001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.net; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.Beta; 021import com.google.common.annotations.GwtIncompatible; 022import com.google.common.base.MoreObjects; 023import com.google.common.base.Splitter; 024import com.google.common.collect.Iterables; 025import com.google.common.hash.Hashing; 026import com.google.common.io.ByteStreams; 027import com.google.common.primitives.Ints; 028import java.math.BigInteger; 029import java.net.Inet4Address; 030import java.net.Inet6Address; 031import java.net.InetAddress; 032import java.net.UnknownHostException; 033import java.nio.ByteBuffer; 034import java.util.Arrays; 035import java.util.List; 036import java.util.Locale; 037import org.checkerframework.checker.nullness.compatqual.NullableDecl; 038 039/** 040 * Static utility methods pertaining to {@link InetAddress} instances. 041 * 042 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 043 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 044 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 045 * literals -- there is no blocking DNS penalty for a malformed string. 046 * 047 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 048 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 049 * the address in network byte order. 050 * 051 * <p>Examples of IP addresses and their byte representations: 052 * 053 * <dl> 054 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 055 * <dd>{@code 7f 00 00 01} 056 * <dt>The IPv6 loopback address, {@code "::1"}. 057 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 058 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 059 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 060 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 061 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 062 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 063 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 064 * </dl> 065 * 066 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 067 * 068 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 069 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 070 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 071 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 072 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 073 * 074 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 075 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 076 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 077 * "mapped" addresses return {@link Inet4Address} objects. 078 * 079 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 080 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 081 * suggestions usually recommend discarding any packets with source or destination addresses in the 082 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 083 * information on "bogons", including lists of IPv6 bogon space, see: 084 * 085 * <ul> 086 * <li><a target="_parent" 087 * href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 088 * org/wiki/Bogon_filtering</a> 089 * <li><a target="_parent" 090 * href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a> 091 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 092 * Bogons/v6bogon.html</a> 093 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 094 * space.net/~gert/RIPE/ipv6-filters.html</a> 095 * </ul> 096 * 097 * @author Erik Kline 098 * @since 5.0 099 */ 100@Beta 101@GwtIncompatible 102public final class InetAddresses { 103 private static final int IPV4_PART_COUNT = 4; 104 private static final int IPV6_PART_COUNT = 8; 105 private static final Splitter IPV4_SPLITTER = Splitter.on('.').limit(IPV4_PART_COUNT); 106 private static final Splitter IPV6_SPLITTER = Splitter.on(':').limit(IPV6_PART_COUNT + 2); 107 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 108 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 109 110 private InetAddresses() {} 111 112 /** 113 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 114 * 115 * @param bytes byte array representing an IPv4 address (should be of length 4) 116 * @return {@link Inet4Address} corresponding to the supplied byte array 117 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 118 */ 119 private static Inet4Address getInet4Address(byte[] bytes) { 120 checkArgument( 121 bytes.length == 4, 122 "Byte array has invalid length for an IPv4 address: %s != 4.", 123 bytes.length); 124 125 // Given a 4-byte array, this cast should always succeed. 126 return (Inet4Address) bytesToInetAddress(bytes); 127 } 128 129 /** 130 * Returns the {@link InetAddress} having the given string representation. 131 * 132 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 133 * 134 * <p>Anything after a {@code %} in an IPv6 address is ignored (assumed to be a Scope ID). 135 * 136 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code 137 * "192.168.0.1"} or {@code "2001:db8::1"} 138 * @return {@link InetAddress} representing the argument 139 * @throws IllegalArgumentException if the argument is not a valid IP string literal 140 */ 141 public static InetAddress forString(String ipString) { 142 byte[] addr = ipStringToBytes(ipString); 143 144 // The argument was malformed, i.e. not an IP string literal. 145 if (addr == null) { 146 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 147 } 148 149 return bytesToInetAddress(addr); 150 } 151 152 /** 153 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 154 * otherwise. 155 * 156 * @param ipString {@code String} to evaluated as an IP string literal 157 * @return {@code true} if the argument is a valid IP string literal 158 */ 159 public static boolean isInetAddress(String ipString) { 160 return ipStringToBytes(ipString) != null; 161 } 162 163 /** Returns {@code null} if unable to parse into a {@code byte[]}. */ 164 @NullableDecl 165 private static byte[] ipStringToBytes(String ipString) { 166 // Make a first pass to categorize the characters in this string. 167 boolean hasColon = false; 168 boolean hasDot = false; 169 int percentIndex = -1; 170 for (int i = 0; i < ipString.length(); i++) { 171 char c = ipString.charAt(i); 172 if (c == '.') { 173 hasDot = true; 174 } else if (c == ':') { 175 if (hasDot) { 176 return null; // Colons must not appear after dots. 177 } 178 hasColon = true; 179 } else if (c == '%') { 180 percentIndex = i; 181 break; // everything after a '%' is ignored (it's a Scope ID): http://superuser.com/a/99753 182 } else if (Character.digit(c, 16) == -1) { 183 return null; // Everything else must be a decimal or hex digit. 184 } 185 } 186 187 // Now decide which address family to parse. 188 if (hasColon) { 189 if (hasDot) { 190 ipString = convertDottedQuadToHex(ipString); 191 if (ipString == null) { 192 return null; 193 } 194 } 195 if (percentIndex != -1) { 196 ipString = ipString.substring(0, percentIndex); 197 } 198 return textToNumericFormatV6(ipString); 199 } else if (hasDot) { 200 return textToNumericFormatV4(ipString); 201 } 202 return null; 203 } 204 205 @NullableDecl 206 private static byte[] textToNumericFormatV4(String ipString) { 207 byte[] bytes = new byte[IPV4_PART_COUNT]; 208 int i = 0; 209 try { 210 for (String octet : IPV4_SPLITTER.split(ipString)) { 211 bytes[i++] = parseOctet(octet); 212 } 213 } catch (NumberFormatException ex) { 214 return null; 215 } 216 217 return i == IPV4_PART_COUNT ? bytes : null; 218 } 219 220 @NullableDecl 221 private static byte[] textToNumericFormatV6(String ipString) { 222 // An address can have [2..8] colons, and N colons make N+1 parts. 223 List<String> parts = IPV6_SPLITTER.splitToList(ipString); 224 if (parts.size() < 3 || parts.size() > IPV6_PART_COUNT + 1) { 225 return null; 226 } 227 228 // Disregarding the endpoints, find "::" with nothing in between. 229 // This indicates that a run of zeroes has been skipped. 230 int skipIndex = -1; 231 for (int i = 1; i < parts.size() - 1; i++) { 232 if (parts.get(i).length() == 0) { 233 if (skipIndex >= 0) { 234 return null; // Can't have more than one :: 235 } 236 skipIndex = i; 237 } 238 } 239 240 int partsHi; // Number of parts to copy from above/before the "::" 241 int partsLo; // Number of parts to copy from below/after the "::" 242 if (skipIndex >= 0) { 243 // If we found a "::", then check if it also covers the endpoints. 244 partsHi = skipIndex; 245 partsLo = parts.size() - skipIndex - 1; 246 if (parts.get(0).length() == 0 && --partsHi != 0) { 247 return null; // ^: requires ^:: 248 } 249 if (Iterables.getLast(parts).length() == 0 && --partsLo != 0) { 250 return null; // :$ requires ::$ 251 } 252 } else { 253 // Otherwise, allocate the entire address to partsHi. The endpoints 254 // could still be empty, but parseHextet() will check for that. 255 partsHi = parts.size(); 256 partsLo = 0; 257 } 258 259 // If we found a ::, then we must have skipped at least one part. 260 // Otherwise, we must have exactly the right number of parts. 261 int partsSkipped = IPV6_PART_COUNT - (partsHi + partsLo); 262 if (!(skipIndex >= 0 ? partsSkipped >= 1 : partsSkipped == 0)) { 263 return null; 264 } 265 266 // Now parse the hextets into a byte array. 267 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 268 try { 269 for (int i = 0; i < partsHi; i++) { 270 rawBytes.putShort(parseHextet(parts.get(i))); 271 } 272 for (int i = 0; i < partsSkipped; i++) { 273 rawBytes.putShort((short) 0); 274 } 275 for (int i = partsLo; i > 0; i--) { 276 rawBytes.putShort(parseHextet(parts.get(parts.size() - i))); 277 } 278 } catch (NumberFormatException ex) { 279 return null; 280 } 281 return rawBytes.array(); 282 } 283 284 @NullableDecl 285 private static String convertDottedQuadToHex(String ipString) { 286 int lastColon = ipString.lastIndexOf(':'); 287 String initialPart = ipString.substring(0, lastColon + 1); 288 String dottedQuad = ipString.substring(lastColon + 1); 289 byte[] quad = textToNumericFormatV4(dottedQuad); 290 if (quad == null) { 291 return null; 292 } 293 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 294 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 295 return initialPart + penultimate + ":" + ultimate; 296 } 297 298 private static byte parseOctet(String ipPart) { 299 // Note: we already verified that this string contains only hex digits. 300 int octet = Integer.parseInt(ipPart); 301 // Disallow leading zeroes, because no clear standard exists on 302 // whether these should be interpreted as decimal or octal. 303 if (octet > 255 || (ipPart.startsWith("0") && ipPart.length() > 1)) { 304 throw new NumberFormatException(); 305 } 306 return (byte) octet; 307 } 308 309 private static short parseHextet(String ipPart) { 310 // Note: we already verified that this string contains only hex digits. 311 int hextet = Integer.parseInt(ipPart, 16); 312 if (hextet > 0xffff) { 313 throw new NumberFormatException(); 314 } 315 return (short) hextet; 316 } 317 318 /** 319 * Convert a byte array into an InetAddress. 320 * 321 * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP 322 * address is of illegal length." We replace it with an unchecked exception, for use by callers 323 * who already know that addr is an array of length 4 or 16. 324 * 325 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 326 * @return an InetAddress object created from the raw IP address 327 */ 328 private static InetAddress bytesToInetAddress(byte[] addr) { 329 try { 330 return InetAddress.getByAddress(addr); 331 } catch (UnknownHostException e) { 332 throw new AssertionError(e); 333 } 334 } 335 336 /** 337 * Returns the string representation of an {@link InetAddress}. 338 * 339 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 340 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 341 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 342 * uses the uncompressed form. 343 * 344 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 345 * such as "::c000:201". The output does not include a Scope ID. 346 * 347 * @param ip {@link InetAddress} to be converted to an address string 348 * @return {@code String} containing the text-formatted IP address 349 * @since 10.0 350 */ 351 public static String toAddrString(InetAddress ip) { 352 checkNotNull(ip); 353 if (ip instanceof Inet4Address) { 354 // For IPv4, Java's formatting is good enough. 355 return ip.getHostAddress(); 356 } 357 checkArgument(ip instanceof Inet6Address); 358 byte[] bytes = ip.getAddress(); 359 int[] hextets = new int[IPV6_PART_COUNT]; 360 for (int i = 0; i < hextets.length; i++) { 361 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 362 } 363 compressLongestRunOfZeroes(hextets); 364 return hextetsToIPv6String(hextets); 365 } 366 367 /** 368 * Identify and mark the longest run of zeroes in an IPv6 address. 369 * 370 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 371 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 372 * 373 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 374 */ 375 private static void compressLongestRunOfZeroes(int[] hextets) { 376 int bestRunStart = -1; 377 int bestRunLength = -1; 378 int runStart = -1; 379 for (int i = 0; i < hextets.length + 1; i++) { 380 if (i < hextets.length && hextets[i] == 0) { 381 if (runStart < 0) { 382 runStart = i; 383 } 384 } else if (runStart >= 0) { 385 int runLength = i - runStart; 386 if (runLength > bestRunLength) { 387 bestRunStart = runStart; 388 bestRunLength = runLength; 389 } 390 runStart = -1; 391 } 392 } 393 if (bestRunLength >= 2) { 394 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 395 } 396 } 397 398 /** 399 * Convert a list of hextets into a human-readable IPv6 address. 400 * 401 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 402 * place of the elided zeroes. 403 * 404 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 405 */ 406 private static String hextetsToIPv6String(int[] hextets) { 407 // While scanning the array, handle these state transitions: 408 // start->num => "num" start->gap => "::" 409 // num->num => ":num" num->gap => "::" 410 // gap->num => "num" gap->gap => "" 411 StringBuilder buf = new StringBuilder(39); 412 boolean lastWasNumber = false; 413 for (int i = 0; i < hextets.length; i++) { 414 boolean thisIsNumber = hextets[i] >= 0; 415 if (thisIsNumber) { 416 if (lastWasNumber) { 417 buf.append(':'); 418 } 419 buf.append(Integer.toHexString(hextets[i])); 420 } else { 421 if (i == 0 || lastWasNumber) { 422 buf.append("::"); 423 } 424 } 425 lastWasNumber = thisIsNumber; 426 } 427 return buf.toString(); 428 } 429 430 /** 431 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 432 * 433 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 434 * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code 435 * "[2001:db8::1]"}. 436 * 437 * <p>Per section 3.2.2 of <a target="_parent" 438 * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6 439 * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}. 440 * 441 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 442 * this method is recommended over {@link InetAddress#toString()} when an IP address string 443 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 444 * IP address string joined by a "/". 445 * 446 * @param ip {@link InetAddress} to be converted to URI string literal 447 * @return {@code String} containing URI-safe string literal 448 */ 449 public static String toUriString(InetAddress ip) { 450 if (ip instanceof Inet6Address) { 451 return "[" + toAddrString(ip) + "]"; 452 } 453 return toAddrString(ip); 454 } 455 456 /** 457 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 458 * the format specified by RFC 3986 section 3.2.2. 459 * 460 * <p>This function is similar to {@link InetAddresses#forString(String)}, however, it requires 461 * that IPv6 addresses are surrounded by square brackets. 462 * 463 * <p>This function is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 464 * 465 * @param hostAddr A RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 466 * @return an InetAddress representing the address in {@code hostAddr} 467 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 468 * address surrounded by square brackets 469 */ 470 public static InetAddress forUriString(String hostAddr) { 471 InetAddress addr = forUriStringNoThrow(hostAddr); 472 if (addr == null) { 473 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 474 } 475 476 return addr; 477 } 478 479 @NullableDecl 480 private static InetAddress forUriStringNoThrow(String hostAddr) { 481 checkNotNull(hostAddr); 482 483 // Decide if this should be an IPv6 or IPv4 address. 484 String ipString; 485 int expectBytes; 486 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 487 ipString = hostAddr.substring(1, hostAddr.length() - 1); 488 expectBytes = 16; 489 } else { 490 ipString = hostAddr; 491 expectBytes = 4; 492 } 493 494 // Parse the address, and make sure the length/version is correct. 495 byte[] addr = ipStringToBytes(ipString); 496 if (addr == null || addr.length != expectBytes) { 497 return null; 498 } 499 500 return bytesToInetAddress(addr); 501 } 502 503 /** 504 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 505 * otherwise. 506 * 507 * @param ipString {@code String} to evaluated as an IP URI host string literal 508 * @return {@code true} if the argument is a valid IP URI host 509 */ 510 public static boolean isUriInetAddress(String ipString) { 511 return forUriStringNoThrow(ipString) != null; 512 } 513 514 /** 515 * Evaluates whether the argument is an IPv6 "compat" address. 516 * 517 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 518 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 519 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 520 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 521 * 522 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent" 523 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 524 * 525 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 526 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 527 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 528 * 529 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 530 * @return {@code true} if the argument is a valid "compat" address 531 */ 532 public static boolean isCompatIPv4Address(Inet6Address ip) { 533 if (!ip.isIPv4CompatibleAddress()) { 534 return false; 535 } 536 537 byte[] bytes = ip.getAddress(); 538 if ((bytes[12] == 0) 539 && (bytes[13] == 0) 540 && (bytes[14] == 0) 541 && ((bytes[15] == 0) || (bytes[15] == 1))) { 542 return false; 543 } 544 545 return true; 546 } 547 548 /** 549 * Returns the IPv4 address embedded in an IPv4 compatible address. 550 * 551 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 552 * @return {@link Inet4Address} of the embedded IPv4 address 553 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 554 */ 555 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 556 checkArgument( 557 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 558 559 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 560 } 561 562 /** 563 * Evaluates whether the argument is a 6to4 address. 564 * 565 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 566 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 567 * 568 * <p>For more on 6to4 addresses see section 2 of <a target="_parent" 569 * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 570 * 571 * @param ip {@link Inet6Address} to be examined for 6to4 address format 572 * @return {@code true} if the argument is a 6to4 address 573 */ 574 public static boolean is6to4Address(Inet6Address ip) { 575 byte[] bytes = ip.getAddress(); 576 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 577 } 578 579 /** 580 * Returns the IPv4 address embedded in a 6to4 address. 581 * 582 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 583 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 584 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 585 */ 586 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 587 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 588 589 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 590 } 591 592 /** 593 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 594 * 595 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 596 * of the protocol. More protocols details can be found at: <a target="_parent" 597 * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 598 * org/wiki/Teredo_tunneling</a>. 599 * 600 * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 601 * 4380</a>. 602 * 603 * @since 5.0 604 */ 605 @Beta 606 public static final class TeredoInfo { 607 private final Inet4Address server; 608 private final Inet4Address client; 609 private final int port; 610 private final int flags; 611 612 /** 613 * Constructs a TeredoInfo instance. 614 * 615 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 616 * be assumed. 617 * 618 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 619 * are out of range of an unsigned short 620 */ 621 // TODO: why is this public? 622 public TeredoInfo( 623 @NullableDecl Inet4Address server, @NullableDecl Inet4Address client, int port, int flags) { 624 checkArgument( 625 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 626 checkArgument( 627 (flags >= 0) && (flags <= 0xffff), 628 "flags '%s' is out of range (0 <= flags <= 0xffff)", 629 flags); 630 631 this.server = MoreObjects.firstNonNull(server, ANY4); 632 this.client = MoreObjects.firstNonNull(client, ANY4); 633 this.port = port; 634 this.flags = flags; 635 } 636 637 public Inet4Address getServer() { 638 return server; 639 } 640 641 public Inet4Address getClient() { 642 return client; 643 } 644 645 public int getPort() { 646 return port; 647 } 648 649 public int getFlags() { 650 return flags; 651 } 652 } 653 654 /** 655 * Evaluates whether the argument is a Teredo address. 656 * 657 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 658 * 659 * @param ip {@link Inet6Address} to be examined for Teredo address format 660 * @return {@code true} if the argument is a Teredo address 661 */ 662 public static boolean isTeredoAddress(Inet6Address ip) { 663 byte[] bytes = ip.getAddress(); 664 return (bytes[0] == (byte) 0x20) 665 && (bytes[1] == (byte) 0x01) 666 && (bytes[2] == 0) 667 && (bytes[3] == 0); 668 } 669 670 /** 671 * Returns the Teredo information embedded in a Teredo address. 672 * 673 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 674 * @return extracted {@code TeredoInfo} 675 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 676 */ 677 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 678 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 679 680 byte[] bytes = ip.getAddress(); 681 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 682 683 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 684 685 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 686 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 687 688 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 689 for (int i = 0; i < clientBytes.length; i++) { 690 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 691 clientBytes[i] = (byte) ~clientBytes[i]; 692 } 693 Inet4Address client = getInet4Address(clientBytes); 694 695 return new TeredoInfo(server, client, port, flags); 696 } 697 698 /** 699 * Evaluates whether the argument is an ISATAP address. 700 * 701 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 702 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 703 * IPv4 address in network byte order [...]" 704 * 705 * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent" 706 * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 707 * 708 * @param ip {@link Inet6Address} to be examined for ISATAP address format 709 * @return {@code true} if the argument is an ISATAP address 710 */ 711 public static boolean isIsatapAddress(Inet6Address ip) { 712 713 // If it's a Teredo address with the right port (41217, or 0xa101) 714 // which would be encoded as 0x5efe then it can't be an ISATAP address. 715 if (isTeredoAddress(ip)) { 716 return false; 717 } 718 719 byte[] bytes = ip.getAddress(); 720 721 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 722 723 // Verify that high byte of the 64 bit identifier is zero, modulo 724 // the U/L and G bits, with which we are not concerned. 725 return false; 726 } 727 728 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 729 } 730 731 /** 732 * Returns the IPv4 address embedded in an ISATAP address. 733 * 734 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 735 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 736 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 737 */ 738 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 739 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 740 741 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 742 } 743 744 /** 745 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 746 * types that contain an embedded IPv4 address. 747 * 748 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 749 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 750 * BGP routing table. 751 * 752 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 753 * @return {@code true} if there is an embedded IPv4 client address 754 * @since 7.0 755 */ 756 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 757 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 758 } 759 760 /** 761 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 762 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 763 * 764 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 765 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 766 * BGP routing table. 767 * 768 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 769 * @return {@link Inet4Address} of embedded IPv4 client address 770 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 771 */ 772 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 773 if (isCompatIPv4Address(ip)) { 774 return getCompatIPv4Address(ip); 775 } 776 777 if (is6to4Address(ip)) { 778 return get6to4IPv4Address(ip); 779 } 780 781 if (isTeredoAddress(ip)) { 782 return getTeredoInfo(ip).getClient(); 783 } 784 785 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 786 } 787 788 /** 789 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 790 * 791 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 792 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 793 * 794 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent" 795 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 796 * 797 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 798 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 799 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 800 * poorly-documented feature.) 801 * 802 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 803 * @return {@code true} if the argument is a valid "mapped" address 804 * @since 10.0 805 */ 806 public static boolean isMappedIPv4Address(String ipString) { 807 byte[] bytes = ipStringToBytes(ipString); 808 if (bytes != null && bytes.length == 16) { 809 for (int i = 0; i < 10; i++) { 810 if (bytes[i] != 0) { 811 return false; 812 } 813 } 814 for (int i = 10; i < 12; i++) { 815 if (bytes[i] != (byte) 0xff) { 816 return false; 817 } 818 } 819 return true; 820 } 821 return false; 822 } 823 824 /** 825 * Coerces an IPv6 address into an IPv4 address. 826 * 827 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 828 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 829 * This function does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits 830 * into 29 bits): 831 * 832 * <ul> 833 * <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that. 834 * <li>Otherwise, it hashes the upper 64 bits of the IPv6 address. 835 * </ul> 836 * 837 * <p>A "coerced" IPv4 address is equivalent to itself. 838 * 839 * <p>NOTE: This function is failsafe for security purposes: ALL IPv6 addresses (except localhost 840 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 841 * address that might permit elevated privileges. 842 * 843 * @param ip {@link InetAddress} to "coerce" 844 * @return {@link Inet4Address} represented "coerced" address 845 * @since 7.0 846 */ 847 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 848 if (ip instanceof Inet4Address) { 849 return (Inet4Address) ip; 850 } 851 852 // Special cases: 853 byte[] bytes = ip.getAddress(); 854 boolean leadingBytesOfZero = true; 855 for (int i = 0; i < 15; ++i) { 856 if (bytes[i] != 0) { 857 leadingBytesOfZero = false; 858 break; 859 } 860 } 861 if (leadingBytesOfZero && (bytes[15] == 1)) { 862 return LOOPBACK4; // ::1 863 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 864 return ANY4; // ::0 865 } 866 867 Inet6Address ip6 = (Inet6Address) ip; 868 long addressAsLong = 0; 869 if (hasEmbeddedIPv4ClientAddress(ip6)) { 870 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 871 } else { 872 // Just extract the high 64 bits (assuming the rest is user-modifiable). 873 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 874 } 875 876 // Many strategies for hashing are possible. This might suffice for now. 877 int coercedHash = Hashing.murmur3_32().hashLong(addressAsLong).asInt(); 878 879 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 880 coercedHash |= 0xe0000000; 881 882 // Fixup to avoid some "illegal" values. Currently the only potential 883 // illegal value is 255.255.255.255. 884 if (coercedHash == 0xffffffff) { 885 coercedHash = 0xfffffffe; 886 } 887 888 return getInet4Address(Ints.toByteArray(coercedHash)); 889 } 890 891 /** 892 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 893 * an IPv4 address or not. 894 * 895 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 896 * 897 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 898 * can therefore be converted safely to integers (for whatever purpose) this function can be used 899 * to handle IPv6 addresses as well until the application is suitably fixed. 900 * 901 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 902 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 903 * cannot be used as real addresses for the purposes of network communication. 904 * 905 * @param ip {@link InetAddress} to convert 906 * @return {@code int}, "coerced" if ip is not an IPv4 address 907 * @since 7.0 908 */ 909 public static int coerceToInteger(InetAddress ip) { 910 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 911 } 912 913 /** 914 * Returns a BigInteger representing the address. 915 * 916 * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses. 917 * 918 * @param address {@link InetAddress} to convert 919 * @return {@code BigInteger} representation of the address 920 * @since 28.2 921 */ 922 public static BigInteger toBigInteger(InetAddress address) { 923 return new BigInteger(1, address.getAddress()); 924 } 925 926 /** 927 * Returns an Inet4Address having the integer value specified by the argument. 928 * 929 * @param address {@code int}, the 32bit integer address to be converted 930 * @return {@link Inet4Address} equivalent of the argument 931 */ 932 public static Inet4Address fromInteger(int address) { 933 return getInet4Address(Ints.toByteArray(address)); 934 } 935 936 /** 937 * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}. 938 * 939 * @param address BigInteger representing the IPv4 address 940 * @return Inet4Address representation of the given BigInteger 941 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1 942 * @since 28.2 943 */ 944 public static Inet4Address fromIPv4BigInteger(BigInteger address) { 945 return (Inet4Address) fromBigInteger(address, false); 946 } 947 /** 948 * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}. 949 * 950 * @param address BigInteger representing the IPv6 address 951 * @return Inet6Address representation of the given BigInteger 952 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1 953 * @since 28.2 954 */ 955 public static Inet6Address fromIPv6BigInteger(BigInteger address) { 956 return (Inet6Address) fromBigInteger(address, true); 957 } 958 959 /** 960 * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be 961 * constrainted to 32 bits, otherwise it is constrained to 128 bits. 962 * 963 * @param address the address represented as a big integer 964 * @param isIpv6 whether the created address should be IPv4 or IPv6 965 * @return the BigInteger converted to an address 966 * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4 967 * or IPv6 respectively 968 */ 969 private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) { 970 checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0"); 971 972 int numBytes = isIpv6 ? 16 : 4; 973 974 byte[] addressBytes = address.toByteArray(); 975 byte[] targetCopyArray = new byte[numBytes]; 976 977 int srcPos = Math.max(0, addressBytes.length - numBytes); 978 int copyLength = addressBytes.length - srcPos; 979 int destPos = numBytes - copyLength; 980 981 // Check the extra bytes in the BigInteger are all zero. 982 for (int i = 0; i < srcPos; i++) { 983 if (addressBytes[i] != 0x00) { 984 throw formatIllegalArgumentException( 985 "BigInteger cannot be converted to InetAddress because it has more than %d" 986 + " bytes: %s", 987 numBytes, address); 988 } 989 } 990 991 // Copy the bytes into the least significant positions. 992 System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength); 993 994 try { 995 return InetAddress.getByAddress(targetCopyArray); 996 } catch (UnknownHostException impossible) { 997 throw new AssertionError(impossible); 998 } 999 } 1000 1001 /** 1002 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link 1003 * InetAddress#getByAddress} expects). 1004 * 1005 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 1006 * 1007 * @param addr the raw IP address in little-endian byte order 1008 * @return an InetAddress object created from the raw IP address 1009 * @throws UnknownHostException if IP address is of illegal length 1010 */ 1011 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 1012 byte[] reversed = new byte[addr.length]; 1013 for (int i = 0; i < addr.length; i++) { 1014 reversed[i] = addr[addr.length - i - 1]; 1015 } 1016 return InetAddress.getByAddress(reversed); 1017 } 1018 1019 /** 1020 * Returns a new InetAddress that is one less than the passed in address. This method works for 1021 * both IPv4 and IPv6 addresses. 1022 * 1023 * @param address the InetAddress to decrement 1024 * @return a new InetAddress that is one less than the passed in address 1025 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 1026 * @since 18.0 1027 */ 1028 public static InetAddress decrement(InetAddress address) { 1029 byte[] addr = address.getAddress(); 1030 int i = addr.length - 1; 1031 while (i >= 0 && addr[i] == (byte) 0x00) { 1032 addr[i] = (byte) 0xff; 1033 i--; 1034 } 1035 1036 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 1037 1038 addr[i]--; 1039 return bytesToInetAddress(addr); 1040 } 1041 1042 /** 1043 * Returns a new InetAddress that is one more than the passed in address. This method works for 1044 * both IPv4 and IPv6 addresses. 1045 * 1046 * @param address the InetAddress to increment 1047 * @return a new InetAddress that is one more than the passed in address 1048 * @throws IllegalArgumentException if InetAddress is at the end of its range 1049 * @since 10.0 1050 */ 1051 public static InetAddress increment(InetAddress address) { 1052 byte[] addr = address.getAddress(); 1053 int i = addr.length - 1; 1054 while (i >= 0 && addr[i] == (byte) 0xff) { 1055 addr[i] = 0; 1056 i--; 1057 } 1058 1059 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 1060 1061 addr[i]++; 1062 return bytesToInetAddress(addr); 1063 } 1064 1065 /** 1066 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 1067 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 1068 * 1069 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 1070 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 1071 * @since 10.0 1072 */ 1073 public static boolean isMaximum(InetAddress address) { 1074 byte[] addr = address.getAddress(); 1075 for (int i = 0; i < addr.length; i++) { 1076 if (addr[i] != (byte) 0xff) { 1077 return false; 1078 } 1079 } 1080 return true; 1081 } 1082 1083 private static IllegalArgumentException formatIllegalArgumentException( 1084 String format, Object... args) { 1085 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 1086 } 1087}