chaining) 510 * @throws IllegalArgumentException if {@code size} is negative 511 * @throws IllegalStateException if a maximum size was already set 512 * @since 11.0 513 */ 514 @GwtIncompatible // To be supported 515 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 516 Weigher<? super K1, ? super V1> weigher) { 517 checkState(this.weigher == null); 518 if (strictParsing) { 519 checkState( 520 this.maximumSize == UNSET_INT, 521 "weigher can not be combined with maximum size", 522 this.maximumSize); 523 } 524 525 // safely limiting the kinds of caches this can produce 526 @SuppressWarnings("unchecked") 527 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 528 me.weigher = checkNotNull(weigher); 529 return me; 530 } 531 532 long getMaximumWeight() { 533 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 534 return 0; 535 } 536 return (weigher == null) ? maximumSize : maximumWeight; 537 } 538 539 // Make a safe contravariant cast now so we don't have to do it over and over. 540 @SuppressWarnings("unchecked") 541 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 542 return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 543 } 544 545 /** 546 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 547 * WeakReference} (by default, strong references are used). 548 * 549 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 550 * comparison to determine equality of keys. Its {@link Cache#asMap} view will therefore 551 * technically violate the {@link Map} specification (in the same way that {@link IdentityHashMap} 552 * does). 553 * 554 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but 555 * will never be visible to read or write operations; such entries are cleaned up as part of the 556 * routine maintenance described in the class javadoc. 557 * 558 * @return this {@code CacheBuilder} instance (for chaining) 559 * @throws IllegalStateException if the key strength was already set 560 */ 561 @GwtIncompatible // java.lang.ref.WeakReference 562 public CacheBuilder<K, V> weakKeys() { 563 return setKeyStrength(Strength.WEAK); 564 } 565 566 CacheBuilder<K, V> setKeyStrength(Strength strength) { 567 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 568 keyStrength = checkNotNull(strength); 569 return this; 570 } 571 572 Strength getKeyStrength() { 573 return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 574 } 575 576 /** 577 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 578 * WeakReference} (by default, strong references are used). 579 * 580 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 581 * candidate for caching; consider {@link #softValues} instead. 582 * 583 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 584 * comparison to determine equality of values. 585 * 586 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 587 * but will never be visible to read or write operations; such entries are cleaned up as part of 588 * the routine maintenance described in the class javadoc. 589 * 590 * @return this {@code CacheBuilder} instance (for chaining) 591 * @throws IllegalStateException if the value strength was already set 592 */ 593 @GwtIncompatible // java.lang.ref.WeakReference 594 public CacheBuilder<K, V> weakValues() { 595 return setValueStrength(Strength.WEAK); 596 } 597 598 /** 599 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 600 * SoftReference} (by default, strong references are used). Softly-referenced objects will be 601 * garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 602 * demand. 603 * 604 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 605 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 606 * method if you are well familiar with the practical consequences of soft references. 607 * 608 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 609 * comparison to determine equality of values. 610 * 611 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 612 * but will never be visible to read or write operations; such entries are cleaned up as part of 613 * the routine maintenance described in the class javadoc. 614 * 615 * @return this {@code CacheBuilder} instance (for chaining) 616 * @throws IllegalStateException if the value strength was already set 617 */ 618 @GwtIncompatible // java.lang.ref.SoftReference 619 public CacheBuilder<K, V> softValues() { 620 return setValueStrength(Strength.SOFT); 621 } 622 623 CacheBuilder<K, V> setValueStrength(Strength strength) { 624 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 625 valueStrength = checkNotNull(strength); 626 return this; 627 } 628 629 Strength getValueStrength() { 630 return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 631 } 632 633 /** 634 * Specifies that each entry should be automatically removed from the cache once a fixed duration 635 * has elapsed after the entry's creation, or the most recent replacement of its value. 636 * 637 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 638 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 639 * useful in testing, or to disable caching temporarily without a code change. 640 * 641 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 642 * write operations. Expired entries are cleaned up as part of the routine maintenance described 643 * in the class javadoc. 644 * 645 * @param duration the length of time after an entry is created that it should be automatically 646 * removed 647 * @return this {@code CacheBuilder} instance (for chaining) 648 * @throws IllegalArgumentException if {@code duration} is negative 649 * @throws IllegalStateException if the time to live or time to idle was already set 650 * @throws ArithmeticException for durations greater than +/- approximately 292 years 651 * @since 25.0 652 */ 653 @J2ObjCIncompatible 654 @GwtIncompatible // java.time.Duration 655 @SuppressWarnings("GoodTime") // java.time.Duration decomposition 656 public CacheBuilder<K, V> expireAfterWrite(java.time.Duration duration) { 657 return expireAfterWrite(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 658 } 659 660 /** 661 * Specifies that each entry should be automatically removed from the cache once a fixed duration 662 * has elapsed after the entry's creation, or the most recent replacement of its value. 663 * 664 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 665 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 666 * useful in testing, or to disable caching temporarily without a code change. 667 * 668 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 669 * write operations. Expired entries are cleaned up as part of the routine maintenance described 670 * in the class javadoc. 671 * 672 * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 673 * when feasible), use {@link #expireAfterWrite(Duration)} instead. 674 * 675 * @param duration the length of time after an entry is created that it should be automatically 676 * removed 677 * @param unit the unit that {@code duration} is expressed in 678 * @return this {@code CacheBuilder} instance (for chaining) 679 * @throws IllegalArgumentException if {@code duration} is negative 680 * @throws IllegalStateException if the time to live or time to idle was already set 681 */ 682 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 683 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 684 checkState( 685 expireAfterWriteNanos == UNSET_INT, 686 "expireAfterWrite was already set to %s ns", 687 expireAfterWriteNanos); 688 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 689 this.expireAfterWriteNanos = unit.toNanos(duration); 690 return this; 691 } 692 693 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 694 long getExpireAfterWriteNanos() { 695 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 696 } 697 698 /** 699 * Specifies that each entry should be automatically removed from the cache once a fixed duration 700 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 701 * access. Access time is reset by all cache read and write operations (including {@code 702 * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 703 * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}}. So, 704 * for example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for 705 * the entries you retrieve. 706 * 707 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 708 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 709 * useful in testing, or to disable caching temporarily without a code change. 710 * 711 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 712 * write operations. Expired entries are cleaned up as part of the routine maintenance described 713 * in the class javadoc. 714 * 715 * @param duration the length of time after an entry is last accessed that it should be 716 * automatically removed 717 * @return this {@code CacheBuilder} instance (for chaining) 718 * @throws IllegalArgumentException if {@code duration} is negative 719 * @throws IllegalStateException if the time to idle or time to live was already set 720 * @throws ArithmeticException for durations greater than +/- approximately 292 years 721 * @since 25.0 722 */ 723 @J2ObjCIncompatible 724 @GwtIncompatible // java.time.Duration 725 @SuppressWarnings("GoodTime") // java.time.Duration decomposition 726 public CacheBuilder<K, V> expireAfterAccess(java.time.Duration duration) { 727 return expireAfterAccess(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 728 } 729 730 /** 731 * Specifies that each entry should be automatically removed from the cache once a fixed duration 732 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 733 * access. Access time is reset by all cache read and write operations (including {@code 734 * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 735 * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}. So, for 736 * example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for the 737 * entries you retrieve. 738 * 739 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 740 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 741 * useful in testing, or to disable caching temporarily without a code change. 742 * 743 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 744 * write operations. Expired entries are cleaned up as part of the routine maintenance described 745 * in the class javadoc. 746 * 747 * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 748 * when feasible), use {@link #expireAfterAccess(Duration)} instead. 749 * 750 * @param duration the length of time after an entry is last accessed that it should be 751 * automatically removed 752 * @param unit the unit that {@code duration} is expressed in 753 * @return this {@code CacheBuilder} instance (for chaining) 754 * @throws IllegalArgumentException if {@code duration} is negative 755 * @throws IllegalStateException if the time to idle or time to live was already set 756 */ 757 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 758 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 759 checkState( 760 expireAfterAccessNanos == UNSET_INT, 761 "expireAfterAccess was already set to %s ns", 762 expireAfterAccessNanos); 763 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 764 this.expireAfterAccessNanos = unit.toNanos(duration); 765 return this; 766 } 767 768 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 769 long getExpireAfterAccessNanos() { 770 return (expireAfterAccessNanos == UNSET_INT) 771 ? DEFAULT_EXPIRATION_NANOS 772 : expireAfterAccessNanos; 773 } 774 775 /** 776 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 777 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 778 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 779 * CacheLoader#reload}. 780 * 781 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 782 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 783 * implementation; otherwise refreshes will be performed during unrelated cache read and write 784 * operations. 785 * 786 * <p>Currently automatic refreshes are performed when the first stale request for an entry 787 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 788 * and immediately return the new value if the returned future is complete, and the old value 789 * otherwise. 790 * 791 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 792 * 793 * @param duration the length of time after an entry is created that it should be considered 794 * stale, and thus eligible for refresh 795 * @return this {@code CacheBuilder} instance (for chaining) 796 * @throws IllegalArgumentException if {@code duration} is negative 797 * @throws IllegalStateException if the refresh interval was already set 798 * @throws ArithmeticException for durations greater than +/- approximately 292 years 799 * @since 25.0 800 */ 801 @J2ObjCIncompatible 802 @GwtIncompatible // java.time.Duration 803 @SuppressWarnings("GoodTime") // java.time.Duration decomposition 804 public CacheBuilder<K, V> refreshAfterWrite(java.time.Duration duration) { 805 return refreshAfterWrite(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 806 } 807 808 /** 809 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 810 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 811 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 812 * CacheLoader#reload}. 813 * 814 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 815 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 816 * implementation; otherwise refreshes will be performed during unrelated cache read and write 817 * operations. 818 * 819 * <p>Currently automatic refreshes are performed when the first stale request for an entry 820 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 821 * and immediately return the new value if the returned future is complete, and the old value 822 * otherwise. 823 * 824 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 825 * 826 * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 827 * when feasible), use {@link #refreshAfterWrite(Duration)} instead. 828 * 829 * @param duration the length of time after an entry is created that it should be considered 830 * stale, and thus eligible for refresh 831 * @param unit the unit that {@code duration} is expressed in 832 * @return this {@code CacheBuilder} instance (for chaining) 833 * @throws IllegalArgumentException if {@code duration} is negative 834 * @throws IllegalStateException if the refresh interval was already set 835 * @since 11.0 836 */ 837 @GwtIncompatible // To be supported (synchronously). 838 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 839 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 840 checkNotNull(unit); 841 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 842 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 843 this.refreshNanos = unit.toNanos(duration); 844 return this; 845 } 846 847 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 848 long getRefreshNanos() { 849 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 850 } 851 852 /** 853 * Specifies a nanosecond-precision time source for this cache. By default, {@link 854 * System#nanoTime} is used. 855 * 856 * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock 857 * time source. 858 * 859 * @return this {@code CacheBuilder} instance (for chaining) 860 * @throws IllegalStateException if a ticker was already set 861 */ 862 public CacheBuilder<K, V> ticker(Ticker ticker) { 863 checkState(this.ticker == null); 864 this.ticker = checkNotNull(ticker); 865 return this; 866 } 867 868 Ticker getTicker(boolean recordsTime) { 869 if (ticker != null) { 870 return ticker; 871 } 872 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 873 } 874 875 /** 876 * Specifies a listener instance that caches should notify each time an entry is removed for any 877 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 878 * as part of the routine maintenance described in the class documentation above. 879 * 880 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder 881 * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the 882 * same instance, but only the returned reference has the correct generic type information so as 883 * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in 884 * the class documentation above, configuring a builder and building your cache in a single 885 * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown 886 * by a cache operation at some <i>undefined</i> point in the future. 887 * 888 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 889 * the {@code Cache} user, only logged via a {@link Logger}. 890 * 891 * @return the cache builder reference that should be used instead of {@code this} for any 892 * remaining configuration and cache building 893 * @return this {@code CacheBuilder} instance (for chaining) 894 * @throws IllegalStateException if a removal listener was already set 895 */ 896 @CheckReturnValue 897 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 898 RemovalListener<? super K1, ? super V1> listener) { 899 checkState(this.removalListener == null); 900 901 // safely limiting the kinds of caches this can produce 902 @SuppressWarnings("unchecked") 903 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 904 me.removalListener = checkNotNull(listener); 905 return me; 906 } 907 908 // Make a safe contravariant cast now so we don't have to do it over and over. 909 @SuppressWarnings("unchecked") 910 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 911 return (RemovalListener<K1, V1>) 912 MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 913 } 914 915 /** 916 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 917 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 918 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 919 * cache operation. 920 * 921 * @return this {@code CacheBuilder} instance (for chaining) 922 * @since 12.0 (previously, stats collection was automatic) 923 */ 924 public CacheBuilder<K, V> recordStats() { 925 statsCounterSupplier = CACHE_STATS_COUNTER; 926 return this; 927 } 928 929 boolean isRecordingStats() { 930 return statsCounterSupplier == CACHE_STATS_COUNTER; 931 } 932 933 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 934 return statsCounterSupplier; 935 } 936 937 /** 938 * Builds a cache, which either returns an already-loaded value for a given key or atomically 939 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 940 * loading the value for this key, simply waits for that thread to finish and returns its loaded 941 * value. Note that multiple threads can concurrently load values for distinct keys. 942 * 943 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 944 * invoked again to create multiple independent caches. 945 * 946 * @param loader the cache loader used to obtain new values 947 * @return a cache having the requested features 948 */ 949 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 950 CacheLoader<? super K1, V1> loader) { 951 checkWeightWithWeigher(); 952 return new LocalCache.LocalLoadingCache<>(this, loader); 953 } 954 955 /** 956 * Builds a cache which does not automatically load values when keys are requested. 957 * 958 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a {@code 959 * CacheLoader}. 960 * 961 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 962 * invoked again to create multiple independent caches. 963 * 964 * @return a cache having the requested features 965 * @since 11.0 966 */ 967 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 968 checkWeightWithWeigher(); 969 checkNonLoadingCache(); 970 return new LocalCache.LocalManualCache<>(this); 971 } 972 973 private void checkNonLoadingCache() { 974 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 975 } 976 977 private void checkWeightWithWeigher() { 978 if (weigher == null) { 979 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 980 } else { 981 if (strictParsing) { 982 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 983 } else { 984 if (maximumWeight == UNSET_INT) { 985 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 986 } 987 } 988 } 989 } 990 991 /** 992 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 993 * string is not specified. 994 */ 995 @Override 996 public String toString() { 997 MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 998 if (initialCapacity != UNSET_INT) { 999 s.add("initialCapacity", initialCapacity); 1000 } 1001 if (concurrencyLevel != UNSET_INT) { 1002 s.add("concurrencyLevel", concurrencyLevel); 1003 } 1004 if (maximumSize != UNSET_INT) { 1005 s.add("maximumSize", maximumSize); 1006 } 1007 if (maximumWeight != UNSET_INT) { 1008 s.add("maximumWeight", maximumWeight); 1009 } 1010 if (expireAfterWriteNanos != UNSET_INT) { 1011 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 1012 } 1013 if (expireAfterAccessNanos != UNSET_INT) { 1014 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 1015 } 1016 if (keyStrength != null) { 1017 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 1018 } 1019 if (valueStrength != null) { 1020 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 1021 } 1022 if (keyEquivalence != null) { 1023 s.addValue("keyEquivalence"); 1024 } 1025 if (valueEquivalence != null) { 1026 s.addValue("valueEquivalence"); 1027 } 1028 if (removalListener != null) { 1029 s.addValue("removalListener"); 1030 } 1031 return s.toString(); 1032 } 1033 1034 /** 1035 * Returns the number of nanoseconds of the given duration without throwing or overflowing. 1036 * 1037 * <p>Instead of throwing {@link ArithmeticException}, this method silently saturates to either 1038 * {@link Long#MAX_VALUE} or {@link Long#MIN_VALUE}. This behavior can be useful when decomposing 1039 * a duration in order to call a legacy API which requires a {@code long, TimeUnit} pair. 1040 */ 1041 @GwtIncompatible // java.time.Duration 1042 @SuppressWarnings("GoodTime") // duration decomposition 1043 private static long toNanosSaturated(java.time.Duration duration) { 1044 // Using a try/catch seems lazy, but the catch block will rarely get invoked (except for 1045 // durations longer than approximately +/- 292 years). 1046 try { 1047 return duration.toNanos(); 1048 } catch (ArithmeticException tooBig) { 1049 return duration.isNegative() ? Long.MIN_VALUE : Long.MAX_VALUE; 1050 } 1051 } 1052}