Class PairedStatsAccumulator
- java.lang.Object
- 
- com.google.common.math.PairedStatsAccumulator
 
- 
 @Beta @GwtIncompatible public final class PairedStatsAccumulator extends Object A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some basic statistics over all the values added so far. This class is not thread safe.- Since:
- 20.0
- Author:
- Pete Gillin
 
- 
- 
Constructor SummaryConstructors Constructor Description PairedStatsAccumulator()
 - 
Method SummaryAll Methods Instance Methods Concrete Methods Modifier and Type Method Description voidadd(double x, double y)Adds the given pair of values to the dataset.voidaddAll(PairedStats values)Adds the given statistics to the dataset, as if the individual values used to compute the statistics had been added directly.longcount()Returns the number of pairs in the dataset.LinearTransformationleastSquaresFit()Returns a linear transformation giving the best fit to the data according to Ordinary Least Squares linear regression ofyas a function ofx.doublepearsonsCorrelationCoefficient()Returns the Pearson's or product-moment correlation coefficient of the values.doublepopulationCovariance()Returns the population covariance of the values.doublesampleCovariance()Returns the sample covariance of the values.PairedStatssnapshot()Returns an immutable snapshot of the current statistics.StatsxStats()Returns an immutable snapshot of the statistics on thexvalues alone.StatsyStats()Returns an immutable snapshot of the statistics on theyvalues alone.
 
- 
- 
- 
Constructor Detail- 
PairedStatsAccumulatorpublic PairedStatsAccumulator() 
 
- 
 - 
Method Detail- 
addpublic void add(double x, double y) Adds the given pair of values to the dataset.
 - 
addAllpublic void addAll(PairedStats values) Adds the given statistics to the dataset, as if the individual values used to compute the statistics had been added directly.
 - 
snapshotpublic PairedStats snapshot() Returns an immutable snapshot of the current statistics.
 - 
countpublic long count() Returns the number of pairs in the dataset.
 - 
populationCovariancepublic double populationCovariance() Returns the population covariance of the values. The count must be non-zero.This is guaranteed to return zero if the dataset contains a single pair of finite values. It is not guaranteed to return zero when the dataset consists of the same pair of values multiple times, due to numerical errors. Non-finite valuesIf the dataset contains any non-finite values ( Double.POSITIVE_INFINITY,Double.NEGATIVE_INFINITY, orDouble.NaN) then the result isDouble.NaN.- Throws:
- IllegalStateException- if the dataset is empty
 
 - 
sampleCovariancepublic final double sampleCovariance() Returns the sample covariance of the values. The count must be greater than one.This is not guaranteed to return zero when the dataset consists of the same pair of values multiple times, due to numerical errors. Non-finite valuesIf the dataset contains any non-finite values ( Double.POSITIVE_INFINITY,Double.NEGATIVE_INFINITY, orDouble.NaN) then the result isDouble.NaN.- Throws:
- IllegalStateException- if the dataset is empty or contains a single pair of values
 
 - 
pearsonsCorrelationCoefficientpublic final double pearsonsCorrelationCoefficient() Returns the Pearson's or product-moment correlation coefficient of the values. The count must greater than one, and thexandyvalues must both have non-zero population variance (i.e.xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0). The result is not guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].Non-finite valuesIf the dataset contains any non-finite values ( Double.POSITIVE_INFINITY,Double.NEGATIVE_INFINITY, orDouble.NaN) then the result isDouble.NaN.- Throws:
- IllegalStateException- if the dataset is empty or contains a single pair of values, or either the- xand- ydataset has zero population variance
 
 - 
leastSquaresFitpublic final LinearTransformation leastSquaresFit() Returns a linear transformation giving the best fit to the data according to Ordinary Least Squares linear regression ofyas a function ofx. The count must be greater than one, and either thexorydata must have a non-zero population variance (i.e.xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0). The result is guaranteed to be horizontal if there is variance in thexdata but not theydata, and vertical if there is variance in theydata but not thexdata.This fit minimizes the root-mean-square error in yas a function ofx. This error is defined as the square root of the mean of the squares of the differences between the actualyvalues of the data and the values predicted by the fit for thexvalues (i.e. it is the square root of the mean of the squares of the vertical distances between the data points and the best fit line). For this fit, this error is a fractionsqrt(1 - R*R)of the population standard deviation ofy, whereRis the Pearson's correlation coefficient (as given bypearsonsCorrelationCoefficient()).The corresponding root-mean-square error in xas a function ofyis a fractionsqrt(1/(R*R) - 1)of the population standard deviation ofx. This fit does not normally minimize that error: to do that, you should swap the roles ofxandy.Non-finite valuesIf the dataset contains any non-finite values ( Double.POSITIVE_INFINITY,Double.NEGATIVE_INFINITY, orDouble.NaN) then the result isLinearTransformation.forNaN().- Throws:
- IllegalStateException- if the dataset is empty or contains a single pair of values, or both the- xand- ydataset have zero population variance
 
 
- 
 
-