001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.net; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.Beta; 021import com.google.common.annotations.GwtIncompatible; 022import com.google.common.base.MoreObjects; 023import com.google.common.base.Splitter; 024import com.google.common.collect.Iterables; 025import com.google.common.hash.Hashing; 026import com.google.common.io.ByteStreams; 027import com.google.common.primitives.Ints; 028import java.math.BigInteger; 029import java.net.Inet4Address; 030import java.net.Inet6Address; 031import java.net.InetAddress; 032import java.net.UnknownHostException; 033import java.nio.ByteBuffer; 034import java.util.Arrays; 035import java.util.List; 036import java.util.Locale; 037import org.checkerframework.checker.nullness.qual.Nullable; 038 039/** 040 * Static utility methods pertaining to {@link InetAddress} instances. 041 * 042 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 043 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 044 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 045 * literals -- there is no blocking DNS penalty for a malformed string. 046 * 047 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 048 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 049 * the address in network byte order. 050 * 051 * <p>Examples of IP addresses and their byte representations: 052 * 053 * <dl> 054 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 055 * <dd>{@code 7f 00 00 01} 056 * <dt>The IPv6 loopback address, {@code "::1"}. 057 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 058 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 059 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 060 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 061 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 062 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 063 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 064 * </dl> 065 * 066 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 067 * 068 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 069 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 070 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 071 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 072 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 073 * 074 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 075 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 076 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 077 * "mapped" addresses return {@link Inet4Address} objects. 078 * 079 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 080 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 081 * suggestions usually recommend discarding any packets with source or destination addresses in the 082 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 083 * information on "bogons", including lists of IPv6 bogon space, see: 084 * 085 * <ul> 086 * <li><a target="_parent" 087 * href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 088 * org/wiki/Bogon_filtering</a> 089 * <li><a target="_parent" 090 * href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a> 091 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 092 * Bogons/v6bogon.html</a> 093 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 094 * space.net/~gert/RIPE/ipv6-filters.html</a> 095 * </ul> 096 * 097 * @author Erik Kline 098 * @since 5.0 099 */ 100@Beta 101@GwtIncompatible 102public final class InetAddresses { 103 private static final int IPV4_PART_COUNT = 4; 104 private static final int IPV6_PART_COUNT = 8; 105 private static final Splitter IPV4_SPLITTER = Splitter.on('.').limit(IPV4_PART_COUNT); 106 private static final Splitter IPV6_SPLITTER = Splitter.on(':').limit(IPV6_PART_COUNT + 2); 107 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 108 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 109 110 private InetAddresses() {} 111 112 /** 113 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 114 * 115 * @param bytes byte array representing an IPv4 address (should be of length 4) 116 * @return {@link Inet4Address} corresponding to the supplied byte array 117 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 118 */ 119 private static Inet4Address getInet4Address(byte[] bytes) { 120 checkArgument( 121 bytes.length == 4, 122 "Byte array has invalid length for an IPv4 address: %s != 4.", 123 bytes.length); 124 125 // Given a 4-byte array, this cast should always succeed. 126 return (Inet4Address) bytesToInetAddress(bytes); 127 } 128 129 /** 130 * Returns the {@link InetAddress} having the given string representation. 131 * 132 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 133 * 134 * <p>Anything after a {@code %} in an IPv6 address is ignored (assumed to be a Scope ID). 135 * 136 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code 137 * "192.168.0.1"} or {@code "2001:db8::1"} 138 * @return {@link InetAddress} representing the argument 139 * @throws IllegalArgumentException if the argument is not a valid IP string literal 140 */ 141 public static InetAddress forString(String ipString) { 142 byte[] addr = ipStringToBytes(ipString); 143 144 // The argument was malformed, i.e. not an IP string literal. 145 if (addr == null) { 146 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 147 } 148 149 return bytesToInetAddress(addr); 150 } 151 152 /** 153 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 154 * otherwise. 155 * 156 * @param ipString {@code String} to evaluated as an IP string literal 157 * @return {@code true} if the argument is a valid IP string literal 158 */ 159 public static boolean isInetAddress(String ipString) { 160 return ipStringToBytes(ipString) != null; 161 } 162 163 /** Returns {@code null} if unable to parse into a {@code byte[]}. */ 164 private static byte @Nullable [] ipStringToBytes(String ipString) { 165 // Make a first pass to categorize the characters in this string. 166 boolean hasColon = false; 167 boolean hasDot = false; 168 int percentIndex = -1; 169 for (int i = 0; i < ipString.length(); i++) { 170 char c = ipString.charAt(i); 171 if (c == '.') { 172 hasDot = true; 173 } else if (c == ':') { 174 if (hasDot) { 175 return null; // Colons must not appear after dots. 176 } 177 hasColon = true; 178 } else if (c == '%') { 179 percentIndex = i; 180 break; // everything after a '%' is ignored (it's a Scope ID): http://superuser.com/a/99753 181 } else if (Character.digit(c, 16) == -1) { 182 return null; // Everything else must be a decimal or hex digit. 183 } 184 } 185 186 // Now decide which address family to parse. 187 if (hasColon) { 188 if (hasDot) { 189 ipString = convertDottedQuadToHex(ipString); 190 if (ipString == null) { 191 return null; 192 } 193 } 194 if (percentIndex != -1) { 195 ipString = ipString.substring(0, percentIndex); 196 } 197 return textToNumericFormatV6(ipString); 198 } else if (hasDot) { 199 return textToNumericFormatV4(ipString); 200 } 201 return null; 202 } 203 204 private static byte @Nullable [] textToNumericFormatV4(String ipString) { 205 byte[] bytes = new byte[IPV4_PART_COUNT]; 206 int i = 0; 207 try { 208 for (String octet : IPV4_SPLITTER.split(ipString)) { 209 bytes[i++] = parseOctet(octet); 210 } 211 } catch (NumberFormatException ex) { 212 return null; 213 } 214 215 return i == IPV4_PART_COUNT ? bytes : null; 216 } 217 218 private static byte @Nullable [] textToNumericFormatV6(String ipString) { 219 // An address can have [2..8] colons, and N colons make N+1 parts. 220 List<String> parts = IPV6_SPLITTER.splitToList(ipString); 221 if (parts.size() < 3 || parts.size() > IPV6_PART_COUNT + 1) { 222 return null; 223 } 224 225 // Disregarding the endpoints, find "::" with nothing in between. 226 // This indicates that a run of zeroes has been skipped. 227 int skipIndex = -1; 228 for (int i = 1; i < parts.size() - 1; i++) { 229 if (parts.get(i).length() == 0) { 230 if (skipIndex >= 0) { 231 return null; // Can't have more than one :: 232 } 233 skipIndex = i; 234 } 235 } 236 237 int partsHi; // Number of parts to copy from above/before the "::" 238 int partsLo; // Number of parts to copy from below/after the "::" 239 if (skipIndex >= 0) { 240 // If we found a "::", then check if it also covers the endpoints. 241 partsHi = skipIndex; 242 partsLo = parts.size() - skipIndex - 1; 243 if (parts.get(0).length() == 0 && --partsHi != 0) { 244 return null; // ^: requires ^:: 245 } 246 if (Iterables.getLast(parts).length() == 0 && --partsLo != 0) { 247 return null; // :$ requires ::$ 248 } 249 } else { 250 // Otherwise, allocate the entire address to partsHi. The endpoints 251 // could still be empty, but parseHextet() will check for that. 252 partsHi = parts.size(); 253 partsLo = 0; 254 } 255 256 // If we found a ::, then we must have skipped at least one part. 257 // Otherwise, we must have exactly the right number of parts. 258 int partsSkipped = IPV6_PART_COUNT - (partsHi + partsLo); 259 if (!(skipIndex >= 0 ? partsSkipped >= 1 : partsSkipped == 0)) { 260 return null; 261 } 262 263 // Now parse the hextets into a byte array. 264 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 265 try { 266 for (int i = 0; i < partsHi; i++) { 267 rawBytes.putShort(parseHextet(parts.get(i))); 268 } 269 for (int i = 0; i < partsSkipped; i++) { 270 rawBytes.putShort((short) 0); 271 } 272 for (int i = partsLo; i > 0; i--) { 273 rawBytes.putShort(parseHextet(parts.get(parts.size() - i))); 274 } 275 } catch (NumberFormatException ex) { 276 return null; 277 } 278 return rawBytes.array(); 279 } 280 281 private static @Nullable String convertDottedQuadToHex(String ipString) { 282 int lastColon = ipString.lastIndexOf(':'); 283 String initialPart = ipString.substring(0, lastColon + 1); 284 String dottedQuad = ipString.substring(lastColon + 1); 285 byte[] quad = textToNumericFormatV4(dottedQuad); 286 if (quad == null) { 287 return null; 288 } 289 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 290 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 291 return initialPart + penultimate + ":" + ultimate; 292 } 293 294 private static byte parseOctet(String ipPart) { 295 // Note: we already verified that this string contains only hex digits. 296 int octet = Integer.parseInt(ipPart); 297 // Disallow leading zeroes, because no clear standard exists on 298 // whether these should be interpreted as decimal or octal. 299 if (octet > 255 || (ipPart.startsWith("0") && ipPart.length() > 1)) { 300 throw new NumberFormatException(); 301 } 302 return (byte) octet; 303 } 304 305 private static short parseHextet(String ipPart) { 306 // Note: we already verified that this string contains only hex digits. 307 int hextet = Integer.parseInt(ipPart, 16); 308 if (hextet > 0xffff) { 309 throw new NumberFormatException(); 310 } 311 return (short) hextet; 312 } 313 314 /** 315 * Convert a byte array into an InetAddress. 316 * 317 * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP 318 * address is of illegal length." We replace it with an unchecked exception, for use by callers 319 * who already know that addr is an array of length 4 or 16. 320 * 321 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 322 * @return an InetAddress object created from the raw IP address 323 */ 324 private static InetAddress bytesToInetAddress(byte[] addr) { 325 try { 326 return InetAddress.getByAddress(addr); 327 } catch (UnknownHostException e) { 328 throw new AssertionError(e); 329 } 330 } 331 332 /** 333 * Returns the string representation of an {@link InetAddress}. 334 * 335 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 336 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 337 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 338 * uses the uncompressed form. 339 * 340 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 341 * such as "::c000:201". The output does not include a Scope ID. 342 * 343 * @param ip {@link InetAddress} to be converted to an address string 344 * @return {@code String} containing the text-formatted IP address 345 * @since 10.0 346 */ 347 public static String toAddrString(InetAddress ip) { 348 checkNotNull(ip); 349 if (ip instanceof Inet4Address) { 350 // For IPv4, Java's formatting is good enough. 351 return ip.getHostAddress(); 352 } 353 checkArgument(ip instanceof Inet6Address); 354 byte[] bytes = ip.getAddress(); 355 int[] hextets = new int[IPV6_PART_COUNT]; 356 for (int i = 0; i < hextets.length; i++) { 357 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 358 } 359 compressLongestRunOfZeroes(hextets); 360 return hextetsToIPv6String(hextets); 361 } 362 363 /** 364 * Identify and mark the longest run of zeroes in an IPv6 address. 365 * 366 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 367 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 368 * 369 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 370 */ 371 private static void compressLongestRunOfZeroes(int[] hextets) { 372 int bestRunStart = -1; 373 int bestRunLength = -1; 374 int runStart = -1; 375 for (int i = 0; i < hextets.length + 1; i++) { 376 if (i < hextets.length && hextets[i] == 0) { 377 if (runStart < 0) { 378 runStart = i; 379 } 380 } else if (runStart >= 0) { 381 int runLength = i - runStart; 382 if (runLength > bestRunLength) { 383 bestRunStart = runStart; 384 bestRunLength = runLength; 385 } 386 runStart = -1; 387 } 388 } 389 if (bestRunLength >= 2) { 390 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 391 } 392 } 393 394 /** 395 * Convert a list of hextets into a human-readable IPv6 address. 396 * 397 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 398 * place of the elided zeroes. 399 * 400 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 401 */ 402 private static String hextetsToIPv6String(int[] hextets) { 403 // While scanning the array, handle these state transitions: 404 // start->num => "num" start->gap => "::" 405 // num->num => ":num" num->gap => "::" 406 // gap->num => "num" gap->gap => "" 407 StringBuilder buf = new StringBuilder(39); 408 boolean lastWasNumber = false; 409 for (int i = 0; i < hextets.length; i++) { 410 boolean thisIsNumber = hextets[i] >= 0; 411 if (thisIsNumber) { 412 if (lastWasNumber) { 413 buf.append(':'); 414 } 415 buf.append(Integer.toHexString(hextets[i])); 416 } else { 417 if (i == 0 || lastWasNumber) { 418 buf.append("::"); 419 } 420 } 421 lastWasNumber = thisIsNumber; 422 } 423 return buf.toString(); 424 } 425 426 /** 427 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 428 * 429 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 430 * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code 431 * "[2001:db8::1]"}. 432 * 433 * <p>Per section 3.2.2 of <a target="_parent" 434 * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6 435 * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}. 436 * 437 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 438 * this method is recommended over {@link InetAddress#toString()} when an IP address string 439 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 440 * IP address string joined by a "/". 441 * 442 * @param ip {@link InetAddress} to be converted to URI string literal 443 * @return {@code String} containing URI-safe string literal 444 */ 445 public static String toUriString(InetAddress ip) { 446 if (ip instanceof Inet6Address) { 447 return "[" + toAddrString(ip) + "]"; 448 } 449 return toAddrString(ip); 450 } 451 452 /** 453 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 454 * the format specified by RFC 3986 section 3.2.2. 455 * 456 * <p>This function is similar to {@link InetAddresses#forString(String)}, however, it requires 457 * that IPv6 addresses are surrounded by square brackets. 458 * 459 * <p>This function is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 460 * 461 * @param hostAddr A RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 462 * @return an InetAddress representing the address in {@code hostAddr} 463 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 464 * address surrounded by square brackets 465 */ 466 public static InetAddress forUriString(String hostAddr) { 467 InetAddress addr = forUriStringNoThrow(hostAddr); 468 if (addr == null) { 469 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 470 } 471 472 return addr; 473 } 474 475 private static @Nullable InetAddress forUriStringNoThrow(String hostAddr) { 476 checkNotNull(hostAddr); 477 478 // Decide if this should be an IPv6 or IPv4 address. 479 String ipString; 480 int expectBytes; 481 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 482 ipString = hostAddr.substring(1, hostAddr.length() - 1); 483 expectBytes = 16; 484 } else { 485 ipString = hostAddr; 486 expectBytes = 4; 487 } 488 489 // Parse the address, and make sure the length/version is correct. 490 byte[] addr = ipStringToBytes(ipString); 491 if (addr == null || addr.length != expectBytes) { 492 return null; 493 } 494 495 return bytesToInetAddress(addr); 496 } 497 498 /** 499 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 500 * otherwise. 501 * 502 * @param ipString {@code String} to evaluated as an IP URI host string literal 503 * @return {@code true} if the argument is a valid IP URI host 504 */ 505 public static boolean isUriInetAddress(String ipString) { 506 return forUriStringNoThrow(ipString) != null; 507 } 508 509 /** 510 * Evaluates whether the argument is an IPv6 "compat" address. 511 * 512 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 513 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 514 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 515 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 516 * 517 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent" 518 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 519 * 520 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 521 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 522 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 523 * 524 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 525 * @return {@code true} if the argument is a valid "compat" address 526 */ 527 public static boolean isCompatIPv4Address(Inet6Address ip) { 528 if (!ip.isIPv4CompatibleAddress()) { 529 return false; 530 } 531 532 byte[] bytes = ip.getAddress(); 533 if ((bytes[12] == 0) 534 && (bytes[13] == 0) 535 && (bytes[14] == 0) 536 && ((bytes[15] == 0) || (bytes[15] == 1))) { 537 return false; 538 } 539 540 return true; 541 } 542 543 /** 544 * Returns the IPv4 address embedded in an IPv4 compatible address. 545 * 546 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 547 * @return {@link Inet4Address} of the embedded IPv4 address 548 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 549 */ 550 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 551 checkArgument( 552 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 553 554 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 555 } 556 557 /** 558 * Evaluates whether the argument is a 6to4 address. 559 * 560 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 561 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 562 * 563 * <p>For more on 6to4 addresses see section 2 of <a target="_parent" 564 * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 565 * 566 * @param ip {@link Inet6Address} to be examined for 6to4 address format 567 * @return {@code true} if the argument is a 6to4 address 568 */ 569 public static boolean is6to4Address(Inet6Address ip) { 570 byte[] bytes = ip.getAddress(); 571 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 572 } 573 574 /** 575 * Returns the IPv4 address embedded in a 6to4 address. 576 * 577 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 578 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 579 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 580 */ 581 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 582 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 583 584 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 585 } 586 587 /** 588 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 589 * 590 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 591 * of the protocol. More protocols details can be found at: <a target="_parent" 592 * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 593 * org/wiki/Teredo_tunneling</a>. 594 * 595 * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 596 * 4380</a>. 597 * 598 * @since 5.0 599 */ 600 @Beta 601 public static final class TeredoInfo { 602 private final Inet4Address server; 603 private final Inet4Address client; 604 private final int port; 605 private final int flags; 606 607 /** 608 * Constructs a TeredoInfo instance. 609 * 610 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 611 * be assumed. 612 * 613 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 614 * are out of range of an unsigned short 615 */ 616 // TODO: why is this public? 617 public TeredoInfo( 618 @Nullable Inet4Address server, @Nullable Inet4Address client, int port, int flags) { 619 checkArgument( 620 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 621 checkArgument( 622 (flags >= 0) && (flags <= 0xffff), 623 "flags '%s' is out of range (0 <= flags <= 0xffff)", 624 flags); 625 626 this.server = MoreObjects.firstNonNull(server, ANY4); 627 this.client = MoreObjects.firstNonNull(client, ANY4); 628 this.port = port; 629 this.flags = flags; 630 } 631 632 public Inet4Address getServer() { 633 return server; 634 } 635 636 public Inet4Address getClient() { 637 return client; 638 } 639 640 public int getPort() { 641 return port; 642 } 643 644 public int getFlags() { 645 return flags; 646 } 647 } 648 649 /** 650 * Evaluates whether the argument is a Teredo address. 651 * 652 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 653 * 654 * @param ip {@link Inet6Address} to be examined for Teredo address format 655 * @return {@code true} if the argument is a Teredo address 656 */ 657 public static boolean isTeredoAddress(Inet6Address ip) { 658 byte[] bytes = ip.getAddress(); 659 return (bytes[0] == (byte) 0x20) 660 && (bytes[1] == (byte) 0x01) 661 && (bytes[2] == 0) 662 && (bytes[3] == 0); 663 } 664 665 /** 666 * Returns the Teredo information embedded in a Teredo address. 667 * 668 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 669 * @return extracted {@code TeredoInfo} 670 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 671 */ 672 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 673 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 674 675 byte[] bytes = ip.getAddress(); 676 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 677 678 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 679 680 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 681 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 682 683 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 684 for (int i = 0; i < clientBytes.length; i++) { 685 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 686 clientBytes[i] = (byte) ~clientBytes[i]; 687 } 688 Inet4Address client = getInet4Address(clientBytes); 689 690 return new TeredoInfo(server, client, port, flags); 691 } 692 693 /** 694 * Evaluates whether the argument is an ISATAP address. 695 * 696 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 697 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 698 * IPv4 address in network byte order [...]" 699 * 700 * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent" 701 * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 702 * 703 * @param ip {@link Inet6Address} to be examined for ISATAP address format 704 * @return {@code true} if the argument is an ISATAP address 705 */ 706 public static boolean isIsatapAddress(Inet6Address ip) { 707 708 // If it's a Teredo address with the right port (41217, or 0xa101) 709 // which would be encoded as 0x5efe then it can't be an ISATAP address. 710 if (isTeredoAddress(ip)) { 711 return false; 712 } 713 714 byte[] bytes = ip.getAddress(); 715 716 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 717 718 // Verify that high byte of the 64 bit identifier is zero, modulo 719 // the U/L and G bits, with which we are not concerned. 720 return false; 721 } 722 723 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 724 } 725 726 /** 727 * Returns the IPv4 address embedded in an ISATAP address. 728 * 729 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 730 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 731 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 732 */ 733 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 734 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 735 736 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 737 } 738 739 /** 740 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 741 * types that contain an embedded IPv4 address. 742 * 743 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 744 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 745 * BGP routing table. 746 * 747 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 748 * @return {@code true} if there is an embedded IPv4 client address 749 * @since 7.0 750 */ 751 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 752 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 753 } 754 755 /** 756 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 757 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 758 * 759 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 760 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 761 * BGP routing table. 762 * 763 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 764 * @return {@link Inet4Address} of embedded IPv4 client address 765 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 766 */ 767 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 768 if (isCompatIPv4Address(ip)) { 769 return getCompatIPv4Address(ip); 770 } 771 772 if (is6to4Address(ip)) { 773 return get6to4IPv4Address(ip); 774 } 775 776 if (isTeredoAddress(ip)) { 777 return getTeredoInfo(ip).getClient(); 778 } 779 780 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 781 } 782 783 /** 784 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 785 * 786 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 787 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 788 * 789 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent" 790 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 791 * 792 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 793 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 794 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 795 * poorly-documented feature.) 796 * 797 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 798 * @return {@code true} if the argument is a valid "mapped" address 799 * @since 10.0 800 */ 801 public static boolean isMappedIPv4Address(String ipString) { 802 byte[] bytes = ipStringToBytes(ipString); 803 if (bytes != null && bytes.length == 16) { 804 for (int i = 0; i < 10; i++) { 805 if (bytes[i] != 0) { 806 return false; 807 } 808 } 809 for (int i = 10; i < 12; i++) { 810 if (bytes[i] != (byte) 0xff) { 811 return false; 812 } 813 } 814 return true; 815 } 816 return false; 817 } 818 819 /** 820 * Coerces an IPv6 address into an IPv4 address. 821 * 822 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 823 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 824 * This function does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits 825 * into 29 bits): 826 * 827 * <ul> 828 * <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that. 829 * <li>Otherwise, it hashes the upper 64 bits of the IPv6 address. 830 * </ul> 831 * 832 * <p>A "coerced" IPv4 address is equivalent to itself. 833 * 834 * <p>NOTE: This function is failsafe for security purposes: ALL IPv6 addresses (except localhost 835 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 836 * address that might permit elevated privileges. 837 * 838 * @param ip {@link InetAddress} to "coerce" 839 * @return {@link Inet4Address} represented "coerced" address 840 * @since 7.0 841 */ 842 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 843 if (ip instanceof Inet4Address) { 844 return (Inet4Address) ip; 845 } 846 847 // Special cases: 848 byte[] bytes = ip.getAddress(); 849 boolean leadingBytesOfZero = true; 850 for (int i = 0; i < 15; ++i) { 851 if (bytes[i] != 0) { 852 leadingBytesOfZero = false; 853 break; 854 } 855 } 856 if (leadingBytesOfZero && (bytes[15] == 1)) { 857 return LOOPBACK4; // ::1 858 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 859 return ANY4; // ::0 860 } 861 862 Inet6Address ip6 = (Inet6Address) ip; 863 long addressAsLong = 0; 864 if (hasEmbeddedIPv4ClientAddress(ip6)) { 865 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 866 } else { 867 // Just extract the high 64 bits (assuming the rest is user-modifiable). 868 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 869 } 870 871 // Many strategies for hashing are possible. This might suffice for now. 872 int coercedHash = Hashing.murmur3_32().hashLong(addressAsLong).asInt(); 873 874 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 875 coercedHash |= 0xe0000000; 876 877 // Fixup to avoid some "illegal" values. Currently the only potential 878 // illegal value is 255.255.255.255. 879 if (coercedHash == 0xffffffff) { 880 coercedHash = 0xfffffffe; 881 } 882 883 return getInet4Address(Ints.toByteArray(coercedHash)); 884 } 885 886 /** 887 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 888 * an IPv4 address or not. 889 * 890 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 891 * 892 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 893 * can therefore be converted safely to integers (for whatever purpose) this function can be used 894 * to handle IPv6 addresses as well until the application is suitably fixed. 895 * 896 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 897 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 898 * cannot be used as real addresses for the purposes of network communication. 899 * 900 * @param ip {@link InetAddress} to convert 901 * @return {@code int}, "coerced" if ip is not an IPv4 address 902 * @since 7.0 903 */ 904 public static int coerceToInteger(InetAddress ip) { 905 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 906 } 907 908 /** 909 * Returns a BigInteger representing the address. 910 * 911 * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses. 912 * 913 * @param address {@link InetAddress} to convert 914 * @return {@code BigInteger} representation of the address 915 * @since 28.2 916 */ 917 public static BigInteger toBigInteger(InetAddress address) { 918 return new BigInteger(1, address.getAddress()); 919 } 920 921 /** 922 * Returns an Inet4Address having the integer value specified by the argument. 923 * 924 * @param address {@code int}, the 32bit integer address to be converted 925 * @return {@link Inet4Address} equivalent of the argument 926 */ 927 public static Inet4Address fromInteger(int address) { 928 return getInet4Address(Ints.toByteArray(address)); 929 } 930 931 /** 932 * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}. 933 * 934 * @param address BigInteger representing the IPv4 address 935 * @return Inet4Address representation of the given BigInteger 936 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1 937 * @since 28.2 938 */ 939 public static Inet4Address fromIPv4BigInteger(BigInteger address) { 940 return (Inet4Address) fromBigInteger(address, false); 941 } 942 /** 943 * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}. 944 * 945 * @param address BigInteger representing the IPv6 address 946 * @return Inet6Address representation of the given BigInteger 947 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1 948 * @since 28.2 949 */ 950 public static Inet6Address fromIPv6BigInteger(BigInteger address) { 951 return (Inet6Address) fromBigInteger(address, true); 952 } 953 954 /** 955 * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be 956 * constrainted to 32 bits, otherwise it is constrained to 128 bits. 957 * 958 * @param address the address represented as a big integer 959 * @param isIpv6 whether the created address should be IPv4 or IPv6 960 * @return the BigInteger converted to an address 961 * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4 962 * or IPv6 respectively 963 */ 964 private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) { 965 checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0"); 966 967 int numBytes = isIpv6 ? 16 : 4; 968 969 byte[] addressBytes = address.toByteArray(); 970 byte[] targetCopyArray = new byte[numBytes]; 971 972 int srcPos = Math.max(0, addressBytes.length - numBytes); 973 int copyLength = addressBytes.length - srcPos; 974 int destPos = numBytes - copyLength; 975 976 // Check the extra bytes in the BigInteger are all zero. 977 for (int i = 0; i < srcPos; i++) { 978 if (addressBytes[i] != 0x00) { 979 throw formatIllegalArgumentException( 980 "BigInteger cannot be converted to InetAddress because it has more than %d" 981 + " bytes: %s", 982 numBytes, address); 983 } 984 } 985 986 // Copy the bytes into the least significant positions. 987 System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength); 988 989 try { 990 return InetAddress.getByAddress(targetCopyArray); 991 } catch (UnknownHostException impossible) { 992 throw new AssertionError(impossible); 993 } 994 } 995 996 /** 997 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link 998 * InetAddress#getByAddress} expects). 999 * 1000 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 1001 * 1002 * @param addr the raw IP address in little-endian byte order 1003 * @return an InetAddress object created from the raw IP address 1004 * @throws UnknownHostException if IP address is of illegal length 1005 */ 1006 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 1007 byte[] reversed = new byte[addr.length]; 1008 for (int i = 0; i < addr.length; i++) { 1009 reversed[i] = addr[addr.length - i - 1]; 1010 } 1011 return InetAddress.getByAddress(reversed); 1012 } 1013 1014 /** 1015 * Returns a new InetAddress that is one less than the passed in address. This method works for 1016 * both IPv4 and IPv6 addresses. 1017 * 1018 * @param address the InetAddress to decrement 1019 * @return a new InetAddress that is one less than the passed in address 1020 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 1021 * @since 18.0 1022 */ 1023 public static InetAddress decrement(InetAddress address) { 1024 byte[] addr = address.getAddress(); 1025 int i = addr.length - 1; 1026 while (i >= 0 && addr[i] == (byte) 0x00) { 1027 addr[i] = (byte) 0xff; 1028 i--; 1029 } 1030 1031 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 1032 1033 addr[i]--; 1034 return bytesToInetAddress(addr); 1035 } 1036 1037 /** 1038 * Returns a new InetAddress that is one more than the passed in address. This method works for 1039 * both IPv4 and IPv6 addresses. 1040 * 1041 * @param address the InetAddress to increment 1042 * @return a new InetAddress that is one more than the passed in address 1043 * @throws IllegalArgumentException if InetAddress is at the end of its range 1044 * @since 10.0 1045 */ 1046 public static InetAddress increment(InetAddress address) { 1047 byte[] addr = address.getAddress(); 1048 int i = addr.length - 1; 1049 while (i >= 0 && addr[i] == (byte) 0xff) { 1050 addr[i] = 0; 1051 i--; 1052 } 1053 1054 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 1055 1056 addr[i]++; 1057 return bytesToInetAddress(addr); 1058 } 1059 1060 /** 1061 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 1062 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 1063 * 1064 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 1065 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 1066 * @since 10.0 1067 */ 1068 public static boolean isMaximum(InetAddress address) { 1069 byte[] addr = address.getAddress(); 1070 for (int i = 0; i < addr.length; i++) { 1071 if (addr[i] != (byte) 0xff) { 1072 return false; 1073 } 1074 } 1075 return true; 1076 } 1077 1078 private static IllegalArgumentException formatIllegalArgumentException( 1079 String format, Object... args) { 1080 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 1081 } 1082}