001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import com.google.common.annotations.Beta; 020import com.google.errorprone.annotations.DoNotMock; 021import java.util.Collection; 022import java.util.Set; 023import org.checkerframework.checker.nullness.qual.Nullable; 024 025/** 026 * An interface for <a 027 * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data, 028 * whose edges are anonymous entities with no identity or information of their own. 029 * 030 * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes. 031 * 032 * <p>There are three primary interfaces provided to represent graphs. In order of increasing 033 * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally 034 * prefer the simplest interface that satisfies your use case. See the <a 035 * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type"> 036 * "Choosing the right graph type"</a> section of the Guava User Guide for more details. 037 * 038 * <h3>Capabilities</h3> 039 * 040 * <p>{@code Graph} supports the following use cases (<a 041 * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of 042 * terms</a>): 043 * 044 * <ul> 045 * <li>directed graphs 046 * <li>undirected graphs 047 * <li>graphs that do/don't allow self-loops 048 * <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered 049 * </ul> 050 * 051 * <p>{@code Graph} explicitly does not support parallel edges, and forbids implementations or 052 * extensions with parallel edges. If you need parallel edges, use {@link Network}. 053 * 054 * <h3>Building a {@code Graph}</h3> 055 * 056 * <p>The implementation classes that {@code common.graph} provides are not public, by design. To 057 * create an instance of one of the built-in implementations of {@code Graph}, use the {@link 058 * GraphBuilder} class: 059 * 060 * <pre>{@code 061 * MutableGraph<Integer> graph = GraphBuilder.undirected().build(); 062 * }</pre> 063 * 064 * <p>{@link GraphBuilder#build()} returns an instance of {@link MutableGraph}, which is a subtype 065 * of {@code Graph} that provides methods for adding and removing nodes and edges. If you do not 066 * need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the graph), 067 * you should use the non-mutating {@link Graph} interface, or an {@link ImmutableGraph}. 068 * 069 * <p>You can create an immutable copy of an existing {@code Graph} using {@link 070 * ImmutableGraph#copyOf(Graph)}: 071 * 072 * <pre>{@code 073 * ImmutableGraph<Integer> immutableGraph = ImmutableGraph.copyOf(graph); 074 * }</pre> 075 * 076 * <p>Instances of {@link ImmutableGraph} do not implement {@link MutableGraph} (obviously!) and are 077 * contractually guaranteed to be unmodifiable and thread-safe. 078 * 079 * <p>The Guava User Guide has <a 080 * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more 081 * information on (and examples of) building graphs</a>. 082 * 083 * <h3>Additional documentation</h3> 084 * 085 * <p>See the Guava User Guide for the {@code common.graph} package (<a 086 * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for 087 * additional documentation, including: 088 * 089 * <ul> 090 * <li><a 091 * href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence"> 092 * {@code equals()}, {@code hashCode()}, and graph equivalence</a> 093 * <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization"> 094 * Synchronization policy</a> 095 * <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes 096 * for implementors</a> 097 * </ul> 098 * 099 * @author James Sexton 100 * @author Joshua O'Madadhain 101 * @param <N> Node parameter type 102 * @since 20.0 103 */ 104@Beta 105@DoNotMock("Use GraphBuilder to create a real instance") 106public interface Graph<N> extends BaseGraph<N> { 107 // 108 // Graph-level accessors 109 // 110 111 /** Returns all nodes in this graph, in the order specified by {@link #nodeOrder()}. */ 112 @Override 113 Set<N> nodes(); 114 115 /** Returns all edges in this graph. */ 116 @Override 117 Set<EndpointPair<N>> edges(); 118 119 // 120 // Graph properties 121 // 122 123 /** 124 * Returns true if the edges in this graph are directed. Directed edges connect a {@link 125 * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while 126 * undirected edges connect a pair of nodes to each other. 127 */ 128 @Override 129 boolean isDirected(); 130 131 /** 132 * Returns true if this graph allows self-loops (edges that connect a node to itself). Attempting 133 * to add a self-loop to a graph that does not allow them will throw an {@link 134 * IllegalArgumentException}. 135 */ 136 @Override 137 boolean allowsSelfLoops(); 138 139 /** Returns the order of iteration for the elements of {@link #nodes()}. */ 140 @Override 141 ElementOrder<N> nodeOrder(); 142 143 // 144 // Element-level accessors 145 // 146 147 /** 148 * Returns the nodes which have an incident edge in common with {@code node} in this graph. 149 * 150 * <p>This is equal to the union of {@link #predecessors(Object)} and {@link #successors(Object)}. 151 * 152 * @throws IllegalArgumentException if {@code node} is not an element of this graph 153 */ 154 @Override 155 Set<N> adjacentNodes(N node); 156 157 /** 158 * Returns all nodes in this graph adjacent to {@code node} which can be reached by traversing 159 * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge. 160 * 161 * <p>In an undirected graph, this is equivalent to {@link #adjacentNodes(Object)}. 162 * 163 * @throws IllegalArgumentException if {@code node} is not an element of this graph 164 */ 165 @Override 166 Set<N> predecessors(N node); 167 168 /** 169 * Returns all nodes in this graph adjacent to {@code node} which can be reached by traversing 170 * {@code node}'s outgoing edges in the direction (if any) of the edge. 171 * 172 * <p>In an undirected graph, this is equivalent to {@link #adjacentNodes(Object)}. 173 * 174 * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing 175 * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}. 176 * 177 * @throws IllegalArgumentException if {@code node} is not an element of this graph 178 */ 179 @Override 180 Set<N> successors(N node); 181 182 /** 183 * Returns the edges in this graph whose endpoints include {@code node}. 184 * 185 * <p>This is equal to the union of incoming and outgoing edges. 186 * 187 * @throws IllegalArgumentException if {@code node} is not an element of this graph 188 * @since 24.0 189 */ 190 @Override 191 Set<EndpointPair<N>> incidentEdges(N node); 192 193 /** 194 * Returns the count of {@code node}'s incident edges, counting self-loops twice (equivalently, 195 * the number of times an edge touches {@code node}). 196 * 197 * <p>For directed graphs, this is equal to {@code inDegree(node) + outDegree(node)}. 198 * 199 * <p>For undirected graphs, this is equal to {@code incidentEdges(node).size()} + (number of 200 * self-loops incident to {@code node}). 201 * 202 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 203 * 204 * @throws IllegalArgumentException if {@code node} is not an element of this graph 205 */ 206 @Override 207 int degree(N node); 208 209 /** 210 * Returns the count of {@code node}'s incoming edges (equal to {@code predecessors(node).size()}) 211 * in a directed graph. In an undirected graph, returns the {@link #degree(Object)}. 212 * 213 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 214 * 215 * @throws IllegalArgumentException if {@code node} is not an element of this graph 216 */ 217 @Override 218 int inDegree(N node); 219 220 /** 221 * Returns the count of {@code node}'s outgoing edges (equal to {@code successors(node).size()}) 222 * in a directed graph. In an undirected graph, returns the {@link #degree(Object)}. 223 * 224 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 225 * 226 * @throws IllegalArgumentException if {@code node} is not an element of this graph 227 */ 228 @Override 229 int outDegree(N node); 230 231 /** 232 * Returns true if there is an edge that directly connects {@code nodeU} to {@code nodeV}. This is 233 * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}. 234 * 235 * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}. 236 * 237 * @since 23.0 238 */ 239 @Override 240 boolean hasEdgeConnecting(N nodeU, N nodeV); 241 242 /** 243 * Returns true if there is an edge that directly connects {@code endpoints} (in the order, if 244 * any, specified by {@code endpoints}). This is equivalent to {@code 245 * edges().contains(endpoints)}. 246 * 247 * <p>Unlike the other {@code EndpointPair}-accepting methods, this method does not throw if the 248 * endpoints are unordered and the graph is directed; it simply returns {@code false}. This is for 249 * consistency with the behavior of {@link Collection#contains(Object)} (which does not generally 250 * throw if the object cannot be present in the collection), and the desire to have this method's 251 * behavior be compatible with {@code edges().contains(endpoints)}. 252 * 253 * @since 27.1 254 */ 255 @Override 256 boolean hasEdgeConnecting(EndpointPair<N> endpoints); 257 258 // 259 // Graph identity 260 // 261 262 /** 263 * Returns {@code true} iff {@code object} is a {@link Graph} that has the same elements and the 264 * same structural relationships as those in this graph. 265 * 266 * <p>Thus, two graphs A and B are equal if <b>all</b> of the following are true: 267 * 268 * <ul> 269 * <li>A and B have equal {@link #isDirected() directedness}. 270 * <li>A and B have equal {@link #nodes() node sets}. 271 * <li>A and B have equal {@link #edges() edge sets}. 272 * </ul> 273 * 274 * <p>Graph properties besides {@link #isDirected() directedness} do <b>not</b> affect equality. 275 * For example, two graphs may be considered equal even if one allows self-loops and the other 276 * doesn't. Additionally, the order in which nodes or edges are added to the graph, and the order 277 * in which they are iterated over, are irrelevant. 278 * 279 * <p>A reference implementation of this is provided by {@link AbstractGraph#equals(Object)}. 280 */ 281 @Override 282 boolean equals(@Nullable Object object); 283 284 /** 285 * Returns the hash code for this graph. The hash code of a graph is defined as the hash code of 286 * the set returned by {@link #edges()}. 287 * 288 * <p>A reference implementation of this is provided by {@link AbstractGraph#hashCode()}. 289 */ 290 @Override 291 int hashCode(); 292}