001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Function; 024import com.google.common.base.Objects; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Iterables; 027import com.google.common.collect.Iterators; 028import com.google.common.collect.Maps; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.util.Collection; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.Map; 034import java.util.Optional; 035import java.util.Set; 036import org.checkerframework.checker.nullness.qual.Nullable; 037 038/** 039 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 040 * 041 * @author James Sexton 042 * @author Joshua O'Madadhain 043 * @since 20.0 044 */ 045@Beta 046public final class Graphs { 047 048 private Graphs() {} 049 050 // Graph query methods 051 052 /** 053 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 054 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 055 * and ending with the same node. 056 * 057 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 058 */ 059 public static <N> boolean hasCycle(Graph<N> graph) { 060 int numEdges = graph.edges().size(); 061 if (numEdges == 0) { 062 return false; // An edge-free graph is acyclic by definition. 063 } 064 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 065 return true; // Optimization for the undirected case: at least one cycle must exist. 066 } 067 068 Map<Object, NodeVisitState> visitedNodes = 069 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 070 for (N node : graph.nodes()) { 071 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 072 return true; 073 } 074 } 075 return false; 076 } 077 078 /** 079 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 080 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 081 * starting and ending with the same node. 082 * 083 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 084 */ 085 public static boolean hasCycle(Network<?, ?> network) { 086 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 087 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 088 if (!network.isDirected() 089 && network.allowsParallelEdges() 090 && network.edges().size() > network.asGraph().edges().size()) { 091 return true; 092 } 093 return hasCycle(network.asGraph()); 094 } 095 096 /** 097 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 098 * already visited (following only outgoing edges and without reusing edges), we know there's a 099 * cycle in the graph. 100 */ 101 private static <N> boolean subgraphHasCycle( 102 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N node, @Nullable N previousNode) { 103 NodeVisitState state = visitedNodes.get(node); 104 if (state == NodeVisitState.COMPLETE) { 105 return false; 106 } 107 if (state == NodeVisitState.PENDING) { 108 return true; 109 } 110 111 visitedNodes.put(node, NodeVisitState.PENDING); 112 for (N nextNode : graph.successors(node)) { 113 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 114 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 115 return true; 116 } 117 } 118 visitedNodes.put(node, NodeVisitState.COMPLETE); 119 return false; 120 } 121 122 /** 123 * Determines whether an edge has already been used during traversal. In the directed case a cycle 124 * is always detected before reusing an edge, so no special logic is required. In the undirected 125 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 126 * from B to A). 127 */ 128 private static boolean canTraverseWithoutReusingEdge( 129 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 130 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 131 return true; 132 } 133 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 134 // edges, so this traversal would require reusing the undirected AB edge. 135 return false; 136 } 137 138 /** 139 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 140 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 141 * Object) reachable} from node A. 142 * 143 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 144 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 145 * be updated after modifications to {@code graph}. 146 */ 147 // TODO(b/31438252): Consider potential optimizations for this algorithm. 148 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 149 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 150 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 151 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 152 153 if (graph.isDirected()) { 154 // Note: works for both directed and undirected graphs, but we only use in the directed case. 155 for (N node : graph.nodes()) { 156 for (N reachableNode : reachableNodes(graph, node)) { 157 transitiveClosure.putEdge(node, reachableNode); 158 } 159 } 160 } else { 161 // An optimization for the undirected case: for every node B reachable from node A, 162 // node A and node B have the same reachability set. 163 Set<N> visitedNodes = new HashSet<N>(); 164 for (N node : graph.nodes()) { 165 if (!visitedNodes.contains(node)) { 166 Set<N> reachableNodes = reachableNodes(graph, node); 167 visitedNodes.addAll(reachableNodes); 168 int pairwiseMatch = 1; // start at 1 to include self-loops 169 for (N nodeU : reachableNodes) { 170 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 171 transitiveClosure.putEdge(nodeU, nodeV); 172 } 173 } 174 } 175 } 176 } 177 178 return transitiveClosure; 179 } 180 181 /** 182 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 183 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 184 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 185 * 186 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 187 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 188 * not be updated after modifications to {@code graph}. 189 * 190 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 191 */ 192 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 193 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 194 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 195 } 196 197 // Graph mutation methods 198 199 // Graph view methods 200 201 /** 202 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 203 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 204 */ 205 public static <N> Graph<N> transpose(Graph<N> graph) { 206 if (!graph.isDirected()) { 207 return graph; // the transpose of an undirected graph is an identical graph 208 } 209 210 if (graph instanceof TransposedGraph) { 211 return ((TransposedGraph<N>) graph).graph; 212 } 213 214 return new TransposedGraph<N>(graph); 215 } 216 217 /** 218 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 219 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 220 */ 221 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 222 if (!graph.isDirected()) { 223 return graph; // the transpose of an undirected graph is an identical graph 224 } 225 226 if (graph instanceof TransposedValueGraph) { 227 return ((TransposedValueGraph<N, V>) graph).graph; 228 } 229 230 return new TransposedValueGraph<>(graph); 231 } 232 233 /** 234 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 235 * properties remain intact, and further updates to {@code network} will be reflected in the view. 236 */ 237 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 238 if (!network.isDirected()) { 239 return network; // the transpose of an undirected network is an identical network 240 } 241 242 if (network instanceof TransposedNetwork) { 243 return ((TransposedNetwork<N, E>) network).network; 244 } 245 246 return new TransposedNetwork<>(network); 247 } 248 249 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 250 if (endpoints.isOrdered()) { 251 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 252 } 253 return endpoints; 254 } 255 256 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 257 // AbstractGraph) derives its behavior from calling successors(). 258 private static class TransposedGraph<N> extends ForwardingGraph<N> { 259 private final Graph<N> graph; 260 261 TransposedGraph(Graph<N> graph) { 262 this.graph = graph; 263 } 264 265 @Override 266 protected Graph<N> delegate() { 267 return graph; 268 } 269 270 @Override 271 public Set<N> predecessors(N node) { 272 return delegate().successors(node); // transpose 273 } 274 275 @Override 276 public Set<N> successors(N node) { 277 return delegate().predecessors(node); // transpose 278 } 279 280 @Override 281 public Set<EndpointPair<N>> incidentEdges(N node) { 282 return new IncidentEdgeSet<N>(this, node) { 283 @Override 284 public Iterator<EndpointPair<N>> iterator() { 285 return Iterators.transform( 286 delegate().incidentEdges(node).iterator(), 287 new Function<EndpointPair<N>, EndpointPair<N>>() { 288 @Override 289 public EndpointPair<N> apply(EndpointPair<N> edge) { 290 return EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU()); 291 } 292 }); 293 } 294 }; 295 } 296 297 @Override 298 public int inDegree(N node) { 299 return delegate().outDegree(node); // transpose 300 } 301 302 @Override 303 public int outDegree(N node) { 304 return delegate().inDegree(node); // transpose 305 } 306 307 @Override 308 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 309 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 310 } 311 312 @Override 313 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 314 return delegate().hasEdgeConnecting(transpose(endpoints)); 315 } 316 } 317 318 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 319 // AbstractValueGraph) derives its behavior from calling successors(). 320 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 321 private final ValueGraph<N, V> graph; 322 323 TransposedValueGraph(ValueGraph<N, V> graph) { 324 this.graph = graph; 325 } 326 327 @Override 328 protected ValueGraph<N, V> delegate() { 329 return graph; 330 } 331 332 @Override 333 public Set<N> predecessors(N node) { 334 return delegate().successors(node); // transpose 335 } 336 337 @Override 338 public Set<N> successors(N node) { 339 return delegate().predecessors(node); // transpose 340 } 341 342 @Override 343 public int inDegree(N node) { 344 return delegate().outDegree(node); // transpose 345 } 346 347 @Override 348 public int outDegree(N node) { 349 return delegate().inDegree(node); // transpose 350 } 351 352 @Override 353 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 354 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 355 } 356 357 @Override 358 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 359 return delegate().hasEdgeConnecting(transpose(endpoints)); 360 } 361 362 @Override 363 public Optional<V> edgeValue(N nodeU, N nodeV) { 364 return delegate().edgeValue(nodeV, nodeU); // transpose 365 } 366 367 @Override 368 public Optional<V> edgeValue(EndpointPair<N> endpoints) { 369 return delegate().edgeValue(transpose(endpoints)); 370 } 371 372 @Override 373 public @Nullable V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) { 374 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 375 } 376 377 @Override 378 public @Nullable V edgeValueOrDefault(EndpointPair<N> endpoints, @Nullable V defaultValue) { 379 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 380 } 381 } 382 383 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 384 private final Network<N, E> network; 385 386 TransposedNetwork(Network<N, E> network) { 387 this.network = network; 388 } 389 390 @Override 391 protected Network<N, E> delegate() { 392 return network; 393 } 394 395 @Override 396 public Set<N> predecessors(N node) { 397 return delegate().successors(node); // transpose 398 } 399 400 @Override 401 public Set<N> successors(N node) { 402 return delegate().predecessors(node); // transpose 403 } 404 405 @Override 406 public int inDegree(N node) { 407 return delegate().outDegree(node); // transpose 408 } 409 410 @Override 411 public int outDegree(N node) { 412 return delegate().inDegree(node); // transpose 413 } 414 415 @Override 416 public Set<E> inEdges(N node) { 417 return delegate().outEdges(node); // transpose 418 } 419 420 @Override 421 public Set<E> outEdges(N node) { 422 return delegate().inEdges(node); // transpose 423 } 424 425 @Override 426 public EndpointPair<N> incidentNodes(E edge) { 427 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 428 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 429 } 430 431 @Override 432 public Set<E> edgesConnecting(N nodeU, N nodeV) { 433 return delegate().edgesConnecting(nodeV, nodeU); // transpose 434 } 435 436 @Override 437 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 438 return delegate().edgesConnecting(transpose(endpoints)); 439 } 440 441 @Override 442 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 443 return delegate().edgeConnecting(nodeV, nodeU); // transpose 444 } 445 446 @Override 447 public Optional<E> edgeConnecting(EndpointPair<N> endpoints) { 448 return delegate().edgeConnecting(transpose(endpoints)); 449 } 450 451 @Override 452 public E edgeConnectingOrNull(N nodeU, N nodeV) { 453 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 454 } 455 456 @Override 457 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 458 return delegate().edgeConnectingOrNull(transpose(endpoints)); 459 } 460 461 @Override 462 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 463 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 464 } 465 466 @Override 467 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 468 return delegate().hasEdgeConnecting(transpose(endpoints)); 469 } 470 } 471 472 // Graph copy methods 473 474 /** 475 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 476 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 477 * from {@code graph} for which both nodes are contained by {@code nodes}. 478 * 479 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 480 */ 481 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 482 MutableGraph<N> subgraph = 483 (nodes instanceof Collection) 484 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 485 : GraphBuilder.from(graph).build(); 486 for (N node : nodes) { 487 subgraph.addNode(node); 488 } 489 for (N node : subgraph.nodes()) { 490 for (N successorNode : graph.successors(node)) { 491 if (subgraph.nodes().contains(successorNode)) { 492 subgraph.putEdge(node, successorNode); 493 } 494 } 495 } 496 return subgraph; 497 } 498 499 /** 500 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 501 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 502 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 503 * nodes}. 504 * 505 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 506 */ 507 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 508 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 509 MutableValueGraph<N, V> subgraph = 510 (nodes instanceof Collection) 511 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 512 : ValueGraphBuilder.from(graph).build(); 513 for (N node : nodes) { 514 subgraph.addNode(node); 515 } 516 for (N node : subgraph.nodes()) { 517 for (N successorNode : graph.successors(node)) { 518 if (subgraph.nodes().contains(successorNode)) { 519 subgraph.putEdgeValue( 520 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 521 } 522 } 523 } 524 return subgraph; 525 } 526 527 /** 528 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 529 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 530 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 531 * both contained by {@code nodes}. 532 * 533 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 534 */ 535 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 536 Network<N, E> network, Iterable<? extends N> nodes) { 537 MutableNetwork<N, E> subgraph = 538 (nodes instanceof Collection) 539 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 540 : NetworkBuilder.from(network).build(); 541 for (N node : nodes) { 542 subgraph.addNode(node); 543 } 544 for (N node : subgraph.nodes()) { 545 for (E edge : network.outEdges(node)) { 546 N successorNode = network.incidentNodes(edge).adjacentNode(node); 547 if (subgraph.nodes().contains(successorNode)) { 548 subgraph.addEdge(node, successorNode, edge); 549 } 550 } 551 } 552 return subgraph; 553 } 554 555 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 556 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 557 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 558 for (N node : graph.nodes()) { 559 copy.addNode(node); 560 } 561 for (EndpointPair<N> edge : graph.edges()) { 562 copy.putEdge(edge.nodeU(), edge.nodeV()); 563 } 564 return copy; 565 } 566 567 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 568 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 569 MutableValueGraph<N, V> copy = 570 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 571 for (N node : graph.nodes()) { 572 copy.addNode(node); 573 } 574 for (EndpointPair<N> edge : graph.edges()) { 575 copy.putEdgeValue( 576 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 577 } 578 return copy; 579 } 580 581 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 582 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 583 MutableNetwork<N, E> copy = 584 NetworkBuilder.from(network) 585 .expectedNodeCount(network.nodes().size()) 586 .expectedEdgeCount(network.edges().size()) 587 .build(); 588 for (N node : network.nodes()) { 589 copy.addNode(node); 590 } 591 for (E edge : network.edges()) { 592 EndpointPair<N> endpointPair = network.incidentNodes(edge); 593 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 594 } 595 return copy; 596 } 597 598 @CanIgnoreReturnValue 599 static int checkNonNegative(int value) { 600 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 601 return value; 602 } 603 604 @CanIgnoreReturnValue 605 static long checkNonNegative(long value) { 606 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 607 return value; 608 } 609 610 @CanIgnoreReturnValue 611 static int checkPositive(int value) { 612 checkArgument(value > 0, "Not true that %s is positive.", value); 613 return value; 614 } 615 616 @CanIgnoreReturnValue 617 static long checkPositive(long value) { 618 checkArgument(value > 0, "Not true that %s is positive.", value); 619 return value; 620 } 621 622 /** 623 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 624 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 625 * been already explored. Any node that has not been explored will not have a state at all. 626 */ 627 private enum NodeVisitState { 628 PENDING, 629 COMPLETE 630 } 631}