001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.collect.Collections2.FilteredCollection;
029import com.google.common.math.IntMath;
030import com.google.errorprone.annotations.CanIgnoreReturnValue;
031import java.io.Serializable;
032import java.util.AbstractSet;
033import java.util.Arrays;
034import java.util.BitSet;
035import java.util.Collection;
036import java.util.Collections;
037import java.util.Comparator;
038import java.util.EnumSet;
039import java.util.HashSet;
040import java.util.Iterator;
041import java.util.LinkedHashSet;
042import java.util.List;
043import java.util.Map;
044import java.util.NavigableSet;
045import java.util.NoSuchElementException;
046import java.util.Set;
047import java.util.SortedSet;
048import java.util.TreeSet;
049import java.util.concurrent.ConcurrentHashMap;
050import java.util.concurrent.CopyOnWriteArraySet;
051import org.checkerframework.checker.nullness.compatqual.MonotonicNonNullDecl;
052import org.checkerframework.checker.nullness.compatqual.NullableDecl;
053
054/**
055 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
056 * {@link Lists}, {@link Maps} and {@link Queues}.
057 *
058 * <p>See the Guava User Guide article on <a href=
059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>.
060 *
061 * @author Kevin Bourrillion
062 * @author Jared Levy
063 * @author Chris Povirk
064 * @since 2.0
065 */
066@GwtCompatible(emulated = true)
067public final class Sets {
068  private Sets() {}
069
070  /**
071   * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
072   * implementation.
073   */
074  abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
075    @Override
076    public boolean removeAll(Collection<?> c) {
077      return removeAllImpl(this, c);
078    }
079
080    @Override
081    public boolean retainAll(Collection<?> c) {
082      return super.retainAll(checkNotNull(c)); // GWT compatibility
083    }
084  }
085
086  /**
087   * Returns an immutable set instance containing the given enum elements. Internally, the returned
088   * set will be backed by an {@link EnumSet}.
089   *
090   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
091   * which the elements are provided to the method.
092   *
093   * @param anElement one of the elements the set should contain
094   * @param otherElements the rest of the elements the set should contain
095   * @return an immutable set containing those elements, minus duplicates
096   */
097  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
098  @GwtCompatible(serializable = true)
099  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
100      E anElement, E... otherElements) {
101    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
102  }
103
104  /**
105   * Returns an immutable set instance containing the given enum elements. Internally, the returned
106   * set will be backed by an {@link EnumSet}.
107   *
108   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
109   * which the elements appear in the given collection.
110   *
111   * @param elements the elements, all of the same {@code enum} type, that the set should contain
112   * @return an immutable set containing those elements, minus duplicates
113   */
114  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
115  @GwtCompatible(serializable = true)
116  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
117    if (elements instanceof ImmutableEnumSet) {
118      return (ImmutableEnumSet<E>) elements;
119    } else if (elements instanceof Collection) {
120      Collection<E> collection = (Collection<E>) elements;
121      if (collection.isEmpty()) {
122        return ImmutableSet.of();
123      } else {
124        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
125      }
126    } else {
127      Iterator<E> itr = elements.iterator();
128      if (itr.hasNext()) {
129        EnumSet<E> enumSet = EnumSet.of(itr.next());
130        Iterators.addAll(enumSet, itr);
131        return ImmutableEnumSet.asImmutable(enumSet);
132      } else {
133        return ImmutableSet.of();
134      }
135    }
136  }
137
138  /**
139   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
140   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
141   * accepts non-{@code Collection} iterables and empty iterables.
142   */
143  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
144      Iterable<E> iterable, Class<E> elementType) {
145    EnumSet<E> set = EnumSet.noneOf(elementType);
146    Iterables.addAll(set, iterable);
147    return set;
148  }
149
150  // HashSet
151
152  /**
153   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
154   *
155   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
156   * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
157   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
158   * deterministic iteration behavior.
159   *
160   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
161   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
162   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
163   */
164  public static <E> HashSet<E> newHashSet() {
165    return new HashSet<E>();
166  }
167
168  /**
169   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
170   *
171   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
172   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
173   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
174   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
175   * deterministic iteration behavior.
176   *
177   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
178   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
179   * This method is not actually very useful and will likely be deprecated in the future.
180   */
181  public static <E> HashSet<E> newHashSet(E... elements) {
182    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
183    Collections.addAll(set, elements);
184    return set;
185  }
186
187  /**
188   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
189   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
190   * Iterables#addAll}.
191   *
192   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
193   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
194   * FluentIterable} and call {@code elements.toSet()}.)
195   *
196   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
197   * instead.
198   *
199   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
200   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
201   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
202   *
203   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
204   */
205  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
206    return (elements instanceof Collection)
207        ? new HashSet<E>(Collections2.cast(elements))
208        : newHashSet(elements.iterator());
209  }
210
211  /**
212   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
213   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
214   *
215   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
216   * ImmutableSet#copyOf(Iterator)} instead.
217   *
218   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
219   * instead.
220   *
221   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
222   */
223  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
224    HashSet<E> set = newHashSet();
225    Iterators.addAll(set, elements);
226    return set;
227  }
228
229  /**
230   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
231   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
232   * is what most users want and expect it to do.
233   *
234   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
235   *
236   * @param expectedSize the number of elements you expect to add to the returned set
237   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
238   *     without resizing
239   * @throws IllegalArgumentException if {@code expectedSize} is negative
240   */
241  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
242    return new HashSet<E>(Maps.capacity(expectedSize));
243  }
244
245  /**
246   * Creates a thread-safe set backed by a hash map. The set is backed by a {@link
247   * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
248   *
249   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
250   * set is serializable.
251   *
252   * @return a new, empty thread-safe {@code Set}
253   * @since 15.0
254   */
255  public static <E> Set<E> newConcurrentHashSet() {
256    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
257  }
258
259  /**
260   * Creates a thread-safe set backed by a hash map and containing the given elements. The set is
261   * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
262   * guarantees.
263   *
264   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
265   * set is serializable.
266   *
267   * @param elements the elements that the set should contain
268   * @return a new thread-safe set containing those elements (minus duplicates)
269   * @throws NullPointerException if {@code elements} or any of its contents is null
270   * @since 15.0
271   */
272  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
273    Set<E> set = newConcurrentHashSet();
274    Iterables.addAll(set, elements);
275    return set;
276  }
277
278  // LinkedHashSet
279
280  /**
281   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
282   *
283   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
284   *
285   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
286   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
287   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
288   *
289   * @return a new, empty {@code LinkedHashSet}
290   */
291  public static <E> LinkedHashSet<E> newLinkedHashSet() {
292    return new LinkedHashSet<E>();
293  }
294
295  /**
296   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
297   *
298   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
299   * ImmutableSet#copyOf(Iterable)} instead.
300   *
301   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
302   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
303   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
304   *
305   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
306   *
307   * @param elements the elements that the set should contain, in order
308   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
309   */
310  public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
311    if (elements instanceof Collection) {
312      return new LinkedHashSet<E>(Collections2.cast(elements));
313    }
314    LinkedHashSet<E> set = newLinkedHashSet();
315    Iterables.addAll(set, elements);
316    return set;
317  }
318
319  /**
320   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
321   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
322   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
323   * that the method isn't inadvertently <i>oversizing</i> the returned set.
324   *
325   * @param expectedSize the number of elements you expect to add to the returned set
326   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
327   *     elements without resizing
328   * @throws IllegalArgumentException if {@code expectedSize} is negative
329   * @since 11.0
330   */
331  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
332    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
333  }
334
335  // TreeSet
336
337  /**
338   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
339   * its elements.
340   *
341   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
342   *
343   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
344   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
345   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
346   *
347   * @return a new, empty {@code TreeSet}
348   */
349  public static <E extends Comparable> TreeSet<E> newTreeSet() {
350    return new TreeSet<E>();
351  }
352
353  /**
354   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
355   * natural ordering.
356   *
357   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
358   * instead.
359   *
360   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
361   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
362   * TreeSet} with that comparator.
363   *
364   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
365   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
366   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
367   *
368   * <p>This method is just a small convenience for creating an empty set and then calling {@link
369   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
370   *
371   * @param elements the elements that the set should contain
372   * @return a new {@code TreeSet} containing those elements (minus duplicates)
373   */
374  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
375    TreeSet<E> set = newTreeSet();
376    Iterables.addAll(set, elements);
377    return set;
378  }
379
380  /**
381   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
382   *
383   * <p><b>Note:</b> if mutability is not required, use {@code
384   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
385   *
386   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
387   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
388   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
389   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
390   * factory rejects null. Clean your code accordingly.
391   *
392   * @param comparator the comparator to use to sort the set
393   * @return a new, empty {@code TreeSet}
394   * @throws NullPointerException if {@code comparator} is null
395   */
396  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
397    return new TreeSet<E>(checkNotNull(comparator));
398  }
399
400  /**
401   * Creates an empty {@code Set} that uses identity to determine equality. It compares object
402   * references, instead of calling {@code equals}, to determine whether a provided object matches
403   * an element in the set. For example, {@code contains} returns {@code false} when passed an
404   * object that equals a set member, but isn't the same instance. This behavior is similar to the
405   * way {@code IdentityHashMap} handles key lookups.
406   *
407   * @since 8.0
408   */
409  public static <E> Set<E> newIdentityHashSet() {
410    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
411  }
412
413  /**
414   * Creates an empty {@code CopyOnWriteArraySet} instance.
415   *
416   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
417   * instead.
418   *
419   * @return a new, empty {@code CopyOnWriteArraySet}
420   * @since 12.0
421   */
422  @GwtIncompatible // CopyOnWriteArraySet
423  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
424    return new CopyOnWriteArraySet<E>();
425  }
426
427  /**
428   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
429   *
430   * @param elements the elements that the set should contain, in order
431   * @return a new {@code CopyOnWriteArraySet} containing those elements
432   * @since 12.0
433   */
434  @GwtIncompatible // CopyOnWriteArraySet
435  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
436    // We copy elements to an ArrayList first, rather than incurring the
437    // quadratic cost of adding them to the COWAS directly.
438    Collection<? extends E> elementsCollection =
439        (elements instanceof Collection)
440            ? Collections2.cast(elements)
441            : Lists.newArrayList(elements);
442    return new CopyOnWriteArraySet<E>(elementsCollection);
443  }
444
445  /**
446   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
447   * collection. If the collection is an {@link EnumSet}, this method has the same behavior as
448   * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
449   * element, in order to determine the element type. If the collection could be empty, use {@link
450   * #complementOf(Collection, Class)} instead of this method.
451   *
452   * @param collection the collection whose complement should be stored in the enum set
453   * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
454   *     in the given collection
455   * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
456   *     contains no elements
457   */
458  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
459    if (collection instanceof EnumSet) {
460      return EnumSet.complementOf((EnumSet<E>) collection);
461    }
462    checkArgument(
463        !collection.isEmpty(), "collection is empty; use the other version of this method");
464    Class<E> type = collection.iterator().next().getDeclaringClass();
465    return makeComplementByHand(collection, type);
466  }
467
468  /**
469   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
470   * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
471   * collection, as long as the elements are of enum type.
472   *
473   * @param collection the collection whose complement should be stored in the {@code EnumSet}
474   * @param type the type of the elements in the set
475   * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
476   *     present in the given collection
477   */
478  public static <E extends Enum<E>> EnumSet<E> complementOf(
479      Collection<E> collection, Class<E> type) {
480    checkNotNull(collection);
481    return (collection instanceof EnumSet)
482        ? EnumSet.complementOf((EnumSet<E>) collection)
483        : makeComplementByHand(collection, type);
484  }
485
486  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
487      Collection<E> collection, Class<E> type) {
488    EnumSet<E> result = EnumSet.allOf(type);
489    result.removeAll(collection);
490    return result;
491  }
492
493  /**
494   * Returns a set backed by the specified map. The resulting set displays the same ordering,
495   * concurrency, and performance characteristics as the backing map. In essence, this factory
496   * method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
497   * There is no need to use this method on a {@link Map} implementation that already has a
498   * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
499   * java.util.TreeMap}).
500   *
501   * <p>Each method invocation on the set returned by this method results in exactly one method
502   * invocation on the backing map or its {@code keySet} view, with one exception. The {@code
503   * addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
504   *
505   * <p>The specified map must be empty at the time this method is invoked, and should not be
506   * accessed directly after this method returns. These conditions are ensured if the map is created
507   * empty, passed directly to this method, and no reference to the map is retained, as illustrated
508   * in the following code fragment:
509   *
510   * <pre>{@code
511   * Set<Object> identityHashSet = Sets.newSetFromMap(
512   *     new IdentityHashMap<Object, Boolean>());
513   * }</pre>
514   *
515   * <p>The returned set is serializable if the backing map is.
516   *
517   * @param map the backing map
518   * @return the set backed by the map
519   * @throws IllegalArgumentException if {@code map} is not empty
520   * @deprecated Use {@link Collections#newSetFromMap} instead.
521   */
522  @Deprecated
523  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
524    return Collections.newSetFromMap(map);
525  }
526
527  /**
528   * An unmodifiable view of a set which may be backed by other sets; this view will change as the
529   * backing sets do. Contains methods to copy the data into a new set which will then remain
530   * stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
531   * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
532   * {@link #copyInto} and forget the {@code SetView} itself.
533   *
534   * @since 2.0
535   */
536  public abstract static class SetView<E> extends AbstractSet<E> {
537    private SetView() {} // no subclasses but our own
538
539    /**
540     * Returns an immutable copy of the current contents of this set view. Does not support null
541     * elements.
542     *
543     * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
544     * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
545     * that is inconsistent with {@link Object#equals(Object)}.
546     */
547    public ImmutableSet<E> immutableCopy() {
548      return ImmutableSet.copyOf(this);
549    }
550
551    /**
552     * Copies the current contents of this set view into an existing set. This method has equivalent
553     * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
554     * same notion of equivalence.
555     *
556     * @return a reference to {@code set}, for convenience
557     */
558    // Note: S should logically extend Set<? super E> but can't due to either
559    // some javac bug or some weirdness in the spec, not sure which.
560    @CanIgnoreReturnValue
561    public <S extends Set<E>> S copyInto(S set) {
562      set.addAll(this);
563      return set;
564    }
565
566    /**
567     * Guaranteed to throw an exception and leave the collection unmodified.
568     *
569     * @throws UnsupportedOperationException always
570     * @deprecated Unsupported operation.
571     */
572    @CanIgnoreReturnValue
573    @Deprecated
574    @Override
575    public final boolean add(E e) {
576      throw new UnsupportedOperationException();
577    }
578
579    /**
580     * Guaranteed to throw an exception and leave the collection unmodified.
581     *
582     * @throws UnsupportedOperationException always
583     * @deprecated Unsupported operation.
584     */
585    @CanIgnoreReturnValue
586    @Deprecated
587    @Override
588    public final boolean remove(Object object) {
589      throw new UnsupportedOperationException();
590    }
591
592    /**
593     * Guaranteed to throw an exception and leave the collection unmodified.
594     *
595     * @throws UnsupportedOperationException always
596     * @deprecated Unsupported operation.
597     */
598    @CanIgnoreReturnValue
599    @Deprecated
600    @Override
601    public final boolean addAll(Collection<? extends E> newElements) {
602      throw new UnsupportedOperationException();
603    }
604
605    /**
606     * Guaranteed to throw an exception and leave the collection unmodified.
607     *
608     * @throws UnsupportedOperationException always
609     * @deprecated Unsupported operation.
610     */
611    @CanIgnoreReturnValue
612    @Deprecated
613    @Override
614    public final boolean removeAll(Collection<?> oldElements) {
615      throw new UnsupportedOperationException();
616    }
617
618    /**
619     * Guaranteed to throw an exception and leave the collection unmodified.
620     *
621     * @throws UnsupportedOperationException always
622     * @deprecated Unsupported operation.
623     */
624    @CanIgnoreReturnValue
625    @Deprecated
626    @Override
627    public final boolean retainAll(Collection<?> elementsToKeep) {
628      throw new UnsupportedOperationException();
629    }
630
631    /**
632     * Guaranteed to throw an exception and leave the collection unmodified.
633     *
634     * @throws UnsupportedOperationException always
635     * @deprecated Unsupported operation.
636     */
637    @Deprecated
638    @Override
639    public final void clear() {
640      throw new UnsupportedOperationException();
641    }
642
643    /**
644     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
645     *
646     * @since 20.0 (present with return type {@link Iterator} since 2.0)
647     */
648    @Override
649    public abstract UnmodifiableIterator<E> iterator();
650  }
651
652  /**
653   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
654   * elements that are contained in either backing set. Iterating over the returned set iterates
655   * first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
656   * that is not contained in {@code set1}.
657   *
658   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
659   * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an
660   * {@code IdentityHashMap} all are).
661   */
662  public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
663    checkNotNull(set1, "set1");
664    checkNotNull(set2, "set2");
665
666    return new SetView<E>() {
667      @Override
668      public int size() {
669        int size = set1.size();
670        for (E e : set2) {
671          if (!set1.contains(e)) {
672            size++;
673          }
674        }
675        return size;
676      }
677
678      @Override
679      public boolean isEmpty() {
680        return set1.isEmpty() && set2.isEmpty();
681      }
682
683      @Override
684      public UnmodifiableIterator<E> iterator() {
685        return new AbstractIterator<E>() {
686          final Iterator<? extends E> itr1 = set1.iterator();
687          final Iterator<? extends E> itr2 = set2.iterator();
688
689          @Override
690          protected E computeNext() {
691            if (itr1.hasNext()) {
692              return itr1.next();
693            }
694            while (itr2.hasNext()) {
695              E e = itr2.next();
696              if (!set1.contains(e)) {
697                return e;
698              }
699            }
700            return endOfData();
701          }
702        };
703      }
704
705      @Override
706      public boolean contains(Object object) {
707        return set1.contains(object) || set2.contains(object);
708      }
709
710      @Override
711      public <S extends Set<E>> S copyInto(S set) {
712        set.addAll(set1);
713        set.addAll(set2);
714        return set;
715      }
716
717      @Override
718      public ImmutableSet<E> immutableCopy() {
719        return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
720      }
721    };
722  }
723
724  /**
725   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
726   * all elements that are contained by both backing sets. The iteration order of the returned set
727   * matches that of {@code set1}.
728   *
729   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
730   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
731   * IdentityHashMap} all are).
732   *
733   * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
734   * the two sets. If you have reason to believe one of your sets will generally be smaller than the
735   * other, pass it first. Unfortunately, since this method sets the generic type of the returned
736   * set based on the type of the first set passed, this could in rare cases force you to make a
737   * cast, for example:
738   *
739   * <pre>{@code
740   * Set<Object> aFewBadObjects = ...
741   * Set<String> manyBadStrings = ...
742   *
743   * // impossible for a non-String to be in the intersection
744   * SuppressWarnings("unchecked")
745   * Set<String> badStrings = (Set) Sets.intersection(
746   *     aFewBadObjects, manyBadStrings);
747   * }</pre>
748   *
749   * <p>This is unfortunate, but should come up only very rarely.
750   */
751  public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
752    checkNotNull(set1, "set1");
753    checkNotNull(set2, "set2");
754
755    return new SetView<E>() {
756      @Override
757      public UnmodifiableIterator<E> iterator() {
758        return new AbstractIterator<E>() {
759          final Iterator<E> itr = set1.iterator();
760
761          @Override
762          protected E computeNext() {
763            while (itr.hasNext()) {
764              E e = itr.next();
765              if (set2.contains(e)) {
766                return e;
767              }
768            }
769            return endOfData();
770          }
771        };
772      }
773
774      @Override
775      public int size() {
776        int size = 0;
777        for (E e : set1) {
778          if (set2.contains(e)) {
779            size++;
780          }
781        }
782        return size;
783      }
784
785      @Override
786      public boolean isEmpty() {
787        return Collections.disjoint(set2, set1);
788      }
789
790      @Override
791      public boolean contains(Object object) {
792        return set1.contains(object) && set2.contains(object);
793      }
794
795      @Override
796      public boolean containsAll(Collection<?> collection) {
797        return set1.containsAll(collection) && set2.containsAll(collection);
798      }
799    };
800  }
801
802  /**
803   * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
804   * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
805   * may also contain elements not present in {@code set1}; these are simply ignored. The iteration
806   * order of the returned set matches that of {@code set1}.
807   *
808   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
809   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
810   * IdentityHashMap} all are).
811   */
812  public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
813    checkNotNull(set1, "set1");
814    checkNotNull(set2, "set2");
815
816    return new SetView<E>() {
817      @Override
818      public UnmodifiableIterator<E> iterator() {
819        return new AbstractIterator<E>() {
820          final Iterator<E> itr = set1.iterator();
821
822          @Override
823          protected E computeNext() {
824            while (itr.hasNext()) {
825              E e = itr.next();
826              if (!set2.contains(e)) {
827                return e;
828              }
829            }
830            return endOfData();
831          }
832        };
833      }
834
835      @Override
836      public int size() {
837        int size = 0;
838        for (E e : set1) {
839          if (!set2.contains(e)) {
840            size++;
841          }
842        }
843        return size;
844      }
845
846      @Override
847      public boolean isEmpty() {
848        return set2.containsAll(set1);
849      }
850
851      @Override
852      public boolean contains(Object element) {
853        return set1.contains(element) && !set2.contains(element);
854      }
855    };
856  }
857
858  /**
859   * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
860   * contains all elements that are contained in either {@code set1} or {@code set2} but not in
861   * both. The iteration order of the returned set is undefined.
862   *
863   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
864   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
865   * IdentityHashMap} all are).
866   *
867   * @since 3.0
868   */
869  public static <E> SetView<E> symmetricDifference(
870      final Set<? extends E> set1, final Set<? extends E> set2) {
871    checkNotNull(set1, "set1");
872    checkNotNull(set2, "set2");
873
874    return new SetView<E>() {
875      @Override
876      public UnmodifiableIterator<E> iterator() {
877        final Iterator<? extends E> itr1 = set1.iterator();
878        final Iterator<? extends E> itr2 = set2.iterator();
879        return new AbstractIterator<E>() {
880          @Override
881          public E computeNext() {
882            while (itr1.hasNext()) {
883              E elem1 = itr1.next();
884              if (!set2.contains(elem1)) {
885                return elem1;
886              }
887            }
888            while (itr2.hasNext()) {
889              E elem2 = itr2.next();
890              if (!set1.contains(elem2)) {
891                return elem2;
892              }
893            }
894            return endOfData();
895          }
896        };
897      }
898
899      @Override
900      public int size() {
901        int size = 0;
902        for (E e : set1) {
903          if (!set2.contains(e)) {
904            size++;
905          }
906        }
907        for (E e : set2) {
908          if (!set1.contains(e)) {
909            size++;
910          }
911        }
912        return size;
913      }
914
915      @Override
916      public boolean isEmpty() {
917        return set1.equals(set2);
918      }
919
920      @Override
921      public boolean contains(Object element) {
922        return set1.contains(element) ^ set2.contains(element);
923      }
924    };
925  }
926
927  /**
928   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
929   * view of {@code unfiltered}; changes to one affect the other.
930   *
931   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
932   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
933   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
934   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
935   * that satisfy the filter will be removed from the underlying set.
936   *
937   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
938   *
939   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
940   * the underlying set and determine which elements satisfy the filter. When a live view is
941   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
942   * use the copy.
943   *
944   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
945   * {@link Predicate#apply}. Do not provide a predicate such as {@code
946   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
947   * Iterables#filter(Iterable, Class)} for related functionality.)
948   *
949   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
950   * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
951   * you to migrate to streams.
952   */
953  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
954  public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
955    if (unfiltered instanceof SortedSet) {
956      return filter((SortedSet<E>) unfiltered, predicate);
957    }
958    if (unfiltered instanceof FilteredSet) {
959      // Support clear(), removeAll(), and retainAll() when filtering a filtered
960      // collection.
961      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
962      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
963      return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
964    }
965
966    return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
967  }
968
969  /**
970   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
971   * returned set is a live view of {@code unfiltered}; changes to one affect the other.
972   *
973   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
974   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
975   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
976   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
977   * that satisfy the filter will be removed from the underlying set.
978   *
979   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
980   *
981   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
982   * the underlying set and determine which elements satisfy the filter. When a live view is
983   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
984   * use the copy.
985   *
986   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
987   * {@link Predicate#apply}. Do not provide a predicate such as {@code
988   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
989   * Iterables#filter(Iterable, Class)} for related functionality.)
990   *
991   * @since 11.0
992   */
993  public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
994    if (unfiltered instanceof FilteredSet) {
995      // Support clear(), removeAll(), and retainAll() when filtering a filtered
996      // collection.
997      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
998      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
999      return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1000    }
1001
1002    return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1003  }
1004
1005  /**
1006   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
1007   * The returned set is a live view of {@code unfiltered}; changes to one affect the other.
1008   *
1009   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1010   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1011   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1012   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1013   * that satisfy the filter will be removed from the underlying set.
1014   *
1015   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1016   *
1017   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1018   * the underlying set and determine which elements satisfy the filter. When a live view is
1019   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1020   * use the copy.
1021   *
1022   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1023   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1024   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1025   * Iterables#filter(Iterable, Class)} for related functionality.)
1026   *
1027   * @since 14.0
1028   */
1029  @GwtIncompatible // NavigableSet
1030  @SuppressWarnings("unchecked")
1031  public static <E> NavigableSet<E> filter(
1032      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1033    if (unfiltered instanceof FilteredSet) {
1034      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1035      // collection.
1036      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1037      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1038      return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1039    }
1040
1041    return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1042  }
1043
1044  private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
1045    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
1046      super(unfiltered, predicate);
1047    }
1048
1049    @Override
1050    public boolean equals(@NullableDecl Object object) {
1051      return equalsImpl(this, object);
1052    }
1053
1054    @Override
1055    public int hashCode() {
1056      return hashCodeImpl(this);
1057    }
1058  }
1059
1060  private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
1061
1062    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1063      super(unfiltered, predicate);
1064    }
1065
1066    @Override
1067    public Comparator<? super E> comparator() {
1068      return ((SortedSet<E>) unfiltered).comparator();
1069    }
1070
1071    @Override
1072    public SortedSet<E> subSet(E fromElement, E toElement) {
1073      return new FilteredSortedSet<E>(
1074          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1075    }
1076
1077    @Override
1078    public SortedSet<E> headSet(E toElement) {
1079      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1080    }
1081
1082    @Override
1083    public SortedSet<E> tailSet(E fromElement) {
1084      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1085    }
1086
1087    @Override
1088    public E first() {
1089      return Iterators.find(unfiltered.iterator(), predicate);
1090    }
1091
1092    @Override
1093    public E last() {
1094      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1095      while (true) {
1096        E element = sortedUnfiltered.last();
1097        if (predicate.apply(element)) {
1098          return element;
1099        }
1100        sortedUnfiltered = sortedUnfiltered.headSet(element);
1101      }
1102    }
1103  }
1104
1105  @GwtIncompatible // NavigableSet
1106  private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
1107      implements NavigableSet<E> {
1108    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1109      super(unfiltered, predicate);
1110    }
1111
1112    NavigableSet<E> unfiltered() {
1113      return (NavigableSet<E>) unfiltered;
1114    }
1115
1116    @Override
1117    @NullableDecl
1118    public E lower(E e) {
1119      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1120    }
1121
1122    @Override
1123    @NullableDecl
1124    public E floor(E e) {
1125      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1126    }
1127
1128    @Override
1129    public E ceiling(E e) {
1130      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1131    }
1132
1133    @Override
1134    public E higher(E e) {
1135      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1136    }
1137
1138    @Override
1139    public E pollFirst() {
1140      return Iterables.removeFirstMatching(unfiltered(), predicate);
1141    }
1142
1143    @Override
1144    public E pollLast() {
1145      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1146    }
1147
1148    @Override
1149    public NavigableSet<E> descendingSet() {
1150      return Sets.filter(unfiltered().descendingSet(), predicate);
1151    }
1152
1153    @Override
1154    public Iterator<E> descendingIterator() {
1155      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1156    }
1157
1158    @Override
1159    public E last() {
1160      return Iterators.find(unfiltered().descendingIterator(), predicate);
1161    }
1162
1163    @Override
1164    public NavigableSet<E> subSet(
1165        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1166      return filter(
1167          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1168    }
1169
1170    @Override
1171    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1172      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1173    }
1174
1175    @Override
1176    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1177      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1178    }
1179  }
1180
1181  /**
1182   * Returns every possible list that can be formed by choosing one element from each of the given
1183   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1184   * product</a>" of the sets. For example:
1185   *
1186   * <pre>{@code
1187   * Sets.cartesianProduct(ImmutableList.of(
1188   *     ImmutableSet.of(1, 2),
1189   *     ImmutableSet.of("A", "B", "C")))
1190   * }</pre>
1191   *
1192   * <p>returns a set containing six lists:
1193   *
1194   * <ul>
1195   *   <li>{@code ImmutableList.of(1, "A")}
1196   *   <li>{@code ImmutableList.of(1, "B")}
1197   *   <li>{@code ImmutableList.of(1, "C")}
1198   *   <li>{@code ImmutableList.of(2, "A")}
1199   *   <li>{@code ImmutableList.of(2, "B")}
1200   *   <li>{@code ImmutableList.of(2, "C")}
1201   * </ul>
1202   *
1203   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1204   * products that you would get from nesting for loops:
1205   *
1206   * <pre>{@code
1207   * for (B b0 : sets.get(0)) {
1208   *   for (B b1 : sets.get(1)) {
1209   *     ...
1210   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1211   *     // operate on tuple
1212   *   }
1213   * }
1214   * }</pre>
1215   *
1216   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1217   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1218   * list (counter-intuitive, but mathematically consistent).
1219   *
1220   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1221   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1222   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1223   * iterated are the individual lists created, and these are not retained after iteration.
1224   *
1225   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1226   *     sets should appear in the resulting lists
1227   * @param <B> any common base class shared by all axes (often just {@link Object})
1228   * @return the Cartesian product, as an immutable set containing immutable lists
1229   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1230   *     provided set is null
1231   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1232   * @since 2.0
1233   */
1234  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1235    return CartesianSet.create(sets);
1236  }
1237
1238  /**
1239   * Returns every possible list that can be formed by choosing one element from each of the given
1240   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1241   * product</a>" of the sets. For example:
1242   *
1243   * <pre>{@code
1244   * Sets.cartesianProduct(
1245   *     ImmutableSet.of(1, 2),
1246   *     ImmutableSet.of("A", "B", "C"))
1247   * }</pre>
1248   *
1249   * <p>returns a set containing six lists:
1250   *
1251   * <ul>
1252   *   <li>{@code ImmutableList.of(1, "A")}
1253   *   <li>{@code ImmutableList.of(1, "B")}
1254   *   <li>{@code ImmutableList.of(1, "C")}
1255   *   <li>{@code ImmutableList.of(2, "A")}
1256   *   <li>{@code ImmutableList.of(2, "B")}
1257   *   <li>{@code ImmutableList.of(2, "C")}
1258   * </ul>
1259   *
1260   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1261   * products that you would get from nesting for loops:
1262   *
1263   * <pre>{@code
1264   * for (B b0 : sets.get(0)) {
1265   *   for (B b1 : sets.get(1)) {
1266   *     ...
1267   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1268   *     // operate on tuple
1269   *   }
1270   * }
1271   * }</pre>
1272   *
1273   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1274   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1275   * list (counter-intuitive, but mathematically consistent).
1276   *
1277   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1278   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1279   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1280   * iterated are the individual lists created, and these are not retained after iteration.
1281   *
1282   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1283   *     sets should appear in the resulting lists
1284   * @param <B> any common base class shared by all axes (often just {@link Object})
1285   * @return the Cartesian product, as an immutable set containing immutable lists
1286   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1287   *     provided set is null
1288   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1289   * @since 2.0
1290   */
1291  @SafeVarargs
1292  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1293    return cartesianProduct(Arrays.asList(sets));
1294  }
1295
1296  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1297      implements Set<List<E>> {
1298    private final transient ImmutableList<ImmutableSet<E>> axes;
1299    private final transient CartesianList<E> delegate;
1300
1301    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1302      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1303      for (Set<? extends E> set : sets) {
1304        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1305        if (copy.isEmpty()) {
1306          return ImmutableSet.of();
1307        }
1308        axesBuilder.add(copy);
1309      }
1310      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1311      ImmutableList<List<E>> listAxes =
1312          new ImmutableList<List<E>>() {
1313            @Override
1314            public int size() {
1315              return axes.size();
1316            }
1317
1318            @Override
1319            public List<E> get(int index) {
1320              return axes.get(index).asList();
1321            }
1322
1323            @Override
1324            boolean isPartialView() {
1325              return true;
1326            }
1327          };
1328      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1329    }
1330
1331    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1332      this.axes = axes;
1333      this.delegate = delegate;
1334    }
1335
1336    @Override
1337    protected Collection<List<E>> delegate() {
1338      return delegate;
1339    }
1340
1341    @Override
1342    public boolean equals(@NullableDecl Object object) {
1343      // Warning: this is broken if size() == 0, so it is critical that we
1344      // substitute an empty ImmutableSet to the user in place of this
1345      if (object instanceof CartesianSet) {
1346        CartesianSet<?> that = (CartesianSet<?>) object;
1347        return this.axes.equals(that.axes);
1348      }
1349      return super.equals(object);
1350    }
1351
1352    @Override
1353    public int hashCode() {
1354      // Warning: this is broken if size() == 0, so it is critical that we
1355      // substitute an empty ImmutableSet to the user in place of this
1356
1357      // It's a weird formula, but tests prove it works.
1358      int adjust = size() - 1;
1359      for (int i = 0; i < axes.size(); i++) {
1360        adjust *= 31;
1361        adjust = ~~adjust;
1362        // in GWT, we have to deal with integer overflow carefully
1363      }
1364      int hash = 1;
1365      for (Set<E> axis : axes) {
1366        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1367
1368        hash = ~~hash;
1369      }
1370      hash += adjust;
1371      return ~~hash;
1372    }
1373  }
1374
1375  /**
1376   * Returns the set of all possible subsets of {@code set}. For example, {@code
1377   * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
1378   *
1379   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1380   * set. The order in which these subsets appear in the outer set is undefined. Note that the power
1381   * set of the empty set is not the empty set, but a one-element set containing the empty set.
1382   *
1383   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1384   * are identical, even if the input set uses a different concept of equivalence.
1385   *
1386   * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
1387   * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
1388   * is merely copied. Only as the power set is iterated are the individual subsets created, and
1389   * these subsets themselves occupy only a small constant amount of memory.
1390   *
1391   * @param set the set of elements to construct a power set from
1392   * @return the power set, as an immutable set of immutable sets
1393   * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
1394   *     power set size to exceed the {@code int} range)
1395   * @throws NullPointerException if {@code set} is or contains {@code null}
1396   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
1397   * @since 4.0
1398   */
1399  @GwtCompatible(serializable = false)
1400  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1401    return new PowerSet<E>(set);
1402  }
1403
1404  private static final class SubSet<E> extends AbstractSet<E> {
1405    private final ImmutableMap<E, Integer> inputSet;
1406    private final int mask;
1407
1408    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1409      this.inputSet = inputSet;
1410      this.mask = mask;
1411    }
1412
1413    @Override
1414    public Iterator<E> iterator() {
1415      return new UnmodifiableIterator<E>() {
1416        final ImmutableList<E> elements = inputSet.keySet().asList();
1417        int remainingSetBits = mask;
1418
1419        @Override
1420        public boolean hasNext() {
1421          return remainingSetBits != 0;
1422        }
1423
1424        @Override
1425        public E next() {
1426          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1427          if (index == 32) {
1428            throw new NoSuchElementException();
1429          }
1430          remainingSetBits &= ~(1 << index);
1431          return elements.get(index);
1432        }
1433      };
1434    }
1435
1436    @Override
1437    public int size() {
1438      return Integer.bitCount(mask);
1439    }
1440
1441    @Override
1442    public boolean contains(@NullableDecl Object o) {
1443      Integer index = inputSet.get(o);
1444      return index != null && (mask & (1 << index)) != 0;
1445    }
1446  }
1447
1448  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1449    final ImmutableMap<E, Integer> inputSet;
1450
1451    PowerSet(Set<E> input) {
1452      checkArgument(
1453          input.size() <= 30, "Too many elements to create power set: %s > 30", input.size());
1454      this.inputSet = Maps.indexMap(input);
1455    }
1456
1457    @Override
1458    public int size() {
1459      return 1 << inputSet.size();
1460    }
1461
1462    @Override
1463    public boolean isEmpty() {
1464      return false;
1465    }
1466
1467    @Override
1468    public Iterator<Set<E>> iterator() {
1469      return new AbstractIndexedListIterator<Set<E>>(size()) {
1470        @Override
1471        protected Set<E> get(final int setBits) {
1472          return new SubSet<E>(inputSet, setBits);
1473        }
1474      };
1475    }
1476
1477    @Override
1478    public boolean contains(@NullableDecl Object obj) {
1479      if (obj instanceof Set) {
1480        Set<?> set = (Set<?>) obj;
1481        return inputSet.keySet().containsAll(set);
1482      }
1483      return false;
1484    }
1485
1486    @Override
1487    public boolean equals(@NullableDecl Object obj) {
1488      if (obj instanceof PowerSet) {
1489        PowerSet<?> that = (PowerSet<?>) obj;
1490        return inputSet.equals(that.inputSet);
1491      }
1492      return super.equals(obj);
1493    }
1494
1495    @Override
1496    public int hashCode() {
1497      /*
1498       * The sum of the sums of the hash codes in each subset is just the sum of
1499       * each input element's hash code times the number of sets that element
1500       * appears in. Each element appears in exactly half of the 2^n sets, so:
1501       */
1502      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1503    }
1504
1505    @Override
1506    public String toString() {
1507      return "powerSet(" + inputSet + ")";
1508    }
1509  }
1510
1511  /**
1512   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1513   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1514   *
1515   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1516   * set. The order in which these subsets appear in the outer set is undefined.
1517   *
1518   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1519   * are identical, even if the input set uses a different concept of equivalence.
1520   *
1521   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1522   * the result set is constructed, the input set is merely copied. Only as the result set is
1523   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1524   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1525   * {@code combinations} does not retain the individual subsets.
1526   *
1527   * @param set the set of elements to take combinations of
1528   * @param size the number of elements per combination
1529   * @return the set of all combinations of {@code size} elements from {@code set}
1530   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1531   *     inclusive
1532   * @throws NullPointerException if {@code set} is or contains {@code null}
1533   * @since 23.0
1534   */
1535  @Beta
1536  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1537    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1538    checkNonnegative(size, "size");
1539    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1540    if (size == 0) {
1541      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1542    } else if (size == index.size()) {
1543      return ImmutableSet.<Set<E>>of(index.keySet());
1544    }
1545    return new AbstractSet<Set<E>>() {
1546      @Override
1547      public boolean contains(@NullableDecl Object o) {
1548        if (o instanceof Set) {
1549          Set<?> s = (Set<?>) o;
1550          return s.size() == size && index.keySet().containsAll(s);
1551        }
1552        return false;
1553      }
1554
1555      @Override
1556      public Iterator<Set<E>> iterator() {
1557        return new AbstractIterator<Set<E>>() {
1558          final BitSet bits = new BitSet(index.size());
1559
1560          @Override
1561          protected Set<E> computeNext() {
1562            if (bits.isEmpty()) {
1563              bits.set(0, size);
1564            } else {
1565              int firstSetBit = bits.nextSetBit(0);
1566              int bitToFlip = bits.nextClearBit(firstSetBit);
1567
1568              if (bitToFlip == index.size()) {
1569                return endOfData();
1570              }
1571              /*
1572               * The current set in sorted order looks like
1573               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1574               * where it does *not* contain bitToFlip.
1575               *
1576               * The next combination is
1577               *
1578               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1579               *
1580               * This is lexicographically next if you look at the combinations in descending order
1581               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1582               */
1583
1584              bits.set(0, bitToFlip - firstSetBit - 1);
1585              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1586              bits.set(bitToFlip);
1587            }
1588            final BitSet copy = (BitSet) bits.clone();
1589            return new AbstractSet<E>() {
1590              @Override
1591              public boolean contains(@NullableDecl Object o) {
1592                Integer i = index.get(o);
1593                return i != null && copy.get(i);
1594              }
1595
1596              @Override
1597              public Iterator<E> iterator() {
1598                return new AbstractIterator<E>() {
1599                  int i = -1;
1600
1601                  @Override
1602                  protected E computeNext() {
1603                    i = copy.nextSetBit(i + 1);
1604                    if (i == -1) {
1605                      return endOfData();
1606                    }
1607                    return index.keySet().asList().get(i);
1608                  }
1609                };
1610              }
1611
1612              @Override
1613              public int size() {
1614                return size;
1615              }
1616            };
1617          }
1618        };
1619      }
1620
1621      @Override
1622      public int size() {
1623        return IntMath.binomial(index.size(), size);
1624      }
1625
1626      @Override
1627      public String toString() {
1628        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1629      }
1630    };
1631  }
1632
1633  /** An implementation for {@link Set#hashCode()}. */
1634  static int hashCodeImpl(Set<?> s) {
1635    int hashCode = 0;
1636    for (Object o : s) {
1637      hashCode += o != null ? o.hashCode() : 0;
1638
1639      hashCode = ~~hashCode;
1640      // Needed to deal with unusual integer overflow in GWT.
1641    }
1642    return hashCode;
1643  }
1644
1645  /** An implementation for {@link Set#equals(Object)}. */
1646  static boolean equalsImpl(Set<?> s, @NullableDecl Object object) {
1647    if (s == object) {
1648      return true;
1649    }
1650    if (object instanceof Set) {
1651      Set<?> o = (Set<?>) object;
1652
1653      try {
1654        return s.size() == o.size() && s.containsAll(o);
1655      } catch (NullPointerException | ClassCastException ignored) {
1656        return false;
1657      }
1658    }
1659    return false;
1660  }
1661
1662  /**
1663   * Returns an unmodifiable view of the specified navigable set. This method allows modules to
1664   * provide users with "read-only" access to internal navigable sets. Query operations on the
1665   * returned set "read through" to the specified set, and attempts to modify the returned set,
1666   * whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
1667   *
1668   * <p>The returned navigable set will be serializable if the specified navigable set is
1669   * serializable.
1670   *
1671   * @param set the navigable set for which an unmodifiable view is to be returned
1672   * @return an unmodifiable view of the specified navigable set
1673   * @since 12.0
1674   */
1675  public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
1676    if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
1677      return set;
1678    }
1679    return new UnmodifiableNavigableSet<E>(set);
1680  }
1681
1682  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
1683      implements NavigableSet<E>, Serializable {
1684    private final NavigableSet<E> delegate;
1685    private final SortedSet<E> unmodifiableDelegate;
1686
1687    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1688      this.delegate = checkNotNull(delegate);
1689      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1690    }
1691
1692    @Override
1693    protected SortedSet<E> delegate() {
1694      return unmodifiableDelegate;
1695    }
1696
1697    @Override
1698    public E lower(E e) {
1699      return delegate.lower(e);
1700    }
1701
1702    @Override
1703    public E floor(E e) {
1704      return delegate.floor(e);
1705    }
1706
1707    @Override
1708    public E ceiling(E e) {
1709      return delegate.ceiling(e);
1710    }
1711
1712    @Override
1713    public E higher(E e) {
1714      return delegate.higher(e);
1715    }
1716
1717    @Override
1718    public E pollFirst() {
1719      throw new UnsupportedOperationException();
1720    }
1721
1722    @Override
1723    public E pollLast() {
1724      throw new UnsupportedOperationException();
1725    }
1726
1727    @MonotonicNonNullDecl private transient UnmodifiableNavigableSet<E> descendingSet;
1728
1729    @Override
1730    public NavigableSet<E> descendingSet() {
1731      UnmodifiableNavigableSet<E> result = descendingSet;
1732      if (result == null) {
1733        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
1734        result.descendingSet = this;
1735      }
1736      return result;
1737    }
1738
1739    @Override
1740    public Iterator<E> descendingIterator() {
1741      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1742    }
1743
1744    @Override
1745    public NavigableSet<E> subSet(
1746        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1747      return unmodifiableNavigableSet(
1748          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1749    }
1750
1751    @Override
1752    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1753      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1754    }
1755
1756    @Override
1757    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1758      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1759    }
1760
1761    private static final long serialVersionUID = 0;
1762  }
1763
1764  /**
1765   * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
1766   * order to guarantee serial access, it is critical that <b>all</b> access to the backing
1767   * navigable set is accomplished through the returned navigable set (or its views).
1768   *
1769   * <p>It is imperative that the user manually synchronize on the returned sorted set when
1770   * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
1771   * {@code tailSet} views.
1772   *
1773   * <pre>{@code
1774   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1775   *  ...
1776   * synchronized (set) {
1777   *   // Must be in the synchronized block
1778   *   Iterator<E> it = set.iterator();
1779   *   while (it.hasNext()) {
1780   *     foo(it.next());
1781   *   }
1782   * }
1783   * }</pre>
1784   *
1785   * <p>or:
1786   *
1787   * <pre>{@code
1788   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1789   * NavigableSet<E> set2 = set.descendingSet().headSet(foo);
1790   *  ...
1791   * synchronized (set) { // Note: set, not set2!!!
1792   *   // Must be in the synchronized block
1793   *   Iterator<E> it = set2.descendingIterator();
1794   *   while (it.hasNext())
1795   *     foo(it.next());
1796   *   }
1797   * }
1798   * }</pre>
1799   *
1800   * <p>Failure to follow this advice may result in non-deterministic behavior.
1801   *
1802   * <p>The returned navigable set will be serializable if the specified navigable set is
1803   * serializable.
1804   *
1805   * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
1806   * @return a synchronized view of the specified navigable set.
1807   * @since 13.0
1808   */
1809  @GwtIncompatible // NavigableSet
1810  public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
1811    return Synchronized.navigableSet(navigableSet);
1812  }
1813
1814  /** Remove each element in an iterable from a set. */
1815  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
1816    boolean changed = false;
1817    while (iterator.hasNext()) {
1818      changed |= set.remove(iterator.next());
1819    }
1820    return changed;
1821  }
1822
1823  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
1824    checkNotNull(collection); // for GWT
1825    if (collection instanceof Multiset) {
1826      collection = ((Multiset<?>) collection).elementSet();
1827    }
1828    /*
1829     * AbstractSet.removeAll(List) has quadratic behavior if the list size
1830     * is just more than the set's size.  We augment the test by
1831     * assuming that sets have fast contains() performance, and other
1832     * collections don't.  See
1833     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
1834     */
1835    if (collection instanceof Set && collection.size() > set.size()) {
1836      return Iterators.removeAll(set.iterator(), collection);
1837    } else {
1838      return removeAllImpl(set, collection.iterator());
1839    }
1840  }
1841
1842  @GwtIncompatible // NavigableSet
1843  static class DescendingSet<E> extends ForwardingNavigableSet<E> {
1844    private final NavigableSet<E> forward;
1845
1846    DescendingSet(NavigableSet<E> forward) {
1847      this.forward = forward;
1848    }
1849
1850    @Override
1851    protected NavigableSet<E> delegate() {
1852      return forward;
1853    }
1854
1855    @Override
1856    public E lower(E e) {
1857      return forward.higher(e);
1858    }
1859
1860    @Override
1861    public E floor(E e) {
1862      return forward.ceiling(e);
1863    }
1864
1865    @Override
1866    public E ceiling(E e) {
1867      return forward.floor(e);
1868    }
1869
1870    @Override
1871    public E higher(E e) {
1872      return forward.lower(e);
1873    }
1874
1875    @Override
1876    public E pollFirst() {
1877      return forward.pollLast();
1878    }
1879
1880    @Override
1881    public E pollLast() {
1882      return forward.pollFirst();
1883    }
1884
1885    @Override
1886    public NavigableSet<E> descendingSet() {
1887      return forward;
1888    }
1889
1890    @Override
1891    public Iterator<E> descendingIterator() {
1892      return forward.iterator();
1893    }
1894
1895    @Override
1896    public NavigableSet<E> subSet(
1897        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1898      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
1899    }
1900
1901    @Override
1902    public SortedSet<E> subSet(E fromElement, E toElement) {
1903      return standardSubSet(fromElement, toElement);
1904    }
1905
1906    @Override
1907    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1908      return forward.tailSet(toElement, inclusive).descendingSet();
1909    }
1910
1911    @Override
1912    public SortedSet<E> headSet(E toElement) {
1913      return standardHeadSet(toElement);
1914    }
1915
1916    @Override
1917    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1918      return forward.headSet(fromElement, inclusive).descendingSet();
1919    }
1920
1921    @Override
1922    public SortedSet<E> tailSet(E fromElement) {
1923      return standardTailSet(fromElement);
1924    }
1925
1926    @SuppressWarnings("unchecked")
1927    @Override
1928    public Comparator<? super E> comparator() {
1929      Comparator<? super E> forwardComparator = forward.comparator();
1930      if (forwardComparator == null) {
1931        return (Comparator) Ordering.natural().reverse();
1932      } else {
1933        return reverse(forwardComparator);
1934      }
1935    }
1936
1937    // If we inline this, we get a javac error.
1938    private static <T> Ordering<T> reverse(Comparator<T> forward) {
1939      return Ordering.from(forward).reverse();
1940    }
1941
1942    @Override
1943    public E first() {
1944      return forward.last();
1945    }
1946
1947    @Override
1948    public E last() {
1949      return forward.first();
1950    }
1951
1952    @Override
1953    public Iterator<E> iterator() {
1954      return forward.descendingIterator();
1955    }
1956
1957    @Override
1958    public Object[] toArray() {
1959      return standardToArray();
1960    }
1961
1962    @Override
1963    public <T> T[] toArray(T[] array) {
1964      return standardToArray(array);
1965    }
1966
1967    @Override
1968    public String toString() {
1969      return standardToString();
1970    }
1971  }
1972
1973  /**
1974   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
1975   *
1976   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
1977   * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
1978   * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
1979   * boolean) headSet()}) to actually construct the view. Consult these methods for a full
1980   * description of the returned view's behavior.
1981   *
1982   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
1983   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
1984   * Comparator}, which can violate the natural ordering. Using this method (or in general using
1985   * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
1986   *
1987   * @since 20.0
1988   */
1989  @Beta
1990  @GwtIncompatible // NavigableSet
1991  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
1992      NavigableSet<K> set, Range<K> range) {
1993    if (set.comparator() != null
1994        && set.comparator() != Ordering.natural()
1995        && range.hasLowerBound()
1996        && range.hasUpperBound()) {
1997      checkArgument(
1998          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
1999          "set is using a custom comparator which is inconsistent with the natural ordering.");
2000    }
2001    if (range.hasLowerBound() && range.hasUpperBound()) {
2002      return set.subSet(
2003          range.lowerEndpoint(),
2004          range.lowerBoundType() == BoundType.CLOSED,
2005          range.upperEndpoint(),
2006          range.upperBoundType() == BoundType.CLOSED);
2007    } else if (range.hasLowerBound()) {
2008      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2009    } else if (range.hasUpperBound()) {
2010      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2011    }
2012    return checkNotNull(set);
2013  }
2014}