001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.cache; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkState; 020 021import com.google.common.annotations.GwtCompatible; 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.base.Ascii; 024import com.google.common.base.Equivalence; 025import com.google.common.base.MoreObjects; 026import com.google.common.base.Supplier; 027import com.google.common.base.Suppliers; 028import com.google.common.base.Ticker; 029import com.google.common.cache.AbstractCache.SimpleStatsCounter; 030import com.google.common.cache.AbstractCache.StatsCounter; 031import com.google.common.cache.LocalCache.Strength; 032import com.google.errorprone.annotations.CheckReturnValue; 033import java.lang.ref.SoftReference; 034import java.lang.ref.WeakReference; 035import java.util.ConcurrentModificationException; 036import java.util.IdentityHashMap; 037import java.util.Map; 038import java.util.concurrent.ConcurrentHashMap; 039import java.util.concurrent.TimeUnit; 040import java.util.logging.Level; 041import java.util.logging.Logger; 042import org.checkerframework.checker.nullness.compatqual.NullableDecl; 043 044/** 045 * A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 046 * following features: 047 * 048 * <ul> 049 * <li>automatic loading of entries into the cache 050 * <li>least-recently-used eviction when a maximum size is exceeded 051 * <li>time-based expiration of entries, measured since last access or last write 052 * <li>keys automatically wrapped in {@code WeakReference} 053 * <li>values automatically wrapped in {@code WeakReference} or {@code SoftReference} 054 * <li>notification of evicted (or otherwise removed) entries 055 * <li>accumulation of cache access statistics 056 * </ul> 057 * 058 * 059 * <p>These features are all optional; caches can be created using all or none of them. By default 060 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 061 * 062 * <p>Usage example: 063 * 064 * <pre>{@code 065 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 066 * .maximumSize(10000) 067 * .expireAfterWrite(10, TimeUnit.MINUTES) 068 * .removalListener(MY_LISTENER) 069 * .build( 070 * new CacheLoader<Key, Graph>() { 071 * public Graph load(Key key) throws AnyException { 072 * return createExpensiveGraph(key); 073 * } 074 * }); 075 * }</pre> 076 * 077 * <p>Or equivalently, 078 * 079 * <pre>{@code 080 * // In real life this would come from a command-line flag or config file 081 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 082 * 083 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 084 * .removalListener(MY_LISTENER) 085 * .build( 086 * new CacheLoader<Key, Graph>() { 087 * public Graph load(Key key) throws AnyException { 088 * return createExpensiveGraph(key); 089 * } 090 * }); 091 * }</pre> 092 * 093 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 094 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 095 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 096 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 097 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 098 * are reflected in that iterator. These iterators never throw {@link 099 * ConcurrentModificationException}. 100 * 101 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the {@link 102 * Object#equals equals} method) to determine equality for keys or values. However, if {@link 103 * #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for keys. 104 * Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses identity 105 * comparisons for values. 106 * 107 * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long) 108 * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite 109 * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys 110 * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are 111 * requested. 112 * 113 * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long) 114 * maximumWeight} is requested entries may be evicted on each cache modification. 115 * 116 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess 117 * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional 118 * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by {@link 119 * Cache#size}, but will never be visible to read or write operations. 120 * 121 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain 122 * #softValues softValues} are requested, it is possible for a key or value present in the cache to 123 * be reclaimed by the garbage collector. Entries with reclaimed keys or values may be removed from 124 * the cache on each cache modification, on occasional cache accesses, or on calls to {@link 125 * Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be visible to 126 * read or write operations. 127 * 128 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 129 * will be performed during write operations, or during occasional read operations in the absence of 130 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 131 * calling it should not be necessary with a high throughput cache. Only caches built with 132 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 133 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, {@linkplain 134 * #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic maintenance. 135 * 136 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 137 * retain all the configuration properties of the original cache. Note that the serialized form does 138 * <i>not</i> include cache contents, but only configuration. 139 * 140 * <p>See the Guava User Guide article on <a 141 * href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level 142 * explanation. 143 * 144 * @param <K> the most general key type this builder will be able to create caches for. This is 145 * normally {@code Object} unless it is constrained by using a method like {@code 146 * #removalListener} 147 * @param <V> the most general value type this builder will be able to create caches for. This is 148 * normally {@code Object} unless it is constrained by using a method like {@code 149 * #removalListener} 150 * @author Charles Fry 151 * @author Kevin Bourrillion 152 * @since 10.0 153 */ 154@GwtCompatible(emulated = true) 155public final class CacheBuilder<K, V> { 156 private static final int DEFAULT_INITIAL_CAPACITY = 16; 157 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 158 159 @SuppressWarnings("GoodTime") // should be a java.time.Duration 160 private static final int DEFAULT_EXPIRATION_NANOS = 0; 161 162 @SuppressWarnings("GoodTime") // should be a java.time.Duration 163 private static final int DEFAULT_REFRESH_NANOS = 0; 164 165 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = 166 Suppliers.ofInstance( 167 new StatsCounter() { 168 @Override 169 public void recordHits(int count) {} 170 171 @Override 172 public void recordMisses(int count) {} 173 174 @SuppressWarnings("GoodTime") // b/122668874 175 @Override 176 public void recordLoadSuccess(long loadTime) {} 177 178 @SuppressWarnings("GoodTime") // b/122668874 179 @Override 180 public void recordLoadException(long loadTime) {} 181 182 @Override 183 public void recordEviction() {} 184 185 @Override 186 public CacheStats snapshot() { 187 return EMPTY_STATS; 188 } 189 }); 190 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 191 192 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 193 new Supplier<StatsCounter>() { 194 @Override 195 public StatsCounter get() { 196 return new SimpleStatsCounter(); 197 } 198 }; 199 200 enum NullListener implements RemovalListener<Object, Object> { 201 INSTANCE; 202 203 @Override 204 public void onRemoval(RemovalNotification<Object, Object> notification) {} 205 } 206 207 enum OneWeigher implements Weigher<Object, Object> { 208 INSTANCE; 209 210 @Override 211 public int weigh(Object key, Object value) { 212 return 1; 213 } 214 } 215 216 static final Ticker NULL_TICKER = 217 new Ticker() { 218 @Override 219 public long read() { 220 return 0; 221 } 222 }; 223 224 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 225 226 static final int UNSET_INT = -1; 227 228 boolean strictParsing = true; 229 230 int initialCapacity = UNSET_INT; 231 int concurrencyLevel = UNSET_INT; 232 long maximumSize = UNSET_INT; 233 long maximumWeight = UNSET_INT; 234 @NullableDecl Weigher<? super K, ? super V> weigher; 235 236 @NullableDecl Strength keyStrength; 237 @NullableDecl Strength valueStrength; 238 239 @SuppressWarnings("GoodTime") // should be a java.time.Duration 240 long expireAfterWriteNanos = UNSET_INT; 241 242 @SuppressWarnings("GoodTime") // should be a java.time.Duration 243 long expireAfterAccessNanos = UNSET_INT; 244 245 @SuppressWarnings("GoodTime") // should be a java.time.Duration 246 long refreshNanos = UNSET_INT; 247 248 @NullableDecl Equivalence<Object> keyEquivalence; 249 @NullableDecl Equivalence<Object> valueEquivalence; 250 251 @NullableDecl RemovalListener<? super K, ? super V> removalListener; 252 @NullableDecl Ticker ticker; 253 254 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 255 256 private CacheBuilder() {} 257 258 /** 259 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 260 * strong values, and no automatic eviction of any kind. 261 * 262 * <p>Note that while this return type is {@code CacheBuilder<Object, Object>}, type parameters on 263 * the {@link #build} methods allow you to create a cache of any key and value type desired. 264 */ 265 public static CacheBuilder<Object, Object> newBuilder() { 266 return new CacheBuilder<>(); 267 } 268 269 /** 270 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 271 * 272 * @since 12.0 273 */ 274 @GwtIncompatible // To be supported 275 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 276 return spec.toCacheBuilder().lenientParsing(); 277 } 278 279 /** 280 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 281 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 282 * 283 * @param spec a String in the format specified by {@link CacheBuilderSpec} 284 * @since 12.0 285 */ 286 @GwtIncompatible // To be supported 287 public static CacheBuilder<Object, Object> from(String spec) { 288 return from(CacheBuilderSpec.parse(spec)); 289 } 290 291 /** 292 * Enables lenient parsing. Useful for tests and spec parsing. 293 * 294 * @return this {@code CacheBuilder} instance (for chaining) 295 */ 296 @GwtIncompatible // To be supported 297 CacheBuilder<K, V> lenientParsing() { 298 strictParsing = false; 299 return this; 300 } 301 302 /** 303 * Sets a custom {@code Equivalence} strategy for comparing keys. 304 * 305 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 306 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 307 * 308 * @return this {@code CacheBuilder} instance (for chaining) 309 */ 310 @GwtIncompatible // To be supported 311 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 312 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 313 keyEquivalence = checkNotNull(equivalence); 314 return this; 315 } 316 317 Equivalence<Object> getKeyEquivalence() { 318 return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 319 } 320 321 /** 322 * Sets a custom {@code Equivalence} strategy for comparing values. 323 * 324 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 325 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 326 * otherwise. 327 * 328 * @return this {@code CacheBuilder} instance (for chaining) 329 */ 330 @GwtIncompatible // To be supported 331 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 332 checkState( 333 valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence); 334 this.valueEquivalence = checkNotNull(equivalence); 335 return this; 336 } 337 338 Equivalence<Object> getValueEquivalence() { 339 return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 340 } 341 342 /** 343 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 344 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 345 * having a hash table of size eight. Providing a large enough estimate at construction time 346 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 347 * high wastes memory. 348 * 349 * @return this {@code CacheBuilder} instance (for chaining) 350 * @throws IllegalArgumentException if {@code initialCapacity} is negative 351 * @throws IllegalStateException if an initial capacity was already set 352 */ 353 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 354 checkState( 355 this.initialCapacity == UNSET_INT, 356 "initial capacity was already set to %s", 357 this.initialCapacity); 358 checkArgument(initialCapacity >= 0); 359 this.initialCapacity = initialCapacity; 360 return this; 361 } 362 363 int getInitialCapacity() { 364 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 365 } 366 367 /** 368 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 369 * table is internally partitioned to try to permit the indicated number of concurrent updates 370 * without contention. Because assignment of entries to these partitions is not necessarily 371 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 372 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 373 * higher value than you need can waste space and time, and a significantly lower value can lead 374 * to thread contention. But overestimates and underestimates within an order of magnitude do not 375 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 376 * at a time, but since read operations and cache loading computations can proceed concurrently, 377 * this still yields higher concurrency than full synchronization. 378 * 379 * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 380 * value, you should always choose it explicitly. 381 * 382 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 383 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 384 * write, and twice for each cache loading computation (once prior to loading the new value, and 385 * once after loading completes). Much internal cache management is performed at the segment 386 * granularity. For example, access queues and write queues are kept per segment when they are 387 * required by the selected eviction algorithm. As such, when writing unit tests it is not 388 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 389 * behavior. 390 * 391 * <p>Note that future implementations may abandon segment locking in favor of more advanced 392 * concurrency controls. 393 * 394 * @return this {@code CacheBuilder} instance (for chaining) 395 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 396 * @throws IllegalStateException if a concurrency level was already set 397 */ 398 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 399 checkState( 400 this.concurrencyLevel == UNSET_INT, 401 "concurrency level was already set to %s", 402 this.concurrencyLevel); 403 checkArgument(concurrencyLevel > 0); 404 this.concurrencyLevel = concurrencyLevel; 405 return this; 406 } 407 408 int getConcurrencyLevel() { 409 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 410 } 411 412 /** 413 * Specifies the maximum number of entries the cache may contain. 414 * 415 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 416 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 417 * resulting segment inside the cache <i>independently</i> limits its own size to approximately 418 * {@code maximumSize / concurrencyLevel}. 419 * 420 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 421 * For example, the cache may evict an entry because it hasn't been used recently or very often. 422 * 423 * <p>If {@code maximumSize} is zero, elements will be evicted immediately after being loaded into 424 * cache. This can be useful in testing, or to disable caching temporarily. 425 * 426 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 427 * 428 * @param maximumSize the maximum size of the cache 429 * @return this {@code CacheBuilder} instance (for chaining) 430 * @throws IllegalArgumentException if {@code maximumSize} is negative 431 * @throws IllegalStateException if a maximum size or weight was already set 432 */ 433 public CacheBuilder<K, V> maximumSize(long maximumSize) { 434 checkState( 435 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 436 checkState( 437 this.maximumWeight == UNSET_INT, 438 "maximum weight was already set to %s", 439 this.maximumWeight); 440 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 441 checkArgument(maximumSize >= 0, "maximum size must not be negative"); 442 this.maximumSize = maximumSize; 443 return this; 444 } 445 446 /** 447 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 448 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 449 * corresponding call to {@link #weigher} prior to calling {@link #build}. 450 * 451 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 452 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 453 * resulting segment inside the cache <i>independently</i> limits its own weight to approximately 454 * {@code maximumWeight / concurrencyLevel}. 455 * 456 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 457 * For example, the cache may evict an entry because it hasn't been used recently or very often. 458 * 459 * <p>If {@code maximumWeight} is zero, elements will be evicted immediately after being loaded 460 * into cache. This can be useful in testing, or to disable caching temporarily. 461 * 462 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 463 * effect on selecting which entry should be evicted next. 464 * 465 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 466 * 467 * @param maximumWeight the maximum total weight of entries the cache may contain 468 * @return this {@code CacheBuilder} instance (for chaining) 469 * @throws IllegalArgumentException if {@code maximumWeight} is negative 470 * @throws IllegalStateException if a maximum weight or size was already set 471 * @since 11.0 472 */ 473 @GwtIncompatible // To be supported 474 public CacheBuilder<K, V> maximumWeight(long maximumWeight) { 475 checkState( 476 this.maximumWeight == UNSET_INT, 477 "maximum weight was already set to %s", 478 this.maximumWeight); 479 checkState( 480 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 481 this.maximumWeight = maximumWeight; 482 checkArgument(maximumWeight >= 0, "maximum weight must not be negative"); 483 return this; 484 } 485 486 /** 487 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into 488 * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use 489 * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling 490 * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and 491 * are thus effectively static during the lifetime of a cache entry. 492 * 493 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 494 * (though it still may be evicted by other means). 495 * 496 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 497 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 498 * original reference or the returned reference may be used to complete configuration and build 499 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 500 * building caches whose key or value types are incompatible with the types accepted by the 501 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 502 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 503 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 504 * 505 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a 506 * cache whose key or value type is incompatible with the weigher, you will likely experience a 507 * {@link ClassCastException} at some <i>undefined</i> point in the future. 508 * 509 * @param weigher the weigher to use in calculating the weight of cache entries 510 * @return this {@code CacheBuilder} instance (for chaining) 511 * @throws IllegalArgumentException if {@code size} is negative 512 * @throws IllegalStateException if a maximum size was already set 513 * @since 11.0 514 */ 515 @GwtIncompatible // To be supported 516 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 517 Weigher<? super K1, ? super V1> weigher) { 518 checkState(this.weigher == null); 519 if (strictParsing) { 520 checkState( 521 this.maximumSize == UNSET_INT, 522 "weigher can not be combined with maximum size", 523 this.maximumSize); 524 } 525 526 // safely limiting the kinds of caches this can produce 527 @SuppressWarnings("unchecked") 528 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 529 me.weigher = checkNotNull(weigher); 530 return me; 531 } 532 533 long getMaximumWeight() { 534 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 535 return 0; 536 } 537 return (weigher == null) ? maximumSize : maximumWeight; 538 } 539 540 // Make a safe contravariant cast now so we don't have to do it over and over. 541 @SuppressWarnings("unchecked") 542 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 543 return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 544 } 545 546 /** 547 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 548 * WeakReference} (by default, strong references are used). 549 * 550 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 551 * comparison to determine equality of keys. Its {@link Cache#asMap} view will therefore 552 * technically violate the {@link Map} specification (in the same way that {@link IdentityHashMap} 553 * does). 554 * 555 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but 556 * will never be visible to read or write operations; such entries are cleaned up as part of the 557 * routine maintenance described in the class javadoc. 558 * 559 * @return this {@code CacheBuilder} instance (for chaining) 560 * @throws IllegalStateException if the key strength was already set 561 */ 562 @GwtIncompatible // java.lang.ref.WeakReference 563 public CacheBuilder<K, V> weakKeys() { 564 return setKeyStrength(Strength.WEAK); 565 } 566 567 CacheBuilder<K, V> setKeyStrength(Strength strength) { 568 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 569 keyStrength = checkNotNull(strength); 570 return this; 571 } 572 573 Strength getKeyStrength() { 574 return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 575 } 576 577 /** 578 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 579 * WeakReference} (by default, strong references are used). 580 * 581 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 582 * candidate for caching; consider {@link #softValues} instead. 583 * 584 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 585 * comparison to determine equality of values. 586 * 587 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 588 * but will never be visible to read or write operations; such entries are cleaned up as part of 589 * the routine maintenance described in the class javadoc. 590 * 591 * @return this {@code CacheBuilder} instance (for chaining) 592 * @throws IllegalStateException if the value strength was already set 593 */ 594 @GwtIncompatible // java.lang.ref.WeakReference 595 public CacheBuilder<K, V> weakValues() { 596 return setValueStrength(Strength.WEAK); 597 } 598 599 /** 600 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 601 * SoftReference} (by default, strong references are used). Softly-referenced objects will be 602 * garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 603 * demand. 604 * 605 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 606 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 607 * method if you are well familiar with the practical consequences of soft references. 608 * 609 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 610 * comparison to determine equality of values. 611 * 612 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 613 * but will never be visible to read or write operations; such entries are cleaned up as part of 614 * the routine maintenance described in the class javadoc. 615 * 616 * @return this {@code CacheBuilder} instance (for chaining) 617 * @throws IllegalStateException if the value strength was already set 618 */ 619 @GwtIncompatible // java.lang.ref.SoftReference 620 public CacheBuilder<K, V> softValues() { 621 return setValueStrength(Strength.SOFT); 622 } 623 624 CacheBuilder<K, V> setValueStrength(Strength strength) { 625 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 626 valueStrength = checkNotNull(strength); 627 return this; 628 } 629 630 Strength getValueStrength() { 631 return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 632 } 633 634 /** 635 * Specifies that each entry should be automatically removed from the cache once a fixed duration 636 * has elapsed after the entry's creation, or the most recent replacement of its value. 637 * 638 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 639 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 640 * useful in testing, or to disable caching temporarily without a code change. 641 * 642 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 643 * write operations. Expired entries are cleaned up as part of the routine maintenance described 644 * in the class javadoc. 645 * 646 * @param duration the length of time after an entry is created that it should be automatically 647 * removed 648 * @param unit the unit that {@code duration} is expressed in 649 * @return this {@code CacheBuilder} instance (for chaining) 650 * @throws IllegalArgumentException if {@code duration} is negative 651 * @throws IllegalStateException if the time to live or time to idle was already set 652 */ 653 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 654 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 655 checkState( 656 expireAfterWriteNanos == UNSET_INT, 657 "expireAfterWrite was already set to %s ns", 658 expireAfterWriteNanos); 659 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 660 this.expireAfterWriteNanos = unit.toNanos(duration); 661 return this; 662 } 663 664 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 665 long getExpireAfterWriteNanos() { 666 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 667 } 668 669 /** 670 * Specifies that each entry should be automatically removed from the cache once a fixed duration 671 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 672 * access. Access time is reset by all cache read and write operations (including {@code 673 * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 674 * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}. So, for 675 * example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for the 676 * entries you retrieve. 677 * 678 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 679 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 680 * useful in testing, or to disable caching temporarily without a code change. 681 * 682 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 683 * write operations. Expired entries are cleaned up as part of the routine maintenance described 684 * in the class javadoc. 685 * 686 * @param duration the length of time after an entry is last accessed that it should be 687 * automatically removed 688 * @param unit the unit that {@code duration} is expressed in 689 * @return this {@code CacheBuilder} instance (for chaining) 690 * @throws IllegalArgumentException if {@code duration} is negative 691 * @throws IllegalStateException if the time to idle or time to live was already set 692 */ 693 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 694 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 695 checkState( 696 expireAfterAccessNanos == UNSET_INT, 697 "expireAfterAccess was already set to %s ns", 698 expireAfterAccessNanos); 699 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 700 this.expireAfterAccessNanos = unit.toNanos(duration); 701 return this; 702 } 703 704 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 705 long getExpireAfterAccessNanos() { 706 return (expireAfterAccessNanos == UNSET_INT) 707 ? DEFAULT_EXPIRATION_NANOS 708 : expireAfterAccessNanos; 709 } 710 711 /** 712 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 713 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 714 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 715 * CacheLoader#reload}. 716 * 717 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 718 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 719 * implementation; otherwise refreshes will be performed during unrelated cache read and write 720 * operations. 721 * 722 * <p>Currently automatic refreshes are performed when the first stale request for an entry 723 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 724 * and immediately return the new value if the returned future is complete, and the old value 725 * otherwise. 726 * 727 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 728 * 729 * @param duration the length of time after an entry is created that it should be considered 730 * stale, and thus eligible for refresh 731 * @param unit the unit that {@code duration} is expressed in 732 * @return this {@code CacheBuilder} instance (for chaining) 733 * @throws IllegalArgumentException if {@code duration} is negative 734 * @throws IllegalStateException if the refresh interval was already set 735 * @since 11.0 736 */ 737 @GwtIncompatible // To be supported (synchronously). 738 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 739 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 740 checkNotNull(unit); 741 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 742 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 743 this.refreshNanos = unit.toNanos(duration); 744 return this; 745 } 746 747 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 748 long getRefreshNanos() { 749 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 750 } 751 752 /** 753 * Specifies a nanosecond-precision time source for this cache. By default, {@link 754 * System#nanoTime} is used. 755 * 756 * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock 757 * time source. 758 * 759 * @return this {@code CacheBuilder} instance (for chaining) 760 * @throws IllegalStateException if a ticker was already set 761 */ 762 public CacheBuilder<K, V> ticker(Ticker ticker) { 763 checkState(this.ticker == null); 764 this.ticker = checkNotNull(ticker); 765 return this; 766 } 767 768 Ticker getTicker(boolean recordsTime) { 769 if (ticker != null) { 770 return ticker; 771 } 772 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 773 } 774 775 /** 776 * Specifies a listener instance that caches should notify each time an entry is removed for any 777 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 778 * as part of the routine maintenance described in the class documentation above. 779 * 780 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder 781 * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the 782 * same instance, but only the returned reference has the correct generic type information so as 783 * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in 784 * the class documentation above, configuring a builder and building your cache in a single 785 * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown 786 * by a cache operation at some <i>undefined</i> point in the future. 787 * 788 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 789 * the {@code Cache} user, only logged via a {@link Logger}. 790 * 791 * @return the cache builder reference that should be used instead of {@code this} for any 792 * remaining configuration and cache building 793 * @return this {@code CacheBuilder} instance (for chaining) 794 * @throws IllegalStateException if a removal listener was already set 795 */ 796 @CheckReturnValue 797 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 798 RemovalListener<? super K1, ? super V1> listener) { 799 checkState(this.removalListener == null); 800 801 // safely limiting the kinds of caches this can produce 802 @SuppressWarnings("unchecked") 803 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 804 me.removalListener = checkNotNull(listener); 805 return me; 806 } 807 808 // Make a safe contravariant cast now so we don't have to do it over and over. 809 @SuppressWarnings("unchecked") 810 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 811 return (RemovalListener<K1, V1>) 812 MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 813 } 814 815 /** 816 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 817 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 818 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 819 * cache operation. 820 * 821 * @return this {@code CacheBuilder} instance (for chaining) 822 * @since 12.0 (previously, stats collection was automatic) 823 */ 824 public CacheBuilder<K, V> recordStats() { 825 statsCounterSupplier = CACHE_STATS_COUNTER; 826 return this; 827 } 828 829 boolean isRecordingStats() { 830 return statsCounterSupplier == CACHE_STATS_COUNTER; 831 } 832 833 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 834 return statsCounterSupplier; 835 } 836 837 /** 838 * Builds a cache, which either returns an already-loaded value for a given key or atomically 839 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 840 * loading the value for this key, simply waits for that thread to finish and returns its loaded 841 * value. Note that multiple threads can concurrently load values for distinct keys. 842 * 843 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 844 * invoked again to create multiple independent caches. 845 * 846 * @param loader the cache loader used to obtain new values 847 * @return a cache having the requested features 848 */ 849 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 850 CacheLoader<? super K1, V1> loader) { 851 checkWeightWithWeigher(); 852 return new LocalCache.LocalLoadingCache<>(this, loader); 853 } 854 855 /** 856 * Builds a cache which does not automatically load values when keys are requested. 857 * 858 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a {@code 859 * CacheLoader}. 860 * 861 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 862 * invoked again to create multiple independent caches. 863 * 864 * @return a cache having the requested features 865 * @since 11.0 866 */ 867 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 868 checkWeightWithWeigher(); 869 checkNonLoadingCache(); 870 return new LocalCache.LocalManualCache<>(this); 871 } 872 873 private void checkNonLoadingCache() { 874 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 875 } 876 877 private void checkWeightWithWeigher() { 878 if (weigher == null) { 879 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 880 } else { 881 if (strictParsing) { 882 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 883 } else { 884 if (maximumWeight == UNSET_INT) { 885 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 886 } 887 } 888 } 889 } 890 891 /** 892 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 893 * string is not specified. 894 */ 895 @Override 896 public String toString() { 897 MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 898 if (initialCapacity != UNSET_INT) { 899 s.add("initialCapacity", initialCapacity); 900 } 901 if (concurrencyLevel != UNSET_INT) { 902 s.add("concurrencyLevel", concurrencyLevel); 903 } 904 if (maximumSize != UNSET_INT) { 905 s.add("maximumSize", maximumSize); 906 } 907 if (maximumWeight != UNSET_INT) { 908 s.add("maximumWeight", maximumWeight); 909 } 910 if (expireAfterWriteNanos != UNSET_INT) { 911 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 912 } 913 if (expireAfterAccessNanos != UNSET_INT) { 914 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 915 } 916 if (keyStrength != null) { 917 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 918 } 919 if (valueStrength != null) { 920 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 921 } 922 if (keyEquivalence != null) { 923 s.addValue("keyEquivalence"); 924 } 925 if (valueEquivalence != null) { 926 s.addValue("valueEquivalence"); 927 } 928 if (removalListener != null) { 929 s.addValue("removalListener"); 930 } 931 return s.toString(); 932 } 933}