001/*
002 * Copyright (C) 2009 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.primitives;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static com.google.common.base.Preconditions.checkPositionIndexes;
020
021import com.google.common.annotations.Beta;
022import com.google.common.annotations.GwtIncompatible;
023import com.google.common.annotations.VisibleForTesting;
024import com.google.errorprone.annotations.CanIgnoreReturnValue;
025import java.nio.ByteOrder;
026import java.util.Arrays;
027import java.util.Comparator;
028import sun.misc.Unsafe;
029
030/**
031 * Static utility methods pertaining to {@code byte} primitives that interpret values as
032 * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value {@code
033 * 256 + b}). The corresponding methods that treat the values as signed are found in {@link
034 * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}.
035 *
036 * <p>See the Guava User Guide article on <a
037 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>.
038 *
039 * @author Kevin Bourrillion
040 * @author Martin Buchholz
041 * @author Hiroshi Yamauchi
042 * @author Louis Wasserman
043 * @since 1.0
044 */
045@GwtIncompatible
046public final class UnsignedBytes {
047  private UnsignedBytes() {}
048
049  /**
050   * The largest power of two that can be represented as an unsigned {@code byte}.
051   *
052   * @since 10.0
053   */
054  public static final byte MAX_POWER_OF_TWO = (byte) 0x80;
055
056  /**
057   * The largest value that fits into an unsigned byte.
058   *
059   * @since 13.0
060   */
061  public static final byte MAX_VALUE = (byte) 0xFF;
062
063  private static final int UNSIGNED_MASK = 0xFF;
064
065  /**
066   * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns
067   * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise.
068   *
069   * <p><b>Java 8 users:</b> use {@link Byte#toUnsignedInt(byte)} instead.
070   *
071   * @since 6.0
072   */
073  public static int toInt(byte value) {
074    return value & UNSIGNED_MASK;
075  }
076
077  /**
078   * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if
079   * possible.
080   *
081   * @param value a value between 0 and 255 inclusive
082   * @return the {@code byte} value that, when treated as unsigned, equals {@code value}
083   * @throws IllegalArgumentException if {@code value} is negative or greater than 255
084   */
085  @CanIgnoreReturnValue
086  public static byte checkedCast(long value) {
087    checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value);
088    return (byte) value;
089  }
090
091  /**
092   * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code
093   * value}.
094   *
095   * @param value any {@code long} value
096   * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and
097   *     {@code value} cast to {@code byte} otherwise
098   */
099  public static byte saturatedCast(long value) {
100    if (value > toInt(MAX_VALUE)) {
101      return MAX_VALUE; // -1
102    }
103    if (value < 0) {
104      return (byte) 0;
105    }
106    return (byte) value;
107  }
108
109  /**
110   * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and
111   * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127}
112   * because it is seen as having the value of positive {@code 129}.
113   *
114   * @param a the first {@code byte} to compare
115   * @param b the second {@code byte} to compare
116   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
117   *     greater than {@code b}; or zero if they are equal
118   */
119  public static int compare(byte a, byte b) {
120    return toInt(a) - toInt(b);
121  }
122
123  /**
124   * Returns the least value present in {@code array}, treating values as unsigned.
125   *
126   * @param array a <i>nonempty</i> array of {@code byte} values
127   * @return the value present in {@code array} that is less than or equal to every other value in
128   *     the array according to {@link #compare}
129   * @throws IllegalArgumentException if {@code array} is empty
130   */
131  public static byte min(byte... array) {
132    checkArgument(array.length > 0);
133    int min = toInt(array[0]);
134    for (int i = 1; i < array.length; i++) {
135      int next = toInt(array[i]);
136      if (next < min) {
137        min = next;
138      }
139    }
140    return (byte) min;
141  }
142
143  /**
144   * Returns the greatest value present in {@code array}, treating values as unsigned.
145   *
146   * @param array a <i>nonempty</i> array of {@code byte} values
147   * @return the value present in {@code array} that is greater than or equal to every other value
148   *     in the array according to {@link #compare}
149   * @throws IllegalArgumentException if {@code array} is empty
150   */
151  public static byte max(byte... array) {
152    checkArgument(array.length > 0);
153    int max = toInt(array[0]);
154    for (int i = 1; i < array.length; i++) {
155      int next = toInt(array[i]);
156      if (next > max) {
157        max = next;
158      }
159    }
160    return (byte) max;
161  }
162
163  /**
164   * Returns a string representation of x, where x is treated as unsigned.
165   *
166   * @since 13.0
167   */
168  @Beta
169  public static String toString(byte x) {
170    return toString(x, 10);
171  }
172
173  /**
174   * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as
175   * unsigned.
176   *
177   * @param x the value to convert to a string.
178   * @param radix the radix to use while working with {@code x}
179   * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
180   *     and {@link Character#MAX_RADIX}.
181   * @since 13.0
182   */
183  @Beta
184  public static String toString(byte x, int radix) {
185    checkArgument(
186        radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
187        "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX",
188        radix);
189    // Benchmarks indicate this is probably not worth optimizing.
190    return Integer.toString(toInt(x), radix);
191  }
192
193  /**
194   * Returns the unsigned {@code byte} value represented by the given decimal string.
195   *
196   * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte}
197   *     value
198   * @throws NullPointerException if {@code string} is null (in contrast to {@link
199   *     Byte#parseByte(String)})
200   * @since 13.0
201   */
202  @Beta
203  @CanIgnoreReturnValue
204  public static byte parseUnsignedByte(String string) {
205    return parseUnsignedByte(string, 10);
206  }
207
208  /**
209   * Returns the unsigned {@code byte} value represented by a string with the given radix.
210   *
211   * @param string the string containing the unsigned {@code byte} representation to be parsed.
212   * @param radix the radix to use while parsing {@code string}
213   * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with
214   *     the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link
215   *     Character#MAX_RADIX}.
216   * @throws NullPointerException if {@code string} is null (in contrast to {@link
217   *     Byte#parseByte(String)})
218   * @since 13.0
219   */
220  @Beta
221  @CanIgnoreReturnValue
222  public static byte parseUnsignedByte(String string, int radix) {
223    int parse = Integer.parseInt(checkNotNull(string), radix);
224    // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =(
225    if (parse >> Byte.SIZE == 0) {
226      return (byte) parse;
227    } else {
228      throw new NumberFormatException("out of range: " + parse);
229    }
230  }
231
232  /**
233   * Returns a string containing the supplied {@code byte} values separated by {@code separator}.
234   * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code
235   * "1:2:255"}.
236   *
237   * @param separator the text that should appear between consecutive values in the resulting string
238   *     (but not at the start or end)
239   * @param array an array of {@code byte} values, possibly empty
240   */
241  public static String join(String separator, byte... array) {
242    checkNotNull(separator);
243    if (array.length == 0) {
244      return "";
245    }
246
247    // For pre-sizing a builder, just get the right order of magnitude
248    StringBuilder builder = new StringBuilder(array.length * (3 + separator.length()));
249    builder.append(toInt(array[0]));
250    for (int i = 1; i < array.length; i++) {
251      builder.append(separator).append(toString(array[i]));
252    }
253    return builder.toString();
254  }
255
256  /**
257   * Returns a comparator that compares two {@code byte} arrays <a
258   * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it
259   * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common
260   * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For
261   * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as
262   * unsigned.
263   *
264   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
265   * support only identity equality), but it is consistent with {@link
266   * java.util.Arrays#equals(byte[], byte[])}.
267   *
268   * @since 2.0
269   */
270  public static Comparator<byte[]> lexicographicalComparator() {
271    return LexicographicalComparatorHolder.BEST_COMPARATOR;
272  }
273
274  @VisibleForTesting
275  static Comparator<byte[]> lexicographicalComparatorJavaImpl() {
276    return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE;
277  }
278
279  /**
280   * Provides a lexicographical comparator implementation; either a Java implementation or a faster
281   * implementation based on {@link Unsafe}.
282   *
283   * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't
284   * available.
285   */
286  @VisibleForTesting
287  static class LexicographicalComparatorHolder {
288    static final String UNSAFE_COMPARATOR_NAME =
289        LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator";
290
291    static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator();
292
293    @VisibleForTesting
294    enum UnsafeComparator implements Comparator<byte[]> {
295      INSTANCE;
296
297      static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN);
298
299      /*
300       * The following static final fields exist for performance reasons.
301       *
302       * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the
303       * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static
304       * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the
305       * non-final fields need to be reloaded inside the loop.
306       *
307       * And, no, defining (final or not) local variables out of the loop still isn't as good
308       * because the null check on the theUnsafe object remains inside the loop and
309       * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded.
310       *
311       * The compiler can treat static final fields as compile-time constants and can constant-fold
312       * them while (final or not) local variables are run time values.
313       */
314
315      static final Unsafe theUnsafe = getUnsafe();
316
317      /** The offset to the first element in a byte array. */
318      static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
319
320      static {
321        // fall back to the safer pure java implementation unless we're in
322        // a 64-bit JVM with an 8-byte aligned field offset.
323        if (!("64".equals(System.getProperty("sun.arch.data.model"))
324            && (BYTE_ARRAY_BASE_OFFSET % 8) == 0
325            // sanity check - this should never fail
326            && theUnsafe.arrayIndexScale(byte[].class) == 1)) {
327          throw new Error(); // force fallback to PureJavaComparator
328        }
329      }
330
331      /**
332       * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple
333       * call to Unsafe.getUnsafe when integrating into a jdk.
334       *
335       * @return a sun.misc.Unsafe
336       */
337      private static sun.misc.Unsafe getUnsafe() {
338        try {
339          return sun.misc.Unsafe.getUnsafe();
340        } catch (SecurityException e) {
341          // that's okay; try reflection instead
342        }
343        try {
344          return java.security.AccessController.doPrivileged(
345              new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
346                @Override
347                public sun.misc.Unsafe run() throws Exception {
348                  Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
349                  for (java.lang.reflect.Field f : k.getDeclaredFields()) {
350                    f.setAccessible(true);
351                    Object x = f.get(null);
352                    if (k.isInstance(x)) {
353                      return k.cast(x);
354                    }
355                  }
356                  throw new NoSuchFieldError("the Unsafe");
357                }
358              });
359        } catch (java.security.PrivilegedActionException e) {
360          throw new RuntimeException("Could not initialize intrinsics", e.getCause());
361        }
362      }
363
364      @Override
365      public int compare(byte[] left, byte[] right) {
366        final int stride = 8;
367        int minLength = Math.min(left.length, right.length);
368        int strideLimit = minLength & ~(stride - 1);
369        int i;
370
371        /*
372         * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower
373         * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit.
374         */
375        for (i = 0; i < strideLimit; i += stride) {
376          long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i);
377          long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i);
378          if (lw != rw) {
379            if (BIG_ENDIAN) {
380              return UnsignedLongs.compare(lw, rw);
381            }
382
383            /*
384             * We want to compare only the first index where left[index] != right[index]. This
385             * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are
386             * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant
387             * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get
388             * that least significant nonzero byte.
389             */
390            int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7;
391            return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK));
392          }
393        }
394
395        // The epilogue to cover the last (minLength % stride) elements.
396        for (; i < minLength; i++) {
397          int result = UnsignedBytes.compare(left[i], right[i]);
398          if (result != 0) {
399            return result;
400          }
401        }
402        return left.length - right.length;
403      }
404
405      @Override
406      public String toString() {
407        return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)";
408      }
409    }
410
411    enum PureJavaComparator implements Comparator<byte[]> {
412      INSTANCE;
413
414      @Override
415      public int compare(byte[] left, byte[] right) {
416        int minLength = Math.min(left.length, right.length);
417        for (int i = 0; i < minLength; i++) {
418          int result = UnsignedBytes.compare(left[i], right[i]);
419          if (result != 0) {
420            return result;
421          }
422        }
423        return left.length - right.length;
424      }
425
426      @Override
427      public String toString() {
428        return "UnsignedBytes.lexicographicalComparator() (pure Java version)";
429      }
430    }
431
432    /**
433     * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable
434     * to do so.
435     */
436    static Comparator<byte[]> getBestComparator() {
437      try {
438        Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME);
439
440        // yes, UnsafeComparator does implement Comparator<byte[]>
441        @SuppressWarnings("unchecked")
442        Comparator<byte[]> comparator = (Comparator<byte[]>) theClass.getEnumConstants()[0];
443        return comparator;
444      } catch (Throwable t) { // ensure we really catch *everything*
445        return lexicographicalComparatorJavaImpl();
446      }
447    }
448  }
449
450  private static byte flip(byte b) {
451    return (byte) (b ^ 0x80);
452  }
453
454  /**
455   * Sorts the array, treating its elements as unsigned bytes.
456   *
457   * @since 23.1
458   */
459  public static void sort(byte[] array) {
460    checkNotNull(array);
461    sort(array, 0, array.length);
462  }
463
464  /**
465   * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its
466   * elements as unsigned bytes.
467   *
468   * @since 23.1
469   */
470  public static void sort(byte[] array, int fromIndex, int toIndex) {
471    checkNotNull(array);
472    checkPositionIndexes(fromIndex, toIndex, array.length);
473    for (int i = fromIndex; i < toIndex; i++) {
474      array[i] = flip(array[i]);
475    }
476    Arrays.sort(array, fromIndex, toIndex);
477    for (int i = fromIndex; i < toIndex; i++) {
478      array[i] = flip(array[i]);
479    }
480  }
481
482  /**
483   * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit
484   * integers.
485   *
486   * @since 23.1
487   */
488  public static void sortDescending(byte[] array) {
489    checkNotNull(array);
490    sortDescending(array, 0, array.length);
491  }
492
493  /**
494   * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
495   * exclusive in descending order, interpreting them as unsigned 8-bit integers.
496   *
497   * @since 23.1
498   */
499  public static void sortDescending(byte[] array, int fromIndex, int toIndex) {
500    checkNotNull(array);
501    checkPositionIndexes(fromIndex, toIndex, array.length);
502    for (int i = fromIndex; i < toIndex; i++) {
503      array[i] ^= Byte.MAX_VALUE;
504    }
505    Arrays.sort(array, fromIndex, toIndex);
506    for (int i = fromIndex; i < toIndex; i++) {
507      array[i] ^= Byte.MAX_VALUE;
508    }
509  }
510}