001/*
002 * Copyright (C) 2012 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.math;
016
017import static com.google.common.base.Preconditions.checkState;
018import static com.google.common.primitives.Doubles.isFinite;
019import static java.lang.Double.NaN;
020import static java.lang.Double.isNaN;
021
022import com.google.common.annotations.Beta;
023import com.google.common.annotations.GwtIncompatible;
024import com.google.common.primitives.Doubles;
025
026/**
027 * A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some
028 * basic statistics over all the values added so far. This class is not thread safe.
029 *
030 * @author Pete Gillin
031 * @since 20.0
032 */
033@Beta
034@GwtIncompatible
035public final class PairedStatsAccumulator {
036
037  // These fields must satisfy the requirements of PairedStats' constructor as well as those of the
038  // stat methods of this class.
039  private final StatsAccumulator xStats = new StatsAccumulator();
040  private final StatsAccumulator yStats = new StatsAccumulator();
041  private double sumOfProductsOfDeltas = 0.0;
042
043  /** Adds the given pair of values to the dataset. */
044  public void add(double x, double y) {
045    // We extend the recursive expression for the one-variable case at Art of Computer Programming
046    // vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i.
047    // We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i.
048    // We also define the sum of the products of the differences from the means
049    //           C_n = \sum_{i=1}^n x_i y_i - n X_n Y_n
050    // for all n >= 1. Then for all n > 1:
051    //       C_{n-1} = \sum_{i=1}^{n-1} x_i y_i - (n-1) X_{n-1} Y_{n-1}
052    // C_n - C_{n-1} = x_n y_n - n X_n Y_n + (n-1) X_{n-1} Y_{n-1}
053    //               = x_n y_n - X_n [ y_n + (n-1) Y_{n-1} ] + [ n X_n - x_n ] Y_{n-1}
054    //               = x_n y_n - X_n y_n - x_n Y_{n-1} + X_n Y_{n-1}
055    //               = (x_n - X_n) (y_n - Y_{n-1})
056    xStats.add(x);
057    if (isFinite(x) && isFinite(y)) {
058      if (xStats.count() > 1) {
059        sumOfProductsOfDeltas += (x - xStats.mean()) * (y - yStats.mean());
060      }
061    } else {
062      sumOfProductsOfDeltas = NaN;
063    }
064    yStats.add(y);
065  }
066
067  /**
068   * Adds the given statistics to the dataset, as if the individual values used to compute the
069   * statistics had been added directly.
070   */
071  public void addAll(PairedStats values) {
072    if (values.count() == 0) {
073      return;
074    }
075
076    xStats.addAll(values.xStats());
077    if (yStats.count() == 0) {
078      sumOfProductsOfDeltas = values.sumOfProductsOfDeltas();
079    } else {
080      // This is a generalized version of the calculation in add(double, double) above. Note that
081      // non-finite inputs will have sumOfProductsOfDeltas = NaN, so non-finite values will result
082      // in NaN naturally.
083      sumOfProductsOfDeltas +=
084          values.sumOfProductsOfDeltas()
085              + (values.xStats().mean() - xStats.mean())
086                  * (values.yStats().mean() - yStats.mean())
087                  * values.count();
088    }
089    yStats.addAll(values.yStats());
090  }
091
092  /** Returns an immutable snapshot of the current statistics. */
093  public PairedStats snapshot() {
094    return new PairedStats(xStats.snapshot(), yStats.snapshot(), sumOfProductsOfDeltas);
095  }
096
097  /** Returns the number of pairs in the dataset. */
098  public long count() {
099    return xStats.count();
100  }
101
102  /** Returns an immutable snapshot of the statistics on the {@code x} values alone. */
103  public Stats xStats() {
104    return xStats.snapshot();
105  }
106
107  /** Returns an immutable snapshot of the statistics on the {@code y} values alone. */
108  public Stats yStats() {
109    return yStats.snapshot();
110  }
111
112  /**
113   * Returns the population covariance of the values. The count must be non-zero.
114   *
115   * <p>This is guaranteed to return zero if the dataset contains a single pair of finite values. It
116   * is not guaranteed to return zero when the dataset consists of the same pair of values multiple
117   * times, due to numerical errors.
118   *
119   * <h3>Non-finite values</h3>
120   *
121   * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
122   * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
123   *
124   * @throws IllegalStateException if the dataset is empty
125   */
126  public double populationCovariance() {
127    checkState(count() != 0);
128    return sumOfProductsOfDeltas / count();
129  }
130
131  /**
132   * Returns the sample covariance of the values. The count must be greater than one.
133   *
134   * <p>This is not guaranteed to return zero when the dataset consists of the same pair of values
135   * multiple times, due to numerical errors.
136   *
137   * <h3>Non-finite values</h3>
138   *
139   * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
140   * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
141   *
142   * @throws IllegalStateException if the dataset is empty or contains a single pair of values
143   */
144  public final double sampleCovariance() {
145    checkState(count() > 1);
146    return sumOfProductsOfDeltas / (count() - 1);
147  }
148
149  /**
150   * Returns the <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">Pearson's or
151   * product-moment correlation coefficient</a> of the values. The count must greater than one, and
152   * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code
153   * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not
154   * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to
155   * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1].
156   *
157   * <h3>Non-finite values</h3>
158   *
159   * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
160   * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}.
161   *
162   * @throws IllegalStateException if the dataset is empty or contains a single pair of values, or
163   *     either the {@code x} and {@code y} dataset has zero population variance
164   */
165  public final double pearsonsCorrelationCoefficient() {
166    checkState(count() > 1);
167    if (isNaN(sumOfProductsOfDeltas)) {
168      return NaN;
169    }
170    double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas();
171    double ySumOfSquaresOfDeltas = yStats.sumOfSquaresOfDeltas();
172    checkState(xSumOfSquaresOfDeltas > 0.0);
173    checkState(ySumOfSquaresOfDeltas > 0.0);
174    // The product of two positive numbers can be zero if the multiplication underflowed. We
175    // force a positive value by effectively rounding up to MIN_VALUE.
176    double productOfSumsOfSquaresOfDeltas =
177        ensurePositive(xSumOfSquaresOfDeltas * ySumOfSquaresOfDeltas);
178    return ensureInUnitRange(sumOfProductsOfDeltas / Math.sqrt(productOfSumsOfSquaresOfDeltas));
179  }
180
181  /**
182   * Returns a linear transformation giving the best fit to the data according to <a
183   * href="http://mathworld.wolfram.com/LeastSquaresFitting.html">Ordinary Least Squares linear
184   * regression</a> of {@code y} as a function of {@code x}. The count must be greater than one, and
185   * either the {@code x} or {@code y} data must have a non-zero population variance (i.e. {@code
186   * xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0}). The result is
187   * guaranteed to be horizontal if there is variance in the {@code x} data but not the {@code y}
188   * data, and vertical if there is variance in the {@code y} data but not the {@code x} data.
189   *
190   * <p>This fit minimizes the root-mean-square error in {@code y} as a function of {@code x}. This
191   * error is defined as the square root of the mean of the squares of the differences between the
192   * actual {@code y} values of the data and the values predicted by the fit for the {@code x}
193   * values (i.e. it is the square root of the mean of the squares of the vertical distances between
194   * the data points and the best fit line). For this fit, this error is a fraction {@code sqrt(1 -
195   * R*R)} of the population standard deviation of {@code y}, where {@code R} is the Pearson's
196   * correlation coefficient (as given by {@link #pearsonsCorrelationCoefficient()}).
197   *
198   * <p>The corresponding root-mean-square error in {@code x} as a function of {@code y} is a
199   * fraction {@code sqrt(1/(R*R) - 1)} of the population standard deviation of {@code x}. This fit
200   * does not normally minimize that error: to do that, you should swap the roles of {@code x} and
201   * {@code y}.
202   *
203   * <h3>Non-finite values</h3>
204   *
205   * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link
206   * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link
207   * LinearTransformation#forNaN()}.
208   *
209   * @throws IllegalStateException if the dataset is empty or contains a single pair of values, or
210   *     both the {@code x} and {@code y} dataset have zero population variance
211   */
212  public final LinearTransformation leastSquaresFit() {
213    checkState(count() > 1);
214    if (isNaN(sumOfProductsOfDeltas)) {
215      return LinearTransformation.forNaN();
216    }
217    double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas();
218    if (xSumOfSquaresOfDeltas > 0.0) {
219      if (yStats.sumOfSquaresOfDeltas() > 0.0) {
220        return LinearTransformation.mapping(xStats.mean(), yStats.mean())
221            .withSlope(sumOfProductsOfDeltas / xSumOfSquaresOfDeltas);
222      } else {
223        return LinearTransformation.horizontal(yStats.mean());
224      }
225    } else {
226      checkState(yStats.sumOfSquaresOfDeltas() > 0.0);
227      return LinearTransformation.vertical(xStats.mean());
228    }
229  }
230
231  private double ensurePositive(double value) {
232    if (value > 0.0) {
233      return value;
234    } else {
235      return Double.MIN_VALUE;
236    }
237  }
238
239  private static double ensureInUnitRange(double value) {
240    return Doubles.constrainToRange(value, -1.0, 1.0);
241  }
242}