001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.collect.Collections2.FilteredCollection;
029import com.google.common.math.IntMath;
030import com.google.errorprone.annotations.CanIgnoreReturnValue;
031import java.io.Serializable;
032import java.util.AbstractSet;
033import java.util.Arrays;
034import java.util.BitSet;
035import java.util.Collection;
036import java.util.Collections;
037import java.util.Comparator;
038import java.util.EnumSet;
039import java.util.HashSet;
040import java.util.Iterator;
041import java.util.LinkedHashSet;
042import java.util.List;
043import java.util.Map;
044import java.util.NavigableSet;
045import java.util.NoSuchElementException;
046import java.util.Set;
047import java.util.SortedSet;
048import java.util.TreeSet;
049import java.util.concurrent.ConcurrentHashMap;
050import java.util.concurrent.CopyOnWriteArraySet;
051import java.util.function.Consumer;
052import java.util.stream.Collector;
053import java.util.stream.Stream;
054import org.checkerframework.checker.nullness.qual.Nullable;
055
056/**
057 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
058 * {@link Lists}, {@link Maps} and {@link Queues}.
059 *
060 * <p>See the Guava User Guide article on <a href=
061 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>.
062 *
063 * @author Kevin Bourrillion
064 * @author Jared Levy
065 * @author Chris Povirk
066 * @since 2.0
067 */
068@GwtCompatible(emulated = true)
069public final class Sets {
070  private Sets() {}
071
072  /**
073   * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
074   * implementation.
075   */
076  abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
077    @Override
078    public boolean removeAll(Collection<?> c) {
079      return removeAllImpl(this, c);
080    }
081
082    @Override
083    public boolean retainAll(Collection<?> c) {
084      return super.retainAll(checkNotNull(c)); // GWT compatibility
085    }
086  }
087
088  /**
089   * Returns an immutable set instance containing the given enum elements. Internally, the returned
090   * set will be backed by an {@link EnumSet}.
091   *
092   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
093   * which the elements are provided to the method.
094   *
095   * @param anElement one of the elements the set should contain
096   * @param otherElements the rest of the elements the set should contain
097   * @return an immutable set containing those elements, minus duplicates
098   */
099  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
100  @GwtCompatible(serializable = true)
101  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
102      E anElement, E... otherElements) {
103    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
104  }
105
106  /**
107   * Returns an immutable set instance containing the given enum elements. Internally, the returned
108   * set will be backed by an {@link EnumSet}.
109   *
110   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
111   * which the elements appear in the given collection.
112   *
113   * @param elements the elements, all of the same {@code enum} type, that the set should contain
114   * @return an immutable set containing those elements, minus duplicates
115   */
116  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
117  @GwtCompatible(serializable = true)
118  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
119    if (elements instanceof ImmutableEnumSet) {
120      return (ImmutableEnumSet<E>) elements;
121    } else if (elements instanceof Collection) {
122      Collection<E> collection = (Collection<E>) elements;
123      if (collection.isEmpty()) {
124        return ImmutableSet.of();
125      } else {
126        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
127      }
128    } else {
129      Iterator<E> itr = elements.iterator();
130      if (itr.hasNext()) {
131        EnumSet<E> enumSet = EnumSet.of(itr.next());
132        Iterators.addAll(enumSet, itr);
133        return ImmutableEnumSet.asImmutable(enumSet);
134      } else {
135        return ImmutableSet.of();
136      }
137    }
138  }
139
140  private static final class Accumulator<E extends Enum<E>> {
141    static final Collector<Enum<?>, ?, ImmutableSet<? extends Enum<?>>> TO_IMMUTABLE_ENUM_SET =
142        (Collector)
143            Collector.<Enum, Accumulator, ImmutableSet<?>>of(
144                Accumulator::new,
145                Accumulator::add,
146                Accumulator::combine,
147                Accumulator::toImmutableSet,
148                Collector.Characteristics.UNORDERED);
149
150    private @Nullable EnumSet<E> set;
151
152    void add(E e) {
153      if (set == null) {
154        set = EnumSet.of(e);
155      } else {
156        set.add(e);
157      }
158    }
159
160    Accumulator<E> combine(Accumulator<E> other) {
161      if (this.set == null) {
162        return other;
163      } else if (other.set == null) {
164        return this;
165      } else {
166        this.set.addAll(other.set);
167        return this;
168      }
169    }
170
171    ImmutableSet<E> toImmutableSet() {
172      return (set == null) ? ImmutableSet.<E>of() : ImmutableEnumSet.asImmutable(set);
173    }
174  }
175
176  /**
177   * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet}
178   * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the
179   * resulting set will iterate over elements in their enum definition order, not encounter order.
180   *
181   * @since 21.0
182   */
183  public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() {
184    return (Collector) Accumulator.TO_IMMUTABLE_ENUM_SET;
185  }
186
187  /**
188   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
189   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
190   * accepts non-{@code Collection} iterables and empty iterables.
191   */
192  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
193      Iterable<E> iterable, Class<E> elementType) {
194    EnumSet<E> set = EnumSet.noneOf(elementType);
195    Iterables.addAll(set, iterable);
196    return set;
197  }
198
199  // HashSet
200
201  /**
202   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
203   *
204   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
205   * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
206   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
207   * deterministic iteration behavior.
208   *
209   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
210   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
211   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
212   */
213  public static <E> HashSet<E> newHashSet() {
214    return new HashSet<E>();
215  }
216
217  /**
218   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
219   *
220   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
221   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
222   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
223   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
224   * deterministic iteration behavior.
225   *
226   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
227   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
228   * This method is not actually very useful and will likely be deprecated in the future.
229   */
230  public static <E> HashSet<E> newHashSet(E... elements) {
231    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
232    Collections.addAll(set, elements);
233    return set;
234  }
235
236  /**
237   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
238   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
239   * Iterables#addAll}.
240   *
241   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
242   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
243   * FluentIterable} and call {@code elements.toSet()}.)
244   *
245   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
246   * instead.
247   *
248   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
249   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
250   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
251   *
252   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
253   */
254  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
255    return (elements instanceof Collection)
256        ? new HashSet<E>(Collections2.cast(elements))
257        : newHashSet(elements.iterator());
258  }
259
260  /**
261   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
262   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
263   *
264   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
265   * ImmutableSet#copyOf(Iterator)} instead.
266   *
267   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
268   * instead.
269   *
270   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
271   */
272  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
273    HashSet<E> set = newHashSet();
274    Iterators.addAll(set, elements);
275    return set;
276  }
277
278  /**
279   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
280   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
281   * is what most users want and expect it to do.
282   *
283   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
284   *
285   * @param expectedSize the number of elements you expect to add to the returned set
286   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
287   *     without resizing
288   * @throws IllegalArgumentException if {@code expectedSize} is negative
289   */
290  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
291    return new HashSet<E>(Maps.capacity(expectedSize));
292  }
293
294  /**
295   * Creates a thread-safe set backed by a hash map. The set is backed by a {@link
296   * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
297   *
298   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
299   * set is serializable.
300   *
301   * @return a new, empty thread-safe {@code Set}
302   * @since 15.0
303   */
304  public static <E> Set<E> newConcurrentHashSet() {
305    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
306  }
307
308  /**
309   * Creates a thread-safe set backed by a hash map and containing the given elements. The set is
310   * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
311   * guarantees.
312   *
313   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
314   * set is serializable.
315   *
316   * @param elements the elements that the set should contain
317   * @return a new thread-safe set containing those elements (minus duplicates)
318   * @throws NullPointerException if {@code elements} or any of its contents is null
319   * @since 15.0
320   */
321  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
322    Set<E> set = newConcurrentHashSet();
323    Iterables.addAll(set, elements);
324    return set;
325  }
326
327  // LinkedHashSet
328
329  /**
330   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
331   *
332   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
333   *
334   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
335   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
336   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
337   *
338   * @return a new, empty {@code LinkedHashSet}
339   */
340  public static <E> LinkedHashSet<E> newLinkedHashSet() {
341    return new LinkedHashSet<E>();
342  }
343
344  /**
345   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
346   *
347   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
348   * ImmutableSet#copyOf(Iterable)} instead.
349   *
350   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
351   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
352   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
353   *
354   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
355   *
356   * @param elements the elements that the set should contain, in order
357   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
358   */
359  public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
360    if (elements instanceof Collection) {
361      return new LinkedHashSet<E>(Collections2.cast(elements));
362    }
363    LinkedHashSet<E> set = newLinkedHashSet();
364    Iterables.addAll(set, elements);
365    return set;
366  }
367
368  /**
369   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
370   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
371   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
372   * that the method isn't inadvertently <i>oversizing</i> the returned set.
373   *
374   * @param expectedSize the number of elements you expect to add to the returned set
375   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
376   *     elements without resizing
377   * @throws IllegalArgumentException if {@code expectedSize} is negative
378   * @since 11.0
379   */
380  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
381    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
382  }
383
384  // TreeSet
385
386  /**
387   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
388   * its elements.
389   *
390   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
391   *
392   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
393   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
394   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
395   *
396   * @return a new, empty {@code TreeSet}
397   */
398  public static <E extends Comparable> TreeSet<E> newTreeSet() {
399    return new TreeSet<E>();
400  }
401
402  /**
403   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
404   * natural ordering.
405   *
406   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
407   * instead.
408   *
409   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
410   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
411   * TreeSet} with that comparator.
412   *
413   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
414   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
415   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
416   *
417   * <p>This method is just a small convenience for creating an empty set and then calling {@link
418   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
419   *
420   * @param elements the elements that the set should contain
421   * @return a new {@code TreeSet} containing those elements (minus duplicates)
422   */
423  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
424    TreeSet<E> set = newTreeSet();
425    Iterables.addAll(set, elements);
426    return set;
427  }
428
429  /**
430   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
431   *
432   * <p><b>Note:</b> if mutability is not required, use {@code
433   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
434   *
435   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
436   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
437   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
438   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
439   * factory rejects null. Clean your code accordingly.
440   *
441   * @param comparator the comparator to use to sort the set
442   * @return a new, empty {@code TreeSet}
443   * @throws NullPointerException if {@code comparator} is null
444   */
445  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
446    return new TreeSet<E>(checkNotNull(comparator));
447  }
448
449  /**
450   * Creates an empty {@code Set} that uses identity to determine equality. It compares object
451   * references, instead of calling {@code equals}, to determine whether a provided object matches
452   * an element in the set. For example, {@code contains} returns {@code false} when passed an
453   * object that equals a set member, but isn't the same instance. This behavior is similar to the
454   * way {@code IdentityHashMap} handles key lookups.
455   *
456   * @since 8.0
457   */
458  public static <E> Set<E> newIdentityHashSet() {
459    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
460  }
461
462  /**
463   * Creates an empty {@code CopyOnWriteArraySet} instance.
464   *
465   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
466   * instead.
467   *
468   * @return a new, empty {@code CopyOnWriteArraySet}
469   * @since 12.0
470   */
471  @GwtIncompatible // CopyOnWriteArraySet
472  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
473    return new CopyOnWriteArraySet<E>();
474  }
475
476  /**
477   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
478   *
479   * @param elements the elements that the set should contain, in order
480   * @return a new {@code CopyOnWriteArraySet} containing those elements
481   * @since 12.0
482   */
483  @GwtIncompatible // CopyOnWriteArraySet
484  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
485    // We copy elements to an ArrayList first, rather than incurring the
486    // quadratic cost of adding them to the COWAS directly.
487    Collection<? extends E> elementsCollection =
488        (elements instanceof Collection)
489            ? Collections2.cast(elements)
490            : Lists.newArrayList(elements);
491    return new CopyOnWriteArraySet<E>(elementsCollection);
492  }
493
494  /**
495   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
496   * collection. If the collection is an {@link EnumSet}, this method has the same behavior as
497   * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
498   * element, in order to determine the element type. If the collection could be empty, use {@link
499   * #complementOf(Collection, Class)} instead of this method.
500   *
501   * @param collection the collection whose complement should be stored in the enum set
502   * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
503   *     in the given collection
504   * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
505   *     contains no elements
506   */
507  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
508    if (collection instanceof EnumSet) {
509      return EnumSet.complementOf((EnumSet<E>) collection);
510    }
511    checkArgument(
512        !collection.isEmpty(), "collection is empty; use the other version of this method");
513    Class<E> type = collection.iterator().next().getDeclaringClass();
514    return makeComplementByHand(collection, type);
515  }
516
517  /**
518   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
519   * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
520   * collection, as long as the elements are of enum type.
521   *
522   * @param collection the collection whose complement should be stored in the {@code EnumSet}
523   * @param type the type of the elements in the set
524   * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
525   *     present in the given collection
526   */
527  public static <E extends Enum<E>> EnumSet<E> complementOf(
528      Collection<E> collection, Class<E> type) {
529    checkNotNull(collection);
530    return (collection instanceof EnumSet)
531        ? EnumSet.complementOf((EnumSet<E>) collection)
532        : makeComplementByHand(collection, type);
533  }
534
535  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
536      Collection<E> collection, Class<E> type) {
537    EnumSet<E> result = EnumSet.allOf(type);
538    result.removeAll(collection);
539    return result;
540  }
541
542  /**
543   * Returns a set backed by the specified map. The resulting set displays the same ordering,
544   * concurrency, and performance characteristics as the backing map. In essence, this factory
545   * method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
546   * There is no need to use this method on a {@link Map} implementation that already has a
547   * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
548   * java.util.TreeMap}).
549   *
550   * <p>Each method invocation on the set returned by this method results in exactly one method
551   * invocation on the backing map or its {@code keySet} view, with one exception. The {@code
552   * addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
553   *
554   * <p>The specified map must be empty at the time this method is invoked, and should not be
555   * accessed directly after this method returns. These conditions are ensured if the map is created
556   * empty, passed directly to this method, and no reference to the map is retained, as illustrated
557   * in the following code fragment:
558   *
559   * <pre>{@code
560   * Set<Object> identityHashSet = Sets.newSetFromMap(
561   *     new IdentityHashMap<Object, Boolean>());
562   * }</pre>
563   *
564   * <p>The returned set is serializable if the backing map is.
565   *
566   * @param map the backing map
567   * @return the set backed by the map
568   * @throws IllegalArgumentException if {@code map} is not empty
569   * @deprecated Use {@link Collections#newSetFromMap} instead.
570   */
571  @Deprecated
572  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
573    return Collections.newSetFromMap(map);
574  }
575
576  /**
577   * An unmodifiable view of a set which may be backed by other sets; this view will change as the
578   * backing sets do. Contains methods to copy the data into a new set which will then remain
579   * stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
580   * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
581   * {@link #copyInto} and forget the {@code SetView} itself.
582   *
583   * @since 2.0
584   */
585  public abstract static class SetView<E> extends AbstractSet<E> {
586    private SetView() {} // no subclasses but our own
587
588    /**
589     * Returns an immutable copy of the current contents of this set view. Does not support null
590     * elements.
591     *
592     * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
593     * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
594     * that is inconsistent with {@link Object#equals(Object)}.
595     */
596    public ImmutableSet<E> immutableCopy() {
597      return ImmutableSet.copyOf(this);
598    }
599
600    /**
601     * Copies the current contents of this set view into an existing set. This method has equivalent
602     * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
603     * same notion of equivalence.
604     *
605     * @return a reference to {@code set}, for convenience
606     */
607    // Note: S should logically extend Set<? super E> but can't due to either
608    // some javac bug or some weirdness in the spec, not sure which.
609    @CanIgnoreReturnValue
610    public <S extends Set<E>> S copyInto(S set) {
611      set.addAll(this);
612      return set;
613    }
614
615    /**
616     * Guaranteed to throw an exception and leave the collection unmodified.
617     *
618     * @throws UnsupportedOperationException always
619     * @deprecated Unsupported operation.
620     */
621    @CanIgnoreReturnValue
622    @Deprecated
623    @Override
624    public final boolean add(E e) {
625      throw new UnsupportedOperationException();
626    }
627
628    /**
629     * Guaranteed to throw an exception and leave the collection unmodified.
630     *
631     * @throws UnsupportedOperationException always
632     * @deprecated Unsupported operation.
633     */
634    @CanIgnoreReturnValue
635    @Deprecated
636    @Override
637    public final boolean remove(Object object) {
638      throw new UnsupportedOperationException();
639    }
640
641    /**
642     * Guaranteed to throw an exception and leave the collection unmodified.
643     *
644     * @throws UnsupportedOperationException always
645     * @deprecated Unsupported operation.
646     */
647    @CanIgnoreReturnValue
648    @Deprecated
649    @Override
650    public final boolean addAll(Collection<? extends E> newElements) {
651      throw new UnsupportedOperationException();
652    }
653
654    /**
655     * Guaranteed to throw an exception and leave the collection unmodified.
656     *
657     * @throws UnsupportedOperationException always
658     * @deprecated Unsupported operation.
659     */
660    @CanIgnoreReturnValue
661    @Deprecated
662    @Override
663    public final boolean removeAll(Collection<?> oldElements) {
664      throw new UnsupportedOperationException();
665    }
666
667    /**
668     * Guaranteed to throw an exception and leave the collection unmodified.
669     *
670     * @throws UnsupportedOperationException always
671     * @deprecated Unsupported operation.
672     */
673    @CanIgnoreReturnValue
674    @Deprecated
675    @Override
676    public final boolean removeIf(java.util.function.Predicate<? super E> filter) {
677      throw new UnsupportedOperationException();
678    }
679
680    /**
681     * Guaranteed to throw an exception and leave the collection unmodified.
682     *
683     * @throws UnsupportedOperationException always
684     * @deprecated Unsupported operation.
685     */
686    @CanIgnoreReturnValue
687    @Deprecated
688    @Override
689    public final boolean retainAll(Collection<?> elementsToKeep) {
690      throw new UnsupportedOperationException();
691    }
692
693    /**
694     * Guaranteed to throw an exception and leave the collection unmodified.
695     *
696     * @throws UnsupportedOperationException always
697     * @deprecated Unsupported operation.
698     */
699    @Deprecated
700    @Override
701    public final void clear() {
702      throw new UnsupportedOperationException();
703    }
704
705    /**
706     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
707     *
708     * @since 20.0 (present with return type {@link Iterator} since 2.0)
709     */
710    @Override
711    public abstract UnmodifiableIterator<E> iterator();
712  }
713
714  /**
715   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
716   * elements that are contained in either backing set. Iterating over the returned set iterates
717   * first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
718   * that is not contained in {@code set1}.
719   *
720   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
721   * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an
722   * {@code IdentityHashMap} all are).
723   */
724  public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
725    checkNotNull(set1, "set1");
726    checkNotNull(set2, "set2");
727
728    return new SetView<E>() {
729      @Override
730      public int size() {
731        int size = set1.size();
732        for (E e : set2) {
733          if (!set1.contains(e)) {
734            size++;
735          }
736        }
737        return size;
738      }
739
740      @Override
741      public boolean isEmpty() {
742        return set1.isEmpty() && set2.isEmpty();
743      }
744
745      @Override
746      public UnmodifiableIterator<E> iterator() {
747        return new AbstractIterator<E>() {
748          final Iterator<? extends E> itr1 = set1.iterator();
749          final Iterator<? extends E> itr2 = set2.iterator();
750
751          @Override
752          protected E computeNext() {
753            if (itr1.hasNext()) {
754              return itr1.next();
755            }
756            while (itr2.hasNext()) {
757              E e = itr2.next();
758              if (!set1.contains(e)) {
759                return e;
760              }
761            }
762            return endOfData();
763          }
764        };
765      }
766
767      @Override
768      public Stream<E> stream() {
769        return Stream.concat(set1.stream(), set2.stream().filter(e -> !set1.contains(e)));
770      }
771
772      @Override
773      public Stream<E> parallelStream() {
774        return stream().parallel();
775      }
776
777      @Override
778      public boolean contains(Object object) {
779        return set1.contains(object) || set2.contains(object);
780      }
781
782      @Override
783      public <S extends Set<E>> S copyInto(S set) {
784        set.addAll(set1);
785        set.addAll(set2);
786        return set;
787      }
788
789      @Override
790      public ImmutableSet<E> immutableCopy() {
791        return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
792      }
793    };
794  }
795
796  /**
797   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
798   * all elements that are contained by both backing sets. The iteration order of the returned set
799   * matches that of {@code set1}.
800   *
801   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
802   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
803   * IdentityHashMap} all are).
804   *
805   * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
806   * the two sets. If you have reason to believe one of your sets will generally be smaller than the
807   * other, pass it first. Unfortunately, since this method sets the generic type of the returned
808   * set based on the type of the first set passed, this could in rare cases force you to make a
809   * cast, for example:
810   *
811   * <pre>{@code
812   * Set<Object> aFewBadObjects = ...
813   * Set<String> manyBadStrings = ...
814   *
815   * // impossible for a non-String to be in the intersection
816   * SuppressWarnings("unchecked")
817   * Set<String> badStrings = (Set) Sets.intersection(
818   *     aFewBadObjects, manyBadStrings);
819   * }</pre>
820   *
821   * <p>This is unfortunate, but should come up only very rarely.
822   */
823  public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
824    checkNotNull(set1, "set1");
825    checkNotNull(set2, "set2");
826
827    return new SetView<E>() {
828      @Override
829      public UnmodifiableIterator<E> iterator() {
830        return new AbstractIterator<E>() {
831          final Iterator<E> itr = set1.iterator();
832
833          @Override
834          protected E computeNext() {
835            while (itr.hasNext()) {
836              E e = itr.next();
837              if (set2.contains(e)) {
838                return e;
839              }
840            }
841            return endOfData();
842          }
843        };
844      }
845
846      @Override
847      public Stream<E> stream() {
848        return set1.stream().filter(set2::contains);
849      }
850
851      @Override
852      public Stream<E> parallelStream() {
853        return set1.parallelStream().filter(set2::contains);
854      }
855
856      @Override
857      public int size() {
858        int size = 0;
859        for (E e : set1) {
860          if (set2.contains(e)) {
861            size++;
862          }
863        }
864        return size;
865      }
866
867      @Override
868      public boolean isEmpty() {
869        return Collections.disjoint(set2, set1);
870      }
871
872      @Override
873      public boolean contains(Object object) {
874        return set1.contains(object) && set2.contains(object);
875      }
876
877      @Override
878      public boolean containsAll(Collection<?> collection) {
879        return set1.containsAll(collection) && set2.containsAll(collection);
880      }
881    };
882  }
883
884  /**
885   * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
886   * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
887   * may also contain elements not present in {@code set1}; these are simply ignored. The iteration
888   * order of the returned set matches that of {@code set1}.
889   *
890   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
891   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
892   * IdentityHashMap} all are).
893   */
894  public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
895    checkNotNull(set1, "set1");
896    checkNotNull(set2, "set2");
897
898    return new SetView<E>() {
899      @Override
900      public UnmodifiableIterator<E> iterator() {
901        return new AbstractIterator<E>() {
902          final Iterator<E> itr = set1.iterator();
903
904          @Override
905          protected E computeNext() {
906            while (itr.hasNext()) {
907              E e = itr.next();
908              if (!set2.contains(e)) {
909                return e;
910              }
911            }
912            return endOfData();
913          }
914        };
915      }
916
917      @Override
918      public Stream<E> stream() {
919        return set1.stream().filter(e -> !set2.contains(e));
920      }
921
922      @Override
923      public Stream<E> parallelStream() {
924        return set1.parallelStream().filter(e -> !set2.contains(e));
925      }
926
927      @Override
928      public int size() {
929        int size = 0;
930        for (E e : set1) {
931          if (!set2.contains(e)) {
932            size++;
933          }
934        }
935        return size;
936      }
937
938      @Override
939      public boolean isEmpty() {
940        return set2.containsAll(set1);
941      }
942
943      @Override
944      public boolean contains(Object element) {
945        return set1.contains(element) && !set2.contains(element);
946      }
947    };
948  }
949
950  /**
951   * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
952   * contains all elements that are contained in either {@code set1} or {@code set2} but not in
953   * both. The iteration order of the returned set is undefined.
954   *
955   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
956   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
957   * IdentityHashMap} all are).
958   *
959   * @since 3.0
960   */
961  public static <E> SetView<E> symmetricDifference(
962      final Set<? extends E> set1, final Set<? extends E> set2) {
963    checkNotNull(set1, "set1");
964    checkNotNull(set2, "set2");
965
966    return new SetView<E>() {
967      @Override
968      public UnmodifiableIterator<E> iterator() {
969        final Iterator<? extends E> itr1 = set1.iterator();
970        final Iterator<? extends E> itr2 = set2.iterator();
971        return new AbstractIterator<E>() {
972          @Override
973          public E computeNext() {
974            while (itr1.hasNext()) {
975              E elem1 = itr1.next();
976              if (!set2.contains(elem1)) {
977                return elem1;
978              }
979            }
980            while (itr2.hasNext()) {
981              E elem2 = itr2.next();
982              if (!set1.contains(elem2)) {
983                return elem2;
984              }
985            }
986            return endOfData();
987          }
988        };
989      }
990
991      @Override
992      public int size() {
993        int size = 0;
994        for (E e : set1) {
995          if (!set2.contains(e)) {
996            size++;
997          }
998        }
999        for (E e : set2) {
1000          if (!set1.contains(e)) {
1001            size++;
1002          }
1003        }
1004        return size;
1005      }
1006
1007      @Override
1008      public boolean isEmpty() {
1009        return set1.equals(set2);
1010      }
1011
1012      @Override
1013      public boolean contains(Object element) {
1014        return set1.contains(element) ^ set2.contains(element);
1015      }
1016    };
1017  }
1018
1019  /**
1020   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
1021   * view of {@code unfiltered}; changes to one affect the other.
1022   *
1023   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1024   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1025   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1026   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1027   * that satisfy the filter will be removed from the underlying set.
1028   *
1029   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1030   *
1031   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1032   * the underlying set and determine which elements satisfy the filter. When a live view is
1033   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1034   * use the copy.
1035   *
1036   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1037   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1038   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1039   * Iterables#filter(Iterable, Class)} for related functionality.)
1040   *
1041   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
1042   * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
1043   * you to migrate to streams.
1044   */
1045  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
1046  public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
1047    if (unfiltered instanceof SortedSet) {
1048      return filter((SortedSet<E>) unfiltered, predicate);
1049    }
1050    if (unfiltered instanceof FilteredSet) {
1051      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1052      // collection.
1053      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1054      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1055      return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
1056    }
1057
1058    return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1059  }
1060
1061  /**
1062   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
1063   * returned set is a live view of {@code unfiltered}; changes to one affect the other.
1064   *
1065   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1066   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1067   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1068   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1069   * that satisfy the filter will be removed from the underlying set.
1070   *
1071   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1072   *
1073   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1074   * the underlying set and determine which elements satisfy the filter. When a live view is
1075   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1076   * use the copy.
1077   *
1078   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1079   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1080   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1081   * Iterables#filter(Iterable, Class)} for related functionality.)
1082   *
1083   * @since 11.0
1084   */
1085  public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1086    if (unfiltered instanceof FilteredSet) {
1087      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1088      // collection.
1089      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1090      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1091      return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1092    }
1093
1094    return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1095  }
1096
1097  /**
1098   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
1099   * The returned set is a live view of {@code unfiltered}; changes to one affect the other.
1100   *
1101   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1102   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1103   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1104   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1105   * that satisfy the filter will be removed from the underlying set.
1106   *
1107   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1108   *
1109   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1110   * the underlying set and determine which elements satisfy the filter. When a live view is
1111   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1112   * use the copy.
1113   *
1114   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1115   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1116   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1117   * Iterables#filter(Iterable, Class)} for related functionality.)
1118   *
1119   * @since 14.0
1120   */
1121  @GwtIncompatible // NavigableSet
1122  @SuppressWarnings("unchecked")
1123  public static <E> NavigableSet<E> filter(
1124      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1125    if (unfiltered instanceof FilteredSet) {
1126      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1127      // collection.
1128      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1129      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1130      return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1131    }
1132
1133    return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1134  }
1135
1136  private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
1137    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
1138      super(unfiltered, predicate);
1139    }
1140
1141    @Override
1142    public boolean equals(@Nullable Object object) {
1143      return equalsImpl(this, object);
1144    }
1145
1146    @Override
1147    public int hashCode() {
1148      return hashCodeImpl(this);
1149    }
1150  }
1151
1152  private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
1153
1154    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1155      super(unfiltered, predicate);
1156    }
1157
1158    @Override
1159    public Comparator<? super E> comparator() {
1160      return ((SortedSet<E>) unfiltered).comparator();
1161    }
1162
1163    @Override
1164    public SortedSet<E> subSet(E fromElement, E toElement) {
1165      return new FilteredSortedSet<E>(
1166          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1167    }
1168
1169    @Override
1170    public SortedSet<E> headSet(E toElement) {
1171      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1172    }
1173
1174    @Override
1175    public SortedSet<E> tailSet(E fromElement) {
1176      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1177    }
1178
1179    @Override
1180    public E first() {
1181      return Iterators.find(unfiltered.iterator(), predicate);
1182    }
1183
1184    @Override
1185    public E last() {
1186      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1187      while (true) {
1188        E element = sortedUnfiltered.last();
1189        if (predicate.apply(element)) {
1190          return element;
1191        }
1192        sortedUnfiltered = sortedUnfiltered.headSet(element);
1193      }
1194    }
1195  }
1196
1197  @GwtIncompatible // NavigableSet
1198  private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
1199      implements NavigableSet<E> {
1200    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1201      super(unfiltered, predicate);
1202    }
1203
1204    NavigableSet<E> unfiltered() {
1205      return (NavigableSet<E>) unfiltered;
1206    }
1207
1208    @Override
1209    public @Nullable E lower(E e) {
1210      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1211    }
1212
1213    @Override
1214    public @Nullable E floor(E e) {
1215      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1216    }
1217
1218    @Override
1219    public E ceiling(E e) {
1220      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1221    }
1222
1223    @Override
1224    public E higher(E e) {
1225      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1226    }
1227
1228    @Override
1229    public E pollFirst() {
1230      return Iterables.removeFirstMatching(unfiltered(), predicate);
1231    }
1232
1233    @Override
1234    public E pollLast() {
1235      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1236    }
1237
1238    @Override
1239    public NavigableSet<E> descendingSet() {
1240      return Sets.filter(unfiltered().descendingSet(), predicate);
1241    }
1242
1243    @Override
1244    public Iterator<E> descendingIterator() {
1245      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1246    }
1247
1248    @Override
1249    public E last() {
1250      return Iterators.find(unfiltered().descendingIterator(), predicate);
1251    }
1252
1253    @Override
1254    public NavigableSet<E> subSet(
1255        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1256      return filter(
1257          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1258    }
1259
1260    @Override
1261    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1262      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1263    }
1264
1265    @Override
1266    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1267      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1268    }
1269  }
1270
1271  /**
1272   * Returns every possible list that can be formed by choosing one element from each of the given
1273   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1274   * product</a>" of the sets. For example:
1275   *
1276   * <pre>{@code
1277   * Sets.cartesianProduct(ImmutableList.of(
1278   *     ImmutableSet.of(1, 2),
1279   *     ImmutableSet.of("A", "B", "C")))
1280   * }</pre>
1281   *
1282   * <p>returns a set containing six lists:
1283   *
1284   * <ul>
1285   *   <li>{@code ImmutableList.of(1, "A")}
1286   *   <li>{@code ImmutableList.of(1, "B")}
1287   *   <li>{@code ImmutableList.of(1, "C")}
1288   *   <li>{@code ImmutableList.of(2, "A")}
1289   *   <li>{@code ImmutableList.of(2, "B")}
1290   *   <li>{@code ImmutableList.of(2, "C")}
1291   * </ul>
1292   *
1293   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1294   * products that you would get from nesting for loops:
1295   *
1296   * <pre>{@code
1297   * for (B b0 : sets.get(0)) {
1298   *   for (B b1 : sets.get(1)) {
1299   *     ...
1300   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1301   *     // operate on tuple
1302   *   }
1303   * }
1304   * }</pre>
1305   *
1306   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1307   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1308   * list (counter-intuitive, but mathematically consistent).
1309   *
1310   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1311   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1312   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1313   * iterated are the individual lists created, and these are not retained after iteration.
1314   *
1315   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1316   *     sets should appear in the resulting lists
1317   * @param <B> any common base class shared by all axes (often just {@link Object})
1318   * @return the Cartesian product, as an immutable set containing immutable lists
1319   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1320   *     provided set is null
1321   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1322   * @since 2.0
1323   */
1324  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1325    return CartesianSet.create(sets);
1326  }
1327
1328  /**
1329   * Returns every possible list that can be formed by choosing one element from each of the given
1330   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1331   * product</a>" of the sets. For example:
1332   *
1333   * <pre>{@code
1334   * Sets.cartesianProduct(
1335   *     ImmutableSet.of(1, 2),
1336   *     ImmutableSet.of("A", "B", "C"))
1337   * }</pre>
1338   *
1339   * <p>returns a set containing six lists:
1340   *
1341   * <ul>
1342   *   <li>{@code ImmutableList.of(1, "A")}
1343   *   <li>{@code ImmutableList.of(1, "B")}
1344   *   <li>{@code ImmutableList.of(1, "C")}
1345   *   <li>{@code ImmutableList.of(2, "A")}
1346   *   <li>{@code ImmutableList.of(2, "B")}
1347   *   <li>{@code ImmutableList.of(2, "C")}
1348   * </ul>
1349   *
1350   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1351   * products that you would get from nesting for loops:
1352   *
1353   * <pre>{@code
1354   * for (B b0 : sets.get(0)) {
1355   *   for (B b1 : sets.get(1)) {
1356   *     ...
1357   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1358   *     // operate on tuple
1359   *   }
1360   * }
1361   * }</pre>
1362   *
1363   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1364   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1365   * list (counter-intuitive, but mathematically consistent).
1366   *
1367   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1368   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1369   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1370   * iterated are the individual lists created, and these are not retained after iteration.
1371   *
1372   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1373   *     sets should appear in the resulting lists
1374   * @param <B> any common base class shared by all axes (often just {@link Object})
1375   * @return the Cartesian product, as an immutable set containing immutable lists
1376   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1377   *     provided set is null
1378   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1379   * @since 2.0
1380   */
1381  @SafeVarargs
1382  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1383    return cartesianProduct(Arrays.asList(sets));
1384  }
1385
1386  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1387      implements Set<List<E>> {
1388    private final transient ImmutableList<ImmutableSet<E>> axes;
1389    private final transient CartesianList<E> delegate;
1390
1391    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1392      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1393      for (Set<? extends E> set : sets) {
1394        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1395        if (copy.isEmpty()) {
1396          return ImmutableSet.of();
1397        }
1398        axesBuilder.add(copy);
1399      }
1400      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1401      ImmutableList<List<E>> listAxes =
1402          new ImmutableList<List<E>>() {
1403            @Override
1404            public int size() {
1405              return axes.size();
1406            }
1407
1408            @Override
1409            public List<E> get(int index) {
1410              return axes.get(index).asList();
1411            }
1412
1413            @Override
1414            boolean isPartialView() {
1415              return true;
1416            }
1417          };
1418      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1419    }
1420
1421    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1422      this.axes = axes;
1423      this.delegate = delegate;
1424    }
1425
1426    @Override
1427    protected Collection<List<E>> delegate() {
1428      return delegate;
1429    }
1430
1431    @Override
1432    public boolean equals(@Nullable Object object) {
1433      // Warning: this is broken if size() == 0, so it is critical that we
1434      // substitute an empty ImmutableSet to the user in place of this
1435      if (object instanceof CartesianSet) {
1436        CartesianSet<?> that = (CartesianSet<?>) object;
1437        return this.axes.equals(that.axes);
1438      }
1439      return super.equals(object);
1440    }
1441
1442    @Override
1443    public int hashCode() {
1444      // Warning: this is broken if size() == 0, so it is critical that we
1445      // substitute an empty ImmutableSet to the user in place of this
1446
1447      // It's a weird formula, but tests prove it works.
1448      int adjust = size() - 1;
1449      for (int i = 0; i < axes.size(); i++) {
1450        adjust *= 31;
1451        adjust = ~~adjust;
1452        // in GWT, we have to deal with integer overflow carefully
1453      }
1454      int hash = 1;
1455      for (Set<E> axis : axes) {
1456        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1457
1458        hash = ~~hash;
1459      }
1460      hash += adjust;
1461      return ~~hash;
1462    }
1463  }
1464
1465  /**
1466   * Returns the set of all possible subsets of {@code set}. For example, {@code
1467   * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
1468   *
1469   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1470   * set. The order in which these subsets appear in the outer set is undefined. Note that the power
1471   * set of the empty set is not the empty set, but a one-element set containing the empty set.
1472   *
1473   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1474   * are identical, even if the input set uses a different concept of equivalence.
1475   *
1476   * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
1477   * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
1478   * is merely copied. Only as the power set is iterated are the individual subsets created, and
1479   * these subsets themselves occupy only a small constant amount of memory.
1480   *
1481   * @param set the set of elements to construct a power set from
1482   * @return the power set, as an immutable set of immutable sets
1483   * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
1484   *     power set size to exceed the {@code int} range)
1485   * @throws NullPointerException if {@code set} is or contains {@code null}
1486   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
1487   * @since 4.0
1488   */
1489  @GwtCompatible(serializable = false)
1490  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1491    return new PowerSet<E>(set);
1492  }
1493
1494  private static final class SubSet<E> extends AbstractSet<E> {
1495    private final ImmutableMap<E, Integer> inputSet;
1496    private final int mask;
1497
1498    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1499      this.inputSet = inputSet;
1500      this.mask = mask;
1501    }
1502
1503    @Override
1504    public Iterator<E> iterator() {
1505      return new UnmodifiableIterator<E>() {
1506        final ImmutableList<E> elements = inputSet.keySet().asList();
1507        int remainingSetBits = mask;
1508
1509        @Override
1510        public boolean hasNext() {
1511          return remainingSetBits != 0;
1512        }
1513
1514        @Override
1515        public E next() {
1516          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1517          if (index == 32) {
1518            throw new NoSuchElementException();
1519          }
1520          remainingSetBits &= ~(1 << index);
1521          return elements.get(index);
1522        }
1523      };
1524    }
1525
1526    @Override
1527    public int size() {
1528      return Integer.bitCount(mask);
1529    }
1530
1531    @Override
1532    public boolean contains(@Nullable Object o) {
1533      Integer index = inputSet.get(o);
1534      return index != null && (mask & (1 << index)) != 0;
1535    }
1536  }
1537
1538  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1539    final ImmutableMap<E, Integer> inputSet;
1540
1541    PowerSet(Set<E> input) {
1542      checkArgument(
1543          input.size() <= 30, "Too many elements to create power set: %s > 30", input.size());
1544      this.inputSet = Maps.indexMap(input);
1545    }
1546
1547    @Override
1548    public int size() {
1549      return 1 << inputSet.size();
1550    }
1551
1552    @Override
1553    public boolean isEmpty() {
1554      return false;
1555    }
1556
1557    @Override
1558    public Iterator<Set<E>> iterator() {
1559      return new AbstractIndexedListIterator<Set<E>>(size()) {
1560        @Override
1561        protected Set<E> get(final int setBits) {
1562          return new SubSet<E>(inputSet, setBits);
1563        }
1564      };
1565    }
1566
1567    @Override
1568    public boolean contains(@Nullable Object obj) {
1569      if (obj instanceof Set) {
1570        Set<?> set = (Set<?>) obj;
1571        return inputSet.keySet().containsAll(set);
1572      }
1573      return false;
1574    }
1575
1576    @Override
1577    public boolean equals(@Nullable Object obj) {
1578      if (obj instanceof PowerSet) {
1579        PowerSet<?> that = (PowerSet<?>) obj;
1580        return inputSet.equals(that.inputSet);
1581      }
1582      return super.equals(obj);
1583    }
1584
1585    @Override
1586    public int hashCode() {
1587      /*
1588       * The sum of the sums of the hash codes in each subset is just the sum of
1589       * each input element's hash code times the number of sets that element
1590       * appears in. Each element appears in exactly half of the 2^n sets, so:
1591       */
1592      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1593    }
1594
1595    @Override
1596    public String toString() {
1597      return "powerSet(" + inputSet + ")";
1598    }
1599  }
1600
1601  /**
1602   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1603   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1604   *
1605   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1606   * set. The order in which these subsets appear in the outer set is undefined.
1607   *
1608   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1609   * are identical, even if the input set uses a different concept of equivalence.
1610   *
1611   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1612   * the result set is constructed, the input set is merely copied. Only as the result set is
1613   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1614   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1615   * {@code combinations} does not retain the individual subsets.
1616   *
1617   * @param set the set of elements to take combinations of
1618   * @param size the number of elements per combination
1619   * @return the set of all combinations of {@code size} elements from {@code set}
1620   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1621   *     inclusive
1622   * @throws NullPointerException if {@code set} is or contains {@code null}
1623   * @since 23.0
1624   */
1625  @Beta
1626  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1627    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1628    checkNonnegative(size, "size");
1629    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1630    if (size == 0) {
1631      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1632    } else if (size == index.size()) {
1633      return ImmutableSet.<Set<E>>of(index.keySet());
1634    }
1635    return new AbstractSet<Set<E>>() {
1636      @Override
1637      public boolean contains(@Nullable Object o) {
1638        if (o instanceof Set) {
1639          Set<?> s = (Set<?>) o;
1640          return s.size() == size && index.keySet().containsAll(s);
1641        }
1642        return false;
1643      }
1644
1645      @Override
1646      public Iterator<Set<E>> iterator() {
1647        return new AbstractIterator<Set<E>>() {
1648          final BitSet bits = new BitSet(index.size());
1649
1650          @Override
1651          protected Set<E> computeNext() {
1652            if (bits.isEmpty()) {
1653              bits.set(0, size);
1654            } else {
1655              int firstSetBit = bits.nextSetBit(0);
1656              int bitToFlip = bits.nextClearBit(firstSetBit);
1657
1658              if (bitToFlip == index.size()) {
1659                return endOfData();
1660              }
1661
1662              /*
1663               * The current set in sorted order looks like
1664               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1665               * where it does *not* contain bitToFlip.
1666               *
1667               * The next combination is
1668               *
1669               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1670               *
1671               * This is lexicographically next if you look at the combinations in descending order
1672               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1673               */
1674
1675              bits.set(0, bitToFlip - firstSetBit - 1);
1676              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1677              bits.set(bitToFlip);
1678            }
1679            final BitSet copy = (BitSet) bits.clone();
1680            return new AbstractSet<E>() {
1681              @Override
1682              public boolean contains(@Nullable Object o) {
1683                Integer i = index.get(o);
1684                return i != null && copy.get(i);
1685              }
1686
1687              @Override
1688              public Iterator<E> iterator() {
1689                return new AbstractIterator<E>() {
1690                  int i = -1;
1691
1692                  @Override
1693                  protected E computeNext() {
1694                    i = copy.nextSetBit(i + 1);
1695                    if (i == -1) {
1696                      return endOfData();
1697                    }
1698                    return index.keySet().asList().get(i);
1699                  }
1700                };
1701              }
1702
1703              @Override
1704              public int size() {
1705                return size;
1706              }
1707            };
1708          }
1709        };
1710      }
1711
1712      @Override
1713      public int size() {
1714        return IntMath.binomial(index.size(), size);
1715      }
1716
1717      @Override
1718      public String toString() {
1719        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1720      }
1721    };
1722  }
1723
1724  /** An implementation for {@link Set#hashCode()}. */
1725  static int hashCodeImpl(Set<?> s) {
1726    int hashCode = 0;
1727    for (Object o : s) {
1728      hashCode += o != null ? o.hashCode() : 0;
1729
1730      hashCode = ~~hashCode;
1731      // Needed to deal with unusual integer overflow in GWT.
1732    }
1733    return hashCode;
1734  }
1735
1736  /** An implementation for {@link Set#equals(Object)}. */
1737  static boolean equalsImpl(Set<?> s, @Nullable Object object) {
1738    if (s == object) {
1739      return true;
1740    }
1741    if (object instanceof Set) {
1742      Set<?> o = (Set<?>) object;
1743
1744      try {
1745        return s.size() == o.size() && s.containsAll(o);
1746      } catch (NullPointerException | ClassCastException ignored) {
1747        return false;
1748      }
1749    }
1750    return false;
1751  }
1752
1753  /**
1754   * Returns an unmodifiable view of the specified navigable set. This method allows modules to
1755   * provide users with "read-only" access to internal navigable sets. Query operations on the
1756   * returned set "read through" to the specified set, and attempts to modify the returned set,
1757   * whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
1758   *
1759   * <p>The returned navigable set will be serializable if the specified navigable set is
1760   * serializable.
1761   *
1762   * @param set the navigable set for which an unmodifiable view is to be returned
1763   * @return an unmodifiable view of the specified navigable set
1764   * @since 12.0
1765   */
1766  public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
1767    if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
1768      return set;
1769    }
1770    return new UnmodifiableNavigableSet<E>(set);
1771  }
1772
1773  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
1774      implements NavigableSet<E>, Serializable {
1775    private final NavigableSet<E> delegate;
1776    private final SortedSet<E> unmodifiableDelegate;
1777
1778    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1779      this.delegate = checkNotNull(delegate);
1780      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1781    }
1782
1783    @Override
1784    protected SortedSet<E> delegate() {
1785      return unmodifiableDelegate;
1786    }
1787
1788    // default methods not forwarded by ForwardingSortedSet
1789
1790    @Override
1791    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
1792      throw new UnsupportedOperationException();
1793    }
1794
1795    @Override
1796    public Stream<E> stream() {
1797      return delegate.stream();
1798    }
1799
1800    @Override
1801    public Stream<E> parallelStream() {
1802      return delegate.parallelStream();
1803    }
1804
1805    @Override
1806    public void forEach(Consumer<? super E> action) {
1807      delegate.forEach(action);
1808    }
1809
1810    @Override
1811    public E lower(E e) {
1812      return delegate.lower(e);
1813    }
1814
1815    @Override
1816    public E floor(E e) {
1817      return delegate.floor(e);
1818    }
1819
1820    @Override
1821    public E ceiling(E e) {
1822      return delegate.ceiling(e);
1823    }
1824
1825    @Override
1826    public E higher(E e) {
1827      return delegate.higher(e);
1828    }
1829
1830    @Override
1831    public E pollFirst() {
1832      throw new UnsupportedOperationException();
1833    }
1834
1835    @Override
1836    public E pollLast() {
1837      throw new UnsupportedOperationException();
1838    }
1839
1840    private transient @Nullable UnmodifiableNavigableSet<E> descendingSet;
1841
1842    @Override
1843    public NavigableSet<E> descendingSet() {
1844      UnmodifiableNavigableSet<E> result = descendingSet;
1845      if (result == null) {
1846        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
1847        result.descendingSet = this;
1848      }
1849      return result;
1850    }
1851
1852    @Override
1853    public Iterator<E> descendingIterator() {
1854      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1855    }
1856
1857    @Override
1858    public NavigableSet<E> subSet(
1859        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1860      return unmodifiableNavigableSet(
1861          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1862    }
1863
1864    @Override
1865    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1866      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1867    }
1868
1869    @Override
1870    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1871      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1872    }
1873
1874    private static final long serialVersionUID = 0;
1875  }
1876
1877  /**
1878   * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
1879   * order to guarantee serial access, it is critical that <b>all</b> access to the backing
1880   * navigable set is accomplished through the returned navigable set (or its views).
1881   *
1882   * <p>It is imperative that the user manually synchronize on the returned sorted set when
1883   * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
1884   * {@code tailSet} views.
1885   *
1886   * <pre>{@code
1887   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1888   *  ...
1889   * synchronized (set) {
1890   *   // Must be in the synchronized block
1891   *   Iterator<E> it = set.iterator();
1892   *   while (it.hasNext()) {
1893   *     foo(it.next());
1894   *   }
1895   * }
1896   * }</pre>
1897   *
1898   * <p>or:
1899   *
1900   * <pre>{@code
1901   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1902   * NavigableSet<E> set2 = set.descendingSet().headSet(foo);
1903   *  ...
1904   * synchronized (set) { // Note: set, not set2!!!
1905   *   // Must be in the synchronized block
1906   *   Iterator<E> it = set2.descendingIterator();
1907   *   while (it.hasNext())
1908   *     foo(it.next());
1909   *   }
1910   * }
1911   * }</pre>
1912   *
1913   * <p>Failure to follow this advice may result in non-deterministic behavior.
1914   *
1915   * <p>The returned navigable set will be serializable if the specified navigable set is
1916   * serializable.
1917   *
1918   * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
1919   * @return a synchronized view of the specified navigable set.
1920   * @since 13.0
1921   */
1922  @GwtIncompatible // NavigableSet
1923  public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
1924    return Synchronized.navigableSet(navigableSet);
1925  }
1926
1927  /** Remove each element in an iterable from a set. */
1928  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
1929    boolean changed = false;
1930    while (iterator.hasNext()) {
1931      changed |= set.remove(iterator.next());
1932    }
1933    return changed;
1934  }
1935
1936  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
1937    checkNotNull(collection); // for GWT
1938    if (collection instanceof Multiset) {
1939      collection = ((Multiset<?>) collection).elementSet();
1940    }
1941    /*
1942     * AbstractSet.removeAll(List) has quadratic behavior if the list size
1943     * is just more than the set's size.  We augment the test by
1944     * assuming that sets have fast contains() performance, and other
1945     * collections don't.  See
1946     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
1947     */
1948    if (collection instanceof Set && collection.size() > set.size()) {
1949      return Iterators.removeAll(set.iterator(), collection);
1950    } else {
1951      return removeAllImpl(set, collection.iterator());
1952    }
1953  }
1954
1955  @GwtIncompatible // NavigableSet
1956  static class DescendingSet<E> extends ForwardingNavigableSet<E> {
1957    private final NavigableSet<E> forward;
1958
1959    DescendingSet(NavigableSet<E> forward) {
1960      this.forward = forward;
1961    }
1962
1963    @Override
1964    protected NavigableSet<E> delegate() {
1965      return forward;
1966    }
1967
1968    @Override
1969    public E lower(E e) {
1970      return forward.higher(e);
1971    }
1972
1973    @Override
1974    public E floor(E e) {
1975      return forward.ceiling(e);
1976    }
1977
1978    @Override
1979    public E ceiling(E e) {
1980      return forward.floor(e);
1981    }
1982
1983    @Override
1984    public E higher(E e) {
1985      return forward.lower(e);
1986    }
1987
1988    @Override
1989    public E pollFirst() {
1990      return forward.pollLast();
1991    }
1992
1993    @Override
1994    public E pollLast() {
1995      return forward.pollFirst();
1996    }
1997
1998    @Override
1999    public NavigableSet<E> descendingSet() {
2000      return forward;
2001    }
2002
2003    @Override
2004    public Iterator<E> descendingIterator() {
2005      return forward.iterator();
2006    }
2007
2008    @Override
2009    public NavigableSet<E> subSet(
2010        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
2011      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
2012    }
2013
2014    @Override
2015    public SortedSet<E> subSet(E fromElement, E toElement) {
2016      return standardSubSet(fromElement, toElement);
2017    }
2018
2019    @Override
2020    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2021      return forward.tailSet(toElement, inclusive).descendingSet();
2022    }
2023
2024    @Override
2025    public SortedSet<E> headSet(E toElement) {
2026      return standardHeadSet(toElement);
2027    }
2028
2029    @Override
2030    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2031      return forward.headSet(fromElement, inclusive).descendingSet();
2032    }
2033
2034    @Override
2035    public SortedSet<E> tailSet(E fromElement) {
2036      return standardTailSet(fromElement);
2037    }
2038
2039    @SuppressWarnings("unchecked")
2040    @Override
2041    public Comparator<? super E> comparator() {
2042      Comparator<? super E> forwardComparator = forward.comparator();
2043      if (forwardComparator == null) {
2044        return (Comparator) Ordering.natural().reverse();
2045      } else {
2046        return reverse(forwardComparator);
2047      }
2048    }
2049
2050    // If we inline this, we get a javac error.
2051    private static <T> Ordering<T> reverse(Comparator<T> forward) {
2052      return Ordering.from(forward).reverse();
2053    }
2054
2055    @Override
2056    public E first() {
2057      return forward.last();
2058    }
2059
2060    @Override
2061    public E last() {
2062      return forward.first();
2063    }
2064
2065    @Override
2066    public Iterator<E> iterator() {
2067      return forward.descendingIterator();
2068    }
2069
2070    @Override
2071    public Object[] toArray() {
2072      return standardToArray();
2073    }
2074
2075    @Override
2076    public <T> T[] toArray(T[] array) {
2077      return standardToArray(array);
2078    }
2079
2080    @Override
2081    public String toString() {
2082      return standardToString();
2083    }
2084  }
2085
2086  /**
2087   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
2088   *
2089   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
2090   * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
2091   * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
2092   * boolean) headSet()}) to actually construct the view. Consult these methods for a full
2093   * description of the returned view's behavior.
2094   *
2095   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
2096   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
2097   * Comparator}, which can violate the natural ordering. Using this method (or in general using
2098   * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
2099   *
2100   * @since 20.0
2101   */
2102  @Beta
2103  @GwtIncompatible // NavigableSet
2104  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
2105      NavigableSet<K> set, Range<K> range) {
2106    if (set.comparator() != null
2107        && set.comparator() != Ordering.natural()
2108        && range.hasLowerBound()
2109        && range.hasUpperBound()) {
2110      checkArgument(
2111          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
2112          "set is using a custom comparator which is inconsistent with the natural ordering.");
2113    }
2114    if (range.hasLowerBound() && range.hasUpperBound()) {
2115      return set.subSet(
2116          range.lowerEndpoint(),
2117          range.lowerBoundType() == BoundType.CLOSED,
2118          range.upperEndpoint(),
2119          range.upperBoundType() == BoundType.CLOSED);
2120    } else if (range.hasLowerBound()) {
2121      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2122    } else if (range.hasUpperBound()) {
2123      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2124    }
2125    return checkNotNull(set);
2126  }
2127}