001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.collect.Collections2.FilteredCollection;
029import com.google.common.math.IntMath;
030import com.google.errorprone.annotations.CanIgnoreReturnValue;
031import java.io.Serializable;
032import java.util.AbstractSet;
033import java.util.Arrays;
034import java.util.BitSet;
035import java.util.Collection;
036import java.util.Collections;
037import java.util.Comparator;
038import java.util.EnumSet;
039import java.util.HashSet;
040import java.util.Iterator;
041import java.util.LinkedHashSet;
042import java.util.List;
043import java.util.Map;
044import java.util.NavigableSet;
045import java.util.NoSuchElementException;
046import java.util.Set;
047import java.util.SortedSet;
048import java.util.TreeSet;
049import java.util.concurrent.ConcurrentHashMap;
050import java.util.concurrent.CopyOnWriteArraySet;
051import java.util.function.Consumer;
052import java.util.stream.Collector;
053import java.util.stream.Stream;
054import org.checkerframework.checker.nullness.qual.Nullable;
055
056/**
057 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
058 * {@link Lists}, {@link Maps} and {@link Queues}.
059 *
060 * <p>See the Guava User Guide article on <a href=
061 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>.
062 *
063 * @author Kevin Bourrillion
064 * @author Jared Levy
065 * @author Chris Povirk
066 * @since 2.0
067 */
068@GwtCompatible(emulated = true)
069public final class Sets {
070  private Sets() {}
071
072  /**
073   * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
074   * implementation.
075   */
076  abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
077    @Override
078    public boolean removeAll(Collection<?> c) {
079      return removeAllImpl(this, c);
080    }
081
082    @Override
083    public boolean retainAll(Collection<?> c) {
084      return super.retainAll(checkNotNull(c)); // GWT compatibility
085    }
086  }
087
088  /**
089   * Returns an immutable set instance containing the given enum elements. Internally, the returned
090   * set will be backed by an {@link EnumSet}.
091   *
092   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
093   * which the elements are provided to the method.
094   *
095   * @param anElement one of the elements the set should contain
096   * @param otherElements the rest of the elements the set should contain
097   * @return an immutable set containing those elements, minus duplicates
098   */
099  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
100  @GwtCompatible(serializable = true)
101  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
102      E anElement, E... otherElements) {
103    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
104  }
105
106  /**
107   * Returns an immutable set instance containing the given enum elements. Internally, the returned
108   * set will be backed by an {@link EnumSet}.
109   *
110   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
111   * which the elements appear in the given collection.
112   *
113   * @param elements the elements, all of the same {@code enum} type, that the set should contain
114   * @return an immutable set containing those elements, minus duplicates
115   */
116  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
117  @GwtCompatible(serializable = true)
118  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
119    if (elements instanceof ImmutableEnumSet) {
120      return (ImmutableEnumSet<E>) elements;
121    } else if (elements instanceof Collection) {
122      Collection<E> collection = (Collection<E>) elements;
123      if (collection.isEmpty()) {
124        return ImmutableSet.of();
125      } else {
126        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
127      }
128    } else {
129      Iterator<E> itr = elements.iterator();
130      if (itr.hasNext()) {
131        EnumSet<E> enumSet = EnumSet.of(itr.next());
132        Iterators.addAll(enumSet, itr);
133        return ImmutableEnumSet.asImmutable(enumSet);
134      } else {
135        return ImmutableSet.of();
136      }
137    }
138  }
139
140  private static final class Accumulator<E extends Enum<E>> {
141    static final Collector<Enum<?>, ?, ImmutableSet<? extends Enum<?>>> TO_IMMUTABLE_ENUM_SET =
142        (Collector)
143            Collector.<Enum, Accumulator, ImmutableSet<?>>of(
144                Accumulator::new,
145                Accumulator::add,
146                Accumulator::combine,
147                Accumulator::toImmutableSet,
148                Collector.Characteristics.UNORDERED);
149
150    private @Nullable EnumSet<E> set;
151
152    void add(E e) {
153      if (set == null) {
154        set = EnumSet.of(e);
155      } else {
156        set.add(e);
157      }
158    }
159
160    Accumulator<E> combine(Accumulator<E> other) {
161      if (this.set == null) {
162        return other;
163      } else if (other.set == null) {
164        return this;
165      } else {
166        this.set.addAll(other.set);
167        return this;
168      }
169    }
170
171    ImmutableSet<E> toImmutableSet() {
172      return (set == null) ? ImmutableSet.<E>of() : ImmutableEnumSet.asImmutable(set);
173    }
174  }
175
176  /**
177   * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet}
178   * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the
179   * resulting set will iterate over elements in their enum definition order, not encounter order.
180   *
181   * @since 21.0
182   */
183  public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() {
184    return (Collector) Accumulator.TO_IMMUTABLE_ENUM_SET;
185  }
186
187  /**
188   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
189   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
190   * accepts non-{@code Collection} iterables and empty iterables.
191   */
192  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
193      Iterable<E> iterable, Class<E> elementType) {
194    EnumSet<E> set = EnumSet.noneOf(elementType);
195    Iterables.addAll(set, iterable);
196    return set;
197  }
198
199  // HashSet
200
201  /**
202   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
203   *
204   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
205   * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
206   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
207   * deterministic iteration behavior.
208   *
209   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
210   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
211   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
212   */
213  public static <E> HashSet<E> newHashSet() {
214    return new HashSet<E>();
215  }
216
217  /**
218   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
219   *
220   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
221   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
222   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
223   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
224   * deterministic iteration behavior.
225   *
226   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
227   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
228   * This method is not actually very useful and will likely be deprecated in the future.
229   */
230  public static <E> HashSet<E> newHashSet(E... elements) {
231    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
232    Collections.addAll(set, elements);
233    return set;
234  }
235
236  /**
237   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
238   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
239   * Iterables#addAll}.
240   *
241   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
242   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
243   * FluentIterable} and call {@code elements.toSet()}.)
244   *
245   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
246   * instead.
247   *
248   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
249   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
250   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
251   *
252   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
253   */
254  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
255    return (elements instanceof Collection)
256        ? new HashSet<E>((Collection<? extends E>) elements)
257        : newHashSet(elements.iterator());
258  }
259
260  /**
261   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
262   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
263   *
264   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
265   * ImmutableSet#copyOf(Iterator)} instead.
266   *
267   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
268   * instead.
269   *
270   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
271   */
272  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
273    HashSet<E> set = newHashSet();
274    Iterators.addAll(set, elements);
275    return set;
276  }
277
278  /**
279   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
280   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
281   * is what most users want and expect it to do.
282   *
283   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
284   *
285   * @param expectedSize the number of elements you expect to add to the returned set
286   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
287   *     without resizing
288   * @throws IllegalArgumentException if {@code expectedSize} is negative
289   */
290  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
291    return new HashSet<E>(Maps.capacity(expectedSize));
292  }
293
294  /**
295   * Creates a thread-safe set backed by a hash map. The set is backed by a {@link
296   * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
297   *
298   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
299   * set is serializable.
300   *
301   * @return a new, empty thread-safe {@code Set}
302   * @since 15.0
303   */
304  public static <E> Set<E> newConcurrentHashSet() {
305    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
306  }
307
308  /**
309   * Creates a thread-safe set backed by a hash map and containing the given elements. The set is
310   * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
311   * guarantees.
312   *
313   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
314   * set is serializable.
315   *
316   * @param elements the elements that the set should contain
317   * @return a new thread-safe set containing those elements (minus duplicates)
318   * @throws NullPointerException if {@code elements} or any of its contents is null
319   * @since 15.0
320   */
321  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
322    Set<E> set = newConcurrentHashSet();
323    Iterables.addAll(set, elements);
324    return set;
325  }
326
327  // LinkedHashSet
328
329  /**
330   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
331   *
332   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
333   *
334   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
335   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
336   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
337   *
338   * @return a new, empty {@code LinkedHashSet}
339   */
340  public static <E> LinkedHashSet<E> newLinkedHashSet() {
341    return new LinkedHashSet<E>();
342  }
343
344  /**
345   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
346   *
347   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
348   * ImmutableSet#copyOf(Iterable)} instead.
349   *
350   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
351   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
352   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
353   *
354   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
355   *
356   * @param elements the elements that the set should contain, in order
357   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
358   */
359  public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
360    if (elements instanceof Collection) {
361      return new LinkedHashSet<E>((Collection<? extends E>) elements);
362    }
363    LinkedHashSet<E> set = newLinkedHashSet();
364    Iterables.addAll(set, elements);
365    return set;
366  }
367
368  /**
369   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
370   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
371   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
372   * that the method isn't inadvertently <i>oversizing</i> the returned set.
373   *
374   * @param expectedSize the number of elements you expect to add to the returned set
375   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
376   *     elements without resizing
377   * @throws IllegalArgumentException if {@code expectedSize} is negative
378   * @since 11.0
379   */
380  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
381    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
382  }
383
384  // TreeSet
385
386  /**
387   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
388   * its elements.
389   *
390   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
391   *
392   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
393   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
394   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
395   *
396   * @return a new, empty {@code TreeSet}
397   */
398  public static <E extends Comparable> TreeSet<E> newTreeSet() {
399    return new TreeSet<E>();
400  }
401
402  /**
403   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
404   * natural ordering.
405   *
406   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
407   * instead.
408   *
409   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
410   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
411   * TreeSet} with that comparator.
412   *
413   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
414   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
415   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
416   *
417   * <p>This method is just a small convenience for creating an empty set and then calling {@link
418   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
419   *
420   * @param elements the elements that the set should contain
421   * @return a new {@code TreeSet} containing those elements (minus duplicates)
422   */
423  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
424    TreeSet<E> set = newTreeSet();
425    Iterables.addAll(set, elements);
426    return set;
427  }
428
429  /**
430   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
431   *
432   * <p><b>Note:</b> if mutability is not required, use {@code
433   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
434   *
435   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
436   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
437   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
438   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
439   * factory rejects null. Clean your code accordingly.
440   *
441   * @param comparator the comparator to use to sort the set
442   * @return a new, empty {@code TreeSet}
443   * @throws NullPointerException if {@code comparator} is null
444   */
445  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
446    return new TreeSet<E>(checkNotNull(comparator));
447  }
448
449  /**
450   * Creates an empty {@code Set} that uses identity to determine equality. It compares object
451   * references, instead of calling {@code equals}, to determine whether a provided object matches
452   * an element in the set. For example, {@code contains} returns {@code false} when passed an
453   * object that equals a set member, but isn't the same instance. This behavior is similar to the
454   * way {@code IdentityHashMap} handles key lookups.
455   *
456   * @since 8.0
457   */
458  public static <E> Set<E> newIdentityHashSet() {
459    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
460  }
461
462  /**
463   * Creates an empty {@code CopyOnWriteArraySet} instance.
464   *
465   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
466   * instead.
467   *
468   * @return a new, empty {@code CopyOnWriteArraySet}
469   * @since 12.0
470   */
471  @GwtIncompatible // CopyOnWriteArraySet
472  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
473    return new CopyOnWriteArraySet<E>();
474  }
475
476  /**
477   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
478   *
479   * @param elements the elements that the set should contain, in order
480   * @return a new {@code CopyOnWriteArraySet} containing those elements
481   * @since 12.0
482   */
483  @GwtIncompatible // CopyOnWriteArraySet
484  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
485    // We copy elements to an ArrayList first, rather than incurring the
486    // quadratic cost of adding them to the COWAS directly.
487    Collection<? extends E> elementsCollection =
488        (elements instanceof Collection)
489            ? (Collection<? extends E>) elements
490            : Lists.newArrayList(elements);
491    return new CopyOnWriteArraySet<E>(elementsCollection);
492  }
493
494  /**
495   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
496   * collection. If the collection is an {@link EnumSet}, this method has the same behavior as
497   * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
498   * element, in order to determine the element type. If the collection could be empty, use {@link
499   * #complementOf(Collection, Class)} instead of this method.
500   *
501   * @param collection the collection whose complement should be stored in the enum set
502   * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
503   *     in the given collection
504   * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
505   *     contains no elements
506   */
507  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
508    if (collection instanceof EnumSet) {
509      return EnumSet.complementOf((EnumSet<E>) collection);
510    }
511    checkArgument(
512        !collection.isEmpty(), "collection is empty; use the other version of this method");
513    Class<E> type = collection.iterator().next().getDeclaringClass();
514    return makeComplementByHand(collection, type);
515  }
516
517  /**
518   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
519   * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
520   * collection, as long as the elements are of enum type.
521   *
522   * @param collection the collection whose complement should be stored in the {@code EnumSet}
523   * @param type the type of the elements in the set
524   * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
525   *     present in the given collection
526   */
527  public static <E extends Enum<E>> EnumSet<E> complementOf(
528      Collection<E> collection, Class<E> type) {
529    checkNotNull(collection);
530    return (collection instanceof EnumSet)
531        ? EnumSet.complementOf((EnumSet<E>) collection)
532        : makeComplementByHand(collection, type);
533  }
534
535  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
536      Collection<E> collection, Class<E> type) {
537    EnumSet<E> result = EnumSet.allOf(type);
538    result.removeAll(collection);
539    return result;
540  }
541
542  /**
543   * Returns a set backed by the specified map. The resulting set displays the same ordering,
544   * concurrency, and performance characteristics as the backing map. In essence, this factory
545   * method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
546   * There is no need to use this method on a {@link Map} implementation that already has a
547   * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
548   * java.util.TreeMap}).
549   *
550   * <p>Each method invocation on the set returned by this method results in exactly one method
551   * invocation on the backing map or its {@code keySet} view, with one exception. The {@code
552   * addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
553   *
554   * <p>The specified map must be empty at the time this method is invoked, and should not be
555   * accessed directly after this method returns. These conditions are ensured if the map is created
556   * empty, passed directly to this method, and no reference to the map is retained, as illustrated
557   * in the following code fragment:
558   *
559   * <pre>{@code
560   * Set<Object> identityHashSet = Sets.newSetFromMap(
561   *     new IdentityHashMap<Object, Boolean>());
562   * }</pre>
563   *
564   * <p>The returned set is serializable if the backing map is.
565   *
566   * @param map the backing map
567   * @return the set backed by the map
568   * @throws IllegalArgumentException if {@code map} is not empty
569   * @deprecated Use {@link Collections#newSetFromMap} instead.
570   */
571  @Deprecated
572  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
573    return Collections.newSetFromMap(map);
574  }
575
576  /**
577   * An unmodifiable view of a set which may be backed by other sets; this view will change as the
578   * backing sets do. Contains methods to copy the data into a new set which will then remain
579   * stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
580   * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
581   * {@link #copyInto} and forget the {@code SetView} itself.
582   *
583   * @since 2.0
584   */
585  public abstract static class SetView<E> extends AbstractSet<E> {
586    private SetView() {} // no subclasses but our own
587
588    /**
589     * Returns an immutable copy of the current contents of this set view. Does not support null
590     * elements.
591     *
592     * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
593     * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
594     * that is inconsistent with {@link Object#equals(Object)}.
595     */
596    public ImmutableSet<E> immutableCopy() {
597      return ImmutableSet.copyOf(this);
598    }
599
600    /**
601     * Copies the current contents of this set view into an existing set. This method has equivalent
602     * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
603     * same notion of equivalence.
604     *
605     * @return a reference to {@code set}, for convenience
606     */
607    // Note: S should logically extend Set<? super E> but can't due to either
608    // some javac bug or some weirdness in the spec, not sure which.
609    @CanIgnoreReturnValue
610    public <S extends Set<E>> S copyInto(S set) {
611      set.addAll(this);
612      return set;
613    }
614
615    /**
616     * Guaranteed to throw an exception and leave the collection unmodified.
617     *
618     * @throws UnsupportedOperationException always
619     * @deprecated Unsupported operation.
620     */
621    @CanIgnoreReturnValue
622    @Deprecated
623    @Override
624    public final boolean add(E e) {
625      throw new UnsupportedOperationException();
626    }
627
628    /**
629     * Guaranteed to throw an exception and leave the collection unmodified.
630     *
631     * @throws UnsupportedOperationException always
632     * @deprecated Unsupported operation.
633     */
634    @CanIgnoreReturnValue
635    @Deprecated
636    @Override
637    public final boolean remove(Object object) {
638      throw new UnsupportedOperationException();
639    }
640
641    /**
642     * Guaranteed to throw an exception and leave the collection unmodified.
643     *
644     * @throws UnsupportedOperationException always
645     * @deprecated Unsupported operation.
646     */
647    @CanIgnoreReturnValue
648    @Deprecated
649    @Override
650    public final boolean addAll(Collection<? extends E> newElements) {
651      throw new UnsupportedOperationException();
652    }
653
654    /**
655     * Guaranteed to throw an exception and leave the collection unmodified.
656     *
657     * @throws UnsupportedOperationException always
658     * @deprecated Unsupported operation.
659     */
660    @CanIgnoreReturnValue
661    @Deprecated
662    @Override
663    public final boolean removeAll(Collection<?> oldElements) {
664      throw new UnsupportedOperationException();
665    }
666
667    /**
668     * Guaranteed to throw an exception and leave the collection unmodified.
669     *
670     * @throws UnsupportedOperationException always
671     * @deprecated Unsupported operation.
672     */
673    @CanIgnoreReturnValue
674    @Deprecated
675    @Override
676    public final boolean removeIf(java.util.function.Predicate<? super E> filter) {
677      throw new UnsupportedOperationException();
678    }
679
680    /**
681     * Guaranteed to throw an exception and leave the collection unmodified.
682     *
683     * @throws UnsupportedOperationException always
684     * @deprecated Unsupported operation.
685     */
686    @CanIgnoreReturnValue
687    @Deprecated
688    @Override
689    public final boolean retainAll(Collection<?> elementsToKeep) {
690      throw new UnsupportedOperationException();
691    }
692
693    /**
694     * Guaranteed to throw an exception and leave the collection unmodified.
695     *
696     * @throws UnsupportedOperationException always
697     * @deprecated Unsupported operation.
698     */
699    @Deprecated
700    @Override
701    public final void clear() {
702      throw new UnsupportedOperationException();
703    }
704
705    /**
706     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
707     *
708     * @since 20.0 (present with return type {@link Iterator} since 2.0)
709     */
710    @Override
711    public abstract UnmodifiableIterator<E> iterator();
712  }
713
714  /**
715   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
716   * elements that are contained in either backing set. Iterating over the returned set iterates
717   * first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
718   * that is not contained in {@code set1}.
719   *
720   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
721   * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an
722   * {@code IdentityHashMap} all are).
723   */
724  public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
725    checkNotNull(set1, "set1");
726    checkNotNull(set2, "set2");
727
728    return new SetView<E>() {
729      @Override
730      public int size() {
731        int size = set1.size();
732        for (E e : set2) {
733          if (!set1.contains(e)) {
734            size++;
735          }
736        }
737        return size;
738      }
739
740      @Override
741      public boolean isEmpty() {
742        return set1.isEmpty() && set2.isEmpty();
743      }
744
745      @Override
746      public UnmodifiableIterator<E> iterator() {
747        return new AbstractIterator<E>() {
748          final Iterator<? extends E> itr1 = set1.iterator();
749          final Iterator<? extends E> itr2 = set2.iterator();
750
751          @Override
752          protected E computeNext() {
753            if (itr1.hasNext()) {
754              return itr1.next();
755            }
756            while (itr2.hasNext()) {
757              E e = itr2.next();
758              if (!set1.contains(e)) {
759                return e;
760              }
761            }
762            return endOfData();
763          }
764        };
765      }
766
767      @Override
768      public Stream<E> stream() {
769        return Stream.concat(set1.stream(), set2.stream().filter(e -> !set1.contains(e)));
770      }
771
772      @Override
773      public Stream<E> parallelStream() {
774        return stream().parallel();
775      }
776
777      @Override
778      public boolean contains(Object object) {
779        return set1.contains(object) || set2.contains(object);
780      }
781
782      @Override
783      public <S extends Set<E>> S copyInto(S set) {
784        set.addAll(set1);
785        set.addAll(set2);
786        return set;
787      }
788
789      @Override
790      public ImmutableSet<E> immutableCopy() {
791        return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
792      }
793    };
794  }
795
796  /**
797   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
798   * all elements that are contained by both backing sets. The iteration order of the returned set
799   * matches that of {@code set1}.
800   *
801   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
802   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
803   * IdentityHashMap} all are).
804   *
805   * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
806   * the two sets. If you have reason to believe one of your sets will generally be smaller than the
807   * other, pass it first. Unfortunately, since this method sets the generic type of the returned
808   * set based on the type of the first set passed, this could in rare cases force you to make a
809   * cast, for example:
810   *
811   * <pre>{@code
812   * Set<Object> aFewBadObjects = ...
813   * Set<String> manyBadStrings = ...
814   *
815   * // impossible for a non-String to be in the intersection
816   * SuppressWarnings("unchecked")
817   * Set<String> badStrings = (Set) Sets.intersection(
818   *     aFewBadObjects, manyBadStrings);
819   * }</pre>
820   *
821   * <p>This is unfortunate, but should come up only very rarely.
822   */
823  public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
824    checkNotNull(set1, "set1");
825    checkNotNull(set2, "set2");
826
827    return new SetView<E>() {
828      @Override
829      public UnmodifiableIterator<E> iterator() {
830        return new AbstractIterator<E>() {
831          final Iterator<E> itr = set1.iterator();
832
833          @Override
834          protected E computeNext() {
835            while (itr.hasNext()) {
836              E e = itr.next();
837              if (set2.contains(e)) {
838                return e;
839              }
840            }
841            return endOfData();
842          }
843        };
844      }
845
846      @Override
847      public Stream<E> stream() {
848        return set1.stream().filter(set2::contains);
849      }
850
851      @Override
852      public Stream<E> parallelStream() {
853        return set1.parallelStream().filter(set2::contains);
854      }
855
856      @Override
857      public int size() {
858        int size = 0;
859        for (E e : set1) {
860          if (set2.contains(e)) {
861            size++;
862          }
863        }
864        return size;
865      }
866
867      @Override
868      public boolean isEmpty() {
869        return Collections.disjoint(set2, set1);
870      }
871
872      @Override
873      public boolean contains(Object object) {
874        return set1.contains(object) && set2.contains(object);
875      }
876
877      @Override
878      public boolean containsAll(Collection<?> collection) {
879        return set1.containsAll(collection) && set2.containsAll(collection);
880      }
881    };
882  }
883
884  /**
885   * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
886   * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
887   * may also contain elements not present in {@code set1}; these are simply ignored. The iteration
888   * order of the returned set matches that of {@code set1}.
889   *
890   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
891   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
892   * IdentityHashMap} all are).
893   */
894  public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
895    checkNotNull(set1, "set1");
896    checkNotNull(set2, "set2");
897
898    return new SetView<E>() {
899      @Override
900      public UnmodifiableIterator<E> iterator() {
901        return new AbstractIterator<E>() {
902          final Iterator<E> itr = set1.iterator();
903
904          @Override
905          protected E computeNext() {
906            while (itr.hasNext()) {
907              E e = itr.next();
908              if (!set2.contains(e)) {
909                return e;
910              }
911            }
912            return endOfData();
913          }
914        };
915      }
916
917      @Override
918      public Stream<E> stream() {
919        return set1.stream().filter(e -> !set2.contains(e));
920      }
921
922      @Override
923      public Stream<E> parallelStream() {
924        return set1.parallelStream().filter(e -> !set2.contains(e));
925      }
926
927      @Override
928      public int size() {
929        int size = 0;
930        for (E e : set1) {
931          if (!set2.contains(e)) {
932            size++;
933          }
934        }
935        return size;
936      }
937
938      @Override
939      public boolean isEmpty() {
940        return set2.containsAll(set1);
941      }
942
943      @Override
944      public boolean contains(Object element) {
945        return set1.contains(element) && !set2.contains(element);
946      }
947    };
948  }
949
950  /**
951   * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
952   * contains all elements that are contained in either {@code set1} or {@code set2} but not in
953   * both. The iteration order of the returned set is undefined.
954   *
955   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
956   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
957   * IdentityHashMap} all are).
958   *
959   * @since 3.0
960   */
961  public static <E> SetView<E> symmetricDifference(
962      final Set<? extends E> set1, final Set<? extends E> set2) {
963    checkNotNull(set1, "set1");
964    checkNotNull(set2, "set2");
965
966    return new SetView<E>() {
967      @Override
968      public UnmodifiableIterator<E> iterator() {
969        final Iterator<? extends E> itr1 = set1.iterator();
970        final Iterator<? extends E> itr2 = set2.iterator();
971        return new AbstractIterator<E>() {
972          @Override
973          public E computeNext() {
974            while (itr1.hasNext()) {
975              E elem1 = itr1.next();
976              if (!set2.contains(elem1)) {
977                return elem1;
978              }
979            }
980            while (itr2.hasNext()) {
981              E elem2 = itr2.next();
982              if (!set1.contains(elem2)) {
983                return elem2;
984              }
985            }
986            return endOfData();
987          }
988        };
989      }
990
991      @Override
992      public int size() {
993        int size = 0;
994        for (E e : set1) {
995          if (!set2.contains(e)) {
996            size++;
997          }
998        }
999        for (E e : set2) {
1000          if (!set1.contains(e)) {
1001            size++;
1002          }
1003        }
1004        return size;
1005      }
1006
1007      @Override
1008      public boolean isEmpty() {
1009        return set1.equals(set2);
1010      }
1011
1012      @Override
1013      public boolean contains(Object element) {
1014        return set1.contains(element) ^ set2.contains(element);
1015      }
1016    };
1017  }
1018
1019  /**
1020   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
1021   * view of {@code unfiltered}; changes to one affect the other.
1022   *
1023   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1024   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1025   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1026   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1027   * that satisfy the filter will be removed from the underlying set.
1028   *
1029   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1030   *
1031   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1032   * the underlying set and determine which elements satisfy the filter. When a live view is
1033   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1034   * use the copy.
1035   *
1036   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1037   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1038   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1039   * Iterables#filter(Iterable, Class)} for related functionality.)
1040   *
1041   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
1042   * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
1043   * you to migrate to streams.
1044   */
1045  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
1046  public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
1047    if (unfiltered instanceof SortedSet) {
1048      return filter((SortedSet<E>) unfiltered, predicate);
1049    }
1050    if (unfiltered instanceof FilteredSet) {
1051      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1052      // collection.
1053      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1054      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1055      return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
1056    }
1057
1058    return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1059  }
1060
1061  /**
1062   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
1063   * returned set is a live view of {@code unfiltered}; changes to one affect the other.
1064   *
1065   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1066   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1067   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1068   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1069   * that satisfy the filter will be removed from the underlying set.
1070   *
1071   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1072   *
1073   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1074   * the underlying set and determine which elements satisfy the filter. When a live view is
1075   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1076   * use the copy.
1077   *
1078   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1079   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1080   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1081   * Iterables#filter(Iterable, Class)} for related functionality.)
1082   *
1083   * @since 11.0
1084   */
1085  public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1086    if (unfiltered instanceof FilteredSet) {
1087      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1088      // collection.
1089      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1090      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1091      return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1092    }
1093
1094    return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1095  }
1096
1097  /**
1098   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
1099   * The returned set is a live view of {@code unfiltered}; changes to one affect the other.
1100   *
1101   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1102   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1103   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1104   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1105   * that satisfy the filter will be removed from the underlying set.
1106   *
1107   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1108   *
1109   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1110   * the underlying set and determine which elements satisfy the filter. When a live view is
1111   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1112   * use the copy.
1113   *
1114   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1115   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1116   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1117   * Iterables#filter(Iterable, Class)} for related functionality.)
1118   *
1119   * @since 14.0
1120   */
1121  @GwtIncompatible // NavigableSet
1122  @SuppressWarnings("unchecked")
1123  public static <E> NavigableSet<E> filter(
1124      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1125    if (unfiltered instanceof FilteredSet) {
1126      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1127      // collection.
1128      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1129      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1130      return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1131    }
1132
1133    return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1134  }
1135
1136  private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
1137    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
1138      super(unfiltered, predicate);
1139    }
1140
1141    @Override
1142    public boolean equals(@Nullable Object object) {
1143      return equalsImpl(this, object);
1144    }
1145
1146    @Override
1147    public int hashCode() {
1148      return hashCodeImpl(this);
1149    }
1150  }
1151
1152  private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
1153
1154    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1155      super(unfiltered, predicate);
1156    }
1157
1158    @Override
1159    public Comparator<? super E> comparator() {
1160      return ((SortedSet<E>) unfiltered).comparator();
1161    }
1162
1163    @Override
1164    public SortedSet<E> subSet(E fromElement, E toElement) {
1165      return new FilteredSortedSet<E>(
1166          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1167    }
1168
1169    @Override
1170    public SortedSet<E> headSet(E toElement) {
1171      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1172    }
1173
1174    @Override
1175    public SortedSet<E> tailSet(E fromElement) {
1176      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1177    }
1178
1179    @Override
1180    public E first() {
1181      return Iterators.find(unfiltered.iterator(), predicate);
1182    }
1183
1184    @Override
1185    public E last() {
1186      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1187      while (true) {
1188        E element = sortedUnfiltered.last();
1189        if (predicate.apply(element)) {
1190          return element;
1191        }
1192        sortedUnfiltered = sortedUnfiltered.headSet(element);
1193      }
1194    }
1195  }
1196
1197  @GwtIncompatible // NavigableSet
1198  private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
1199      implements NavigableSet<E> {
1200    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1201      super(unfiltered, predicate);
1202    }
1203
1204    NavigableSet<E> unfiltered() {
1205      return (NavigableSet<E>) unfiltered;
1206    }
1207
1208    @Override
1209    public @Nullable E lower(E e) {
1210      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1211    }
1212
1213    @Override
1214    public @Nullable E floor(E e) {
1215      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1216    }
1217
1218    @Override
1219    public E ceiling(E e) {
1220      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1221    }
1222
1223    @Override
1224    public E higher(E e) {
1225      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1226    }
1227
1228    @Override
1229    public E pollFirst() {
1230      return Iterables.removeFirstMatching(unfiltered(), predicate);
1231    }
1232
1233    @Override
1234    public E pollLast() {
1235      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1236    }
1237
1238    @Override
1239    public NavigableSet<E> descendingSet() {
1240      return Sets.filter(unfiltered().descendingSet(), predicate);
1241    }
1242
1243    @Override
1244    public Iterator<E> descendingIterator() {
1245      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1246    }
1247
1248    @Override
1249    public E last() {
1250      return Iterators.find(unfiltered().descendingIterator(), predicate);
1251    }
1252
1253    @Override
1254    public NavigableSet<E> subSet(
1255        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1256      return filter(
1257          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1258    }
1259
1260    @Override
1261    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1262      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1263    }
1264
1265    @Override
1266    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1267      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1268    }
1269  }
1270
1271  /**
1272   * Returns every possible list that can be formed by choosing one element from each of the given
1273   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1274   * product</a>" of the sets. For example:
1275   *
1276   * <pre>{@code
1277   * Sets.cartesianProduct(ImmutableList.of(
1278   *     ImmutableSet.of(1, 2),
1279   *     ImmutableSet.of("A", "B", "C")))
1280   * }</pre>
1281   *
1282   * <p>returns a set containing six lists:
1283   *
1284   * <ul>
1285   *   <li>{@code ImmutableList.of(1, "A")}
1286   *   <li>{@code ImmutableList.of(1, "B")}
1287   *   <li>{@code ImmutableList.of(1, "C")}
1288   *   <li>{@code ImmutableList.of(2, "A")}
1289   *   <li>{@code ImmutableList.of(2, "B")}
1290   *   <li>{@code ImmutableList.of(2, "C")}
1291   * </ul>
1292   *
1293   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1294   * products that you would get from nesting for loops:
1295   *
1296   * <pre>{@code
1297   * for (B b0 : sets.get(0)) {
1298   *   for (B b1 : sets.get(1)) {
1299   *     ...
1300   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1301   *     // operate on tuple
1302   *   }
1303   * }
1304   * }</pre>
1305   *
1306   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1307   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1308   * list (counter-intuitive, but mathematically consistent).
1309   *
1310   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1311   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1312   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1313   * iterated are the individual lists created, and these are not retained after iteration.
1314   *
1315   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1316   *     sets should appear in the resulting lists
1317   * @param <B> any common base class shared by all axes (often just {@link Object})
1318   * @return the Cartesian product, as an immutable set containing immutable lists
1319   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1320   *     provided set is null
1321   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1322   * @since 2.0
1323   */
1324  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1325    return CartesianSet.create(sets);
1326  }
1327
1328  /**
1329   * Returns every possible list that can be formed by choosing one element from each of the given
1330   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1331   * product</a>" of the sets. For example:
1332   *
1333   * <pre>{@code
1334   * Sets.cartesianProduct(
1335   *     ImmutableSet.of(1, 2),
1336   *     ImmutableSet.of("A", "B", "C"))
1337   * }</pre>
1338   *
1339   * <p>returns a set containing six lists:
1340   *
1341   * <ul>
1342   *   <li>{@code ImmutableList.of(1, "A")}
1343   *   <li>{@code ImmutableList.of(1, "B")}
1344   *   <li>{@code ImmutableList.of(1, "C")}
1345   *   <li>{@code ImmutableList.of(2, "A")}
1346   *   <li>{@code ImmutableList.of(2, "B")}
1347   *   <li>{@code ImmutableList.of(2, "C")}
1348   * </ul>
1349   *
1350   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1351   * products that you would get from nesting for loops:
1352   *
1353   * <pre>{@code
1354   * for (B b0 : sets.get(0)) {
1355   *   for (B b1 : sets.get(1)) {
1356   *     ...
1357   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1358   *     // operate on tuple
1359   *   }
1360   * }
1361   * }</pre>
1362   *
1363   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1364   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1365   * list (counter-intuitive, but mathematically consistent).
1366   *
1367   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1368   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1369   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1370   * iterated are the individual lists created, and these are not retained after iteration.
1371   *
1372   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1373   *     sets should appear in the resulting lists
1374   * @param <B> any common base class shared by all axes (often just {@link Object})
1375   * @return the Cartesian product, as an immutable set containing immutable lists
1376   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1377   *     provided set is null
1378   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1379   * @since 2.0
1380   */
1381  @SafeVarargs
1382  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1383    return cartesianProduct(Arrays.asList(sets));
1384  }
1385
1386  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1387      implements Set<List<E>> {
1388    private final transient ImmutableList<ImmutableSet<E>> axes;
1389    private final transient CartesianList<E> delegate;
1390
1391    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1392      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1393      for (Set<? extends E> set : sets) {
1394        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1395        if (copy.isEmpty()) {
1396          return ImmutableSet.of();
1397        }
1398        axesBuilder.add(copy);
1399      }
1400      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1401      ImmutableList<List<E>> listAxes =
1402          new ImmutableList<List<E>>() {
1403            @Override
1404            public int size() {
1405              return axes.size();
1406            }
1407
1408            @Override
1409            public List<E> get(int index) {
1410              return axes.get(index).asList();
1411            }
1412
1413            @Override
1414            boolean isPartialView() {
1415              return true;
1416            }
1417          };
1418      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1419    }
1420
1421    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1422      this.axes = axes;
1423      this.delegate = delegate;
1424    }
1425
1426    @Override
1427    protected Collection<List<E>> delegate() {
1428      return delegate;
1429    }
1430
1431    @Override
1432    public boolean contains(@Nullable Object object) {
1433      if (!(object instanceof List)) {
1434        return false;
1435      }
1436      List<?> list = (List<?>) object;
1437      if (list.size() != axes.size()) {
1438        return false;
1439      }
1440      int i = 0;
1441      for (Object o : list) {
1442        if (!axes.get(i).contains(o)) {
1443          return false;
1444        }
1445        i++;
1446      }
1447      return true;
1448    }
1449
1450    @Override
1451    public boolean equals(@Nullable Object object) {
1452      // Warning: this is broken if size() == 0, so it is critical that we
1453      // substitute an empty ImmutableSet to the user in place of this
1454      if (object instanceof CartesianSet) {
1455        CartesianSet<?> that = (CartesianSet<?>) object;
1456        return this.axes.equals(that.axes);
1457      }
1458      return super.equals(object);
1459    }
1460
1461    @Override
1462    public int hashCode() {
1463      // Warning: this is broken if size() == 0, so it is critical that we
1464      // substitute an empty ImmutableSet to the user in place of this
1465
1466      // It's a weird formula, but tests prove it works.
1467      int adjust = size() - 1;
1468      for (int i = 0; i < axes.size(); i++) {
1469        adjust *= 31;
1470        adjust = ~~adjust;
1471        // in GWT, we have to deal with integer overflow carefully
1472      }
1473      int hash = 1;
1474      for (Set<E> axis : axes) {
1475        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1476
1477        hash = ~~hash;
1478      }
1479      hash += adjust;
1480      return ~~hash;
1481    }
1482  }
1483
1484  /**
1485   * Returns the set of all possible subsets of {@code set}. For example, {@code
1486   * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
1487   *
1488   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1489   * set. The order in which these subsets appear in the outer set is undefined. Note that the power
1490   * set of the empty set is not the empty set, but a one-element set containing the empty set.
1491   *
1492   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1493   * are identical, even if the input set uses a different concept of equivalence.
1494   *
1495   * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
1496   * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
1497   * is merely copied. Only as the power set is iterated are the individual subsets created, and
1498   * these subsets themselves occupy only a small constant amount of memory.
1499   *
1500   * @param set the set of elements to construct a power set from
1501   * @return the power set, as an immutable set of immutable sets
1502   * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
1503   *     power set size to exceed the {@code int} range)
1504   * @throws NullPointerException if {@code set} is or contains {@code null}
1505   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
1506   * @since 4.0
1507   */
1508  @GwtCompatible(serializable = false)
1509  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1510    return new PowerSet<E>(set);
1511  }
1512
1513  private static final class SubSet<E> extends AbstractSet<E> {
1514    private final ImmutableMap<E, Integer> inputSet;
1515    private final int mask;
1516
1517    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1518      this.inputSet = inputSet;
1519      this.mask = mask;
1520    }
1521
1522    @Override
1523    public Iterator<E> iterator() {
1524      return new UnmodifiableIterator<E>() {
1525        final ImmutableList<E> elements = inputSet.keySet().asList();
1526        int remainingSetBits = mask;
1527
1528        @Override
1529        public boolean hasNext() {
1530          return remainingSetBits != 0;
1531        }
1532
1533        @Override
1534        public E next() {
1535          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1536          if (index == 32) {
1537            throw new NoSuchElementException();
1538          }
1539          remainingSetBits &= ~(1 << index);
1540          return elements.get(index);
1541        }
1542      };
1543    }
1544
1545    @Override
1546    public int size() {
1547      return Integer.bitCount(mask);
1548    }
1549
1550    @Override
1551    public boolean contains(@Nullable Object o) {
1552      Integer index = inputSet.get(o);
1553      return index != null && (mask & (1 << index)) != 0;
1554    }
1555  }
1556
1557  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1558    final ImmutableMap<E, Integer> inputSet;
1559
1560    PowerSet(Set<E> input) {
1561      checkArgument(
1562          input.size() <= 30, "Too many elements to create power set: %s > 30", input.size());
1563      this.inputSet = Maps.indexMap(input);
1564    }
1565
1566    @Override
1567    public int size() {
1568      return 1 << inputSet.size();
1569    }
1570
1571    @Override
1572    public boolean isEmpty() {
1573      return false;
1574    }
1575
1576    @Override
1577    public Iterator<Set<E>> iterator() {
1578      return new AbstractIndexedListIterator<Set<E>>(size()) {
1579        @Override
1580        protected Set<E> get(final int setBits) {
1581          return new SubSet<E>(inputSet, setBits);
1582        }
1583      };
1584    }
1585
1586    @Override
1587    public boolean contains(@Nullable Object obj) {
1588      if (obj instanceof Set) {
1589        Set<?> set = (Set<?>) obj;
1590        return inputSet.keySet().containsAll(set);
1591      }
1592      return false;
1593    }
1594
1595    @Override
1596    public boolean equals(@Nullable Object obj) {
1597      if (obj instanceof PowerSet) {
1598        PowerSet<?> that = (PowerSet<?>) obj;
1599        return inputSet.keySet().equals(that.inputSet.keySet());
1600      }
1601      return super.equals(obj);
1602    }
1603
1604    @Override
1605    public int hashCode() {
1606      /*
1607       * The sum of the sums of the hash codes in each subset is just the sum of
1608       * each input element's hash code times the number of sets that element
1609       * appears in. Each element appears in exactly half of the 2^n sets, so:
1610       */
1611      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1612    }
1613
1614    @Override
1615    public String toString() {
1616      return "powerSet(" + inputSet + ")";
1617    }
1618  }
1619
1620  /**
1621   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1622   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1623   *
1624   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1625   * set. The order in which these subsets appear in the outer set is undefined.
1626   *
1627   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1628   * are identical, even if the input set uses a different concept of equivalence.
1629   *
1630   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1631   * the result set is constructed, the input set is merely copied. Only as the result set is
1632   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1633   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1634   * {@code combinations} does not retain the individual subsets.
1635   *
1636   * @param set the set of elements to take combinations of
1637   * @param size the number of elements per combination
1638   * @return the set of all combinations of {@code size} elements from {@code set}
1639   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1640   *     inclusive
1641   * @throws NullPointerException if {@code set} is or contains {@code null}
1642   * @since 23.0
1643   */
1644  @Beta
1645  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1646    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1647    checkNonnegative(size, "size");
1648    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1649    if (size == 0) {
1650      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1651    } else if (size == index.size()) {
1652      return ImmutableSet.<Set<E>>of(index.keySet());
1653    }
1654    return new AbstractSet<Set<E>>() {
1655      @Override
1656      public boolean contains(@Nullable Object o) {
1657        if (o instanceof Set) {
1658          Set<?> s = (Set<?>) o;
1659          return s.size() == size && index.keySet().containsAll(s);
1660        }
1661        return false;
1662      }
1663
1664      @Override
1665      public Iterator<Set<E>> iterator() {
1666        return new AbstractIterator<Set<E>>() {
1667          final BitSet bits = new BitSet(index.size());
1668
1669          @Override
1670          protected Set<E> computeNext() {
1671            if (bits.isEmpty()) {
1672              bits.set(0, size);
1673            } else {
1674              int firstSetBit = bits.nextSetBit(0);
1675              int bitToFlip = bits.nextClearBit(firstSetBit);
1676
1677              if (bitToFlip == index.size()) {
1678                return endOfData();
1679              }
1680
1681              /*
1682               * The current set in sorted order looks like
1683               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1684               * where it does *not* contain bitToFlip.
1685               *
1686               * The next combination is
1687               *
1688               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1689               *
1690               * This is lexicographically next if you look at the combinations in descending order
1691               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1692               */
1693
1694              bits.set(0, bitToFlip - firstSetBit - 1);
1695              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1696              bits.set(bitToFlip);
1697            }
1698            final BitSet copy = (BitSet) bits.clone();
1699            return new AbstractSet<E>() {
1700              @Override
1701              public boolean contains(@Nullable Object o) {
1702                Integer i = index.get(o);
1703                return i != null && copy.get(i);
1704              }
1705
1706              @Override
1707              public Iterator<E> iterator() {
1708                return new AbstractIterator<E>() {
1709                  int i = -1;
1710
1711                  @Override
1712                  protected E computeNext() {
1713                    i = copy.nextSetBit(i + 1);
1714                    if (i == -1) {
1715                      return endOfData();
1716                    }
1717                    return index.keySet().asList().get(i);
1718                  }
1719                };
1720              }
1721
1722              @Override
1723              public int size() {
1724                return size;
1725              }
1726            };
1727          }
1728        };
1729      }
1730
1731      @Override
1732      public int size() {
1733        return IntMath.binomial(index.size(), size);
1734      }
1735
1736      @Override
1737      public String toString() {
1738        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1739      }
1740    };
1741  }
1742
1743  /** An implementation for {@link Set#hashCode()}. */
1744  static int hashCodeImpl(Set<?> s) {
1745    int hashCode = 0;
1746    for (Object o : s) {
1747      hashCode += o != null ? o.hashCode() : 0;
1748
1749      hashCode = ~~hashCode;
1750      // Needed to deal with unusual integer overflow in GWT.
1751    }
1752    return hashCode;
1753  }
1754
1755  /** An implementation for {@link Set#equals(Object)}. */
1756  static boolean equalsImpl(Set<?> s, @Nullable Object object) {
1757    if (s == object) {
1758      return true;
1759    }
1760    if (object instanceof Set) {
1761      Set<?> o = (Set<?>) object;
1762
1763      try {
1764        return s.size() == o.size() && s.containsAll(o);
1765      } catch (NullPointerException | ClassCastException ignored) {
1766        return false;
1767      }
1768    }
1769    return false;
1770  }
1771
1772  /**
1773   * Returns an unmodifiable view of the specified navigable set. This method allows modules to
1774   * provide users with "read-only" access to internal navigable sets. Query operations on the
1775   * returned set "read through" to the specified set, and attempts to modify the returned set,
1776   * whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
1777   *
1778   * <p>The returned navigable set will be serializable if the specified navigable set is
1779   * serializable.
1780   *
1781   * @param set the navigable set for which an unmodifiable view is to be returned
1782   * @return an unmodifiable view of the specified navigable set
1783   * @since 12.0
1784   */
1785  public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
1786    if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
1787      return set;
1788    }
1789    return new UnmodifiableNavigableSet<E>(set);
1790  }
1791
1792  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
1793      implements NavigableSet<E>, Serializable {
1794    private final NavigableSet<E> delegate;
1795    private final SortedSet<E> unmodifiableDelegate;
1796
1797    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1798      this.delegate = checkNotNull(delegate);
1799      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1800    }
1801
1802    @Override
1803    protected SortedSet<E> delegate() {
1804      return unmodifiableDelegate;
1805    }
1806
1807    // default methods not forwarded by ForwardingSortedSet
1808
1809    @Override
1810    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
1811      throw new UnsupportedOperationException();
1812    }
1813
1814    @Override
1815    public Stream<E> stream() {
1816      return delegate.stream();
1817    }
1818
1819    @Override
1820    public Stream<E> parallelStream() {
1821      return delegate.parallelStream();
1822    }
1823
1824    @Override
1825    public void forEach(Consumer<? super E> action) {
1826      delegate.forEach(action);
1827    }
1828
1829    @Override
1830    public E lower(E e) {
1831      return delegate.lower(e);
1832    }
1833
1834    @Override
1835    public E floor(E e) {
1836      return delegate.floor(e);
1837    }
1838
1839    @Override
1840    public E ceiling(E e) {
1841      return delegate.ceiling(e);
1842    }
1843
1844    @Override
1845    public E higher(E e) {
1846      return delegate.higher(e);
1847    }
1848
1849    @Override
1850    public E pollFirst() {
1851      throw new UnsupportedOperationException();
1852    }
1853
1854    @Override
1855    public E pollLast() {
1856      throw new UnsupportedOperationException();
1857    }
1858
1859    private transient @Nullable UnmodifiableNavigableSet<E> descendingSet;
1860
1861    @Override
1862    public NavigableSet<E> descendingSet() {
1863      UnmodifiableNavigableSet<E> result = descendingSet;
1864      if (result == null) {
1865        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
1866        result.descendingSet = this;
1867      }
1868      return result;
1869    }
1870
1871    @Override
1872    public Iterator<E> descendingIterator() {
1873      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1874    }
1875
1876    @Override
1877    public NavigableSet<E> subSet(
1878        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1879      return unmodifiableNavigableSet(
1880          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1881    }
1882
1883    @Override
1884    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1885      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1886    }
1887
1888    @Override
1889    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1890      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1891    }
1892
1893    private static final long serialVersionUID = 0;
1894  }
1895
1896  /**
1897   * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
1898   * order to guarantee serial access, it is critical that <b>all</b> access to the backing
1899   * navigable set is accomplished through the returned navigable set (or its views).
1900   *
1901   * <p>It is imperative that the user manually synchronize on the returned sorted set when
1902   * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
1903   * {@code tailSet} views.
1904   *
1905   * <pre>{@code
1906   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1907   *  ...
1908   * synchronized (set) {
1909   *   // Must be in the synchronized block
1910   *   Iterator<E> it = set.iterator();
1911   *   while (it.hasNext()) {
1912   *     foo(it.next());
1913   *   }
1914   * }
1915   * }</pre>
1916   *
1917   * <p>or:
1918   *
1919   * <pre>{@code
1920   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1921   * NavigableSet<E> set2 = set.descendingSet().headSet(foo);
1922   *  ...
1923   * synchronized (set) { // Note: set, not set2!!!
1924   *   // Must be in the synchronized block
1925   *   Iterator<E> it = set2.descendingIterator();
1926   *   while (it.hasNext())
1927   *     foo(it.next());
1928   *   }
1929   * }
1930   * }</pre>
1931   *
1932   * <p>Failure to follow this advice may result in non-deterministic behavior.
1933   *
1934   * <p>The returned navigable set will be serializable if the specified navigable set is
1935   * serializable.
1936   *
1937   * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
1938   * @return a synchronized view of the specified navigable set.
1939   * @since 13.0
1940   */
1941  @GwtIncompatible // NavigableSet
1942  public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
1943    return Synchronized.navigableSet(navigableSet);
1944  }
1945
1946  /** Remove each element in an iterable from a set. */
1947  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
1948    boolean changed = false;
1949    while (iterator.hasNext()) {
1950      changed |= set.remove(iterator.next());
1951    }
1952    return changed;
1953  }
1954
1955  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
1956    checkNotNull(collection); // for GWT
1957    if (collection instanceof Multiset) {
1958      collection = ((Multiset<?>) collection).elementSet();
1959    }
1960    /*
1961     * AbstractSet.removeAll(List) has quadratic behavior if the list size
1962     * is just more than the set's size.  We augment the test by
1963     * assuming that sets have fast contains() performance, and other
1964     * collections don't.  See
1965     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
1966     */
1967    if (collection instanceof Set && collection.size() > set.size()) {
1968      return Iterators.removeAll(set.iterator(), collection);
1969    } else {
1970      return removeAllImpl(set, collection.iterator());
1971    }
1972  }
1973
1974  @GwtIncompatible // NavigableSet
1975  static class DescendingSet<E> extends ForwardingNavigableSet<E> {
1976    private final NavigableSet<E> forward;
1977
1978    DescendingSet(NavigableSet<E> forward) {
1979      this.forward = forward;
1980    }
1981
1982    @Override
1983    protected NavigableSet<E> delegate() {
1984      return forward;
1985    }
1986
1987    @Override
1988    public E lower(E e) {
1989      return forward.higher(e);
1990    }
1991
1992    @Override
1993    public E floor(E e) {
1994      return forward.ceiling(e);
1995    }
1996
1997    @Override
1998    public E ceiling(E e) {
1999      return forward.floor(e);
2000    }
2001
2002    @Override
2003    public E higher(E e) {
2004      return forward.lower(e);
2005    }
2006
2007    @Override
2008    public E pollFirst() {
2009      return forward.pollLast();
2010    }
2011
2012    @Override
2013    public E pollLast() {
2014      return forward.pollFirst();
2015    }
2016
2017    @Override
2018    public NavigableSet<E> descendingSet() {
2019      return forward;
2020    }
2021
2022    @Override
2023    public Iterator<E> descendingIterator() {
2024      return forward.iterator();
2025    }
2026
2027    @Override
2028    public NavigableSet<E> subSet(
2029        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
2030      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
2031    }
2032
2033    @Override
2034    public SortedSet<E> subSet(E fromElement, E toElement) {
2035      return standardSubSet(fromElement, toElement);
2036    }
2037
2038    @Override
2039    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2040      return forward.tailSet(toElement, inclusive).descendingSet();
2041    }
2042
2043    @Override
2044    public SortedSet<E> headSet(E toElement) {
2045      return standardHeadSet(toElement);
2046    }
2047
2048    @Override
2049    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2050      return forward.headSet(fromElement, inclusive).descendingSet();
2051    }
2052
2053    @Override
2054    public SortedSet<E> tailSet(E fromElement) {
2055      return standardTailSet(fromElement);
2056    }
2057
2058    @SuppressWarnings("unchecked")
2059    @Override
2060    public Comparator<? super E> comparator() {
2061      Comparator<? super E> forwardComparator = forward.comparator();
2062      if (forwardComparator == null) {
2063        return (Comparator) Ordering.natural().reverse();
2064      } else {
2065        return reverse(forwardComparator);
2066      }
2067    }
2068
2069    // If we inline this, we get a javac error.
2070    private static <T> Ordering<T> reverse(Comparator<T> forward) {
2071      return Ordering.from(forward).reverse();
2072    }
2073
2074    @Override
2075    public E first() {
2076      return forward.last();
2077    }
2078
2079    @Override
2080    public E last() {
2081      return forward.first();
2082    }
2083
2084    @Override
2085    public Iterator<E> iterator() {
2086      return forward.descendingIterator();
2087    }
2088
2089    @Override
2090    public Object[] toArray() {
2091      return standardToArray();
2092    }
2093
2094    @Override
2095    public <T> T[] toArray(T[] array) {
2096      return standardToArray(array);
2097    }
2098
2099    @Override
2100    public String toString() {
2101      return standardToString();
2102    }
2103  }
2104
2105  /**
2106   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
2107   *
2108   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
2109   * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
2110   * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
2111   * boolean) headSet()}) to actually construct the view. Consult these methods for a full
2112   * description of the returned view's behavior.
2113   *
2114   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
2115   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
2116   * Comparator}, which can violate the natural ordering. Using this method (or in general using
2117   * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
2118   *
2119   * @since 20.0
2120   */
2121  @Beta
2122  @GwtIncompatible // NavigableSet
2123  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
2124      NavigableSet<K> set, Range<K> range) {
2125    if (set.comparator() != null
2126        && set.comparator() != Ordering.natural()
2127        && range.hasLowerBound()
2128        && range.hasUpperBound()) {
2129      checkArgument(
2130          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
2131          "set is using a custom comparator which is inconsistent with the natural ordering.");
2132    }
2133    if (range.hasLowerBound() && range.hasUpperBound()) {
2134      return set.subSet(
2135          range.lowerEndpoint(),
2136          range.lowerBoundType() == BoundType.CLOSED,
2137          range.upperEndpoint(),
2138          range.upperBoundType() == BoundType.CLOSED);
2139    } else if (range.hasLowerBound()) {
2140      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2141    } else if (range.hasUpperBound()) {
2142      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2143    }
2144    return checkNotNull(set);
2145  }
2146}