001/* 002 * Copyright (C) 2016 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import com.google.common.annotations.Beta; 020import java.util.Set; 021import org.checkerframework.checker.nullness.compatqual.NullableDecl; 022 023/** 024 * An interface for <a 025 * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data, 026 * whose edges have associated non-unique values. 027 * 028 * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes. 029 * 030 * <p>There are three primary interfaces provided to represent graphs. In order of increasing 031 * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally 032 * prefer the simplest interface that satisfies your use case. See the <a 033 * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type"> 034 * "Choosing the right graph type"</a> section of the Guava User Guide for more details. 035 * 036 * <h3>Capabilities</h3> 037 * 038 * <p>{@code ValueGraph} supports the following use cases (<a 039 * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of 040 * terms</a>): 041 * 042 * <ul> 043 * <li>directed graphs 044 * <li>undirected graphs 045 * <li>graphs that do/don't allow self-loops 046 * <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered 047 * <li>graphs whose edges have associated values 048 * </ul> 049 * 050 * <p>{@code ValueGraph}, as a subtype of {@code Graph}, explicitly does not support parallel edges, 051 * and forbids implementations or extensions with parallel edges. If you need parallel edges, use 052 * {@link Network}. (You can use a positive {@code Integer} edge value as a loose representation of 053 * edge multiplicity, but the {@code *degree()} and mutation methods will not reflect your 054 * interpretation of the edge value as its multiplicity.) 055 * 056 * <h3>Building a {@code ValueGraph}</h3> 057 * 058 * <p>The implementation classes that {@code common.graph} provides are not public, by design. To 059 * create an instance of one of the built-in implementations of {@code ValueGraph}, use the {@link 060 * ValueGraphBuilder} class: 061 * 062 * <pre>{@code 063 * MutableValueGraph<Integer, Double> graph = ValueGraphBuilder.directed().build(); 064 * }</pre> 065 * 066 * <p>{@link ValueGraphBuilder#build()} returns an instance of {@link MutableValueGraph}, which is a 067 * subtype of {@code ValueGraph} that provides methods for adding and removing nodes and edges. If 068 * you do not need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on 069 * the graph), you should use the non-mutating {@link ValueGraph} interface, or an {@link 070 * ImmutableValueGraph}. 071 * 072 * <p>You can create an immutable copy of an existing {@code ValueGraph} using {@link 073 * ImmutableValueGraph#copyOf(ValueGraph)}: 074 * 075 * <pre>{@code 076 * ImmutableValueGraph<Integer, Double> immutableGraph = ImmutableValueGraph.copyOf(graph); 077 * }</pre> 078 * 079 * <p>Instances of {@link ImmutableValueGraph} do not implement {@link MutableValueGraph} 080 * (obviously!) and are contractually guaranteed to be unmodifiable and thread-safe. 081 * 082 * <p>The Guava User Guide has <a 083 * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more 084 * information on (and examples of) building graphs</a>. 085 * 086 * <h3>Additional documentation</h3> 087 * 088 * <p>See the Guava User Guide for the {@code common.graph} package (<a 089 * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for 090 * additional documentation, including: 091 * 092 * <ul> 093 * <li><a 094 * href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence"> 095 * {@code equals()}, {@code hashCode()}, and graph equivalence</a> 096 * <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization"> 097 * Synchronization policy</a> 098 * <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes 099 * for implementors</a> 100 * </ul> 101 * 102 * @author James Sexton 103 * @author Joshua O'Madadhain 104 * @param <N> Node parameter type 105 * @param <V> Value parameter type 106 * @since 20.0 107 */ 108@Beta 109public interface ValueGraph<N, V> extends BaseGraph<N> { 110 // 111 // ValueGraph-level accessors 112 // 113 114 /** Returns all nodes in this graph, in the order specified by {@link #nodeOrder()}. */ 115 @Override 116 Set<N> nodes(); 117 118 /** Returns all edges in this graph. */ 119 @Override 120 Set<EndpointPair<N>> edges(); 121 122 /** 123 * Returns a live view of this graph as a {@link Graph}. The resulting {@link Graph} will have an 124 * edge connecting node A to node B if this {@link ValueGraph} has an edge connecting A to B. 125 */ 126 Graph<N> asGraph(); 127 128 // 129 // ValueGraph properties 130 // 131 132 /** 133 * Returns true if the edges in this graph are directed. Directed edges connect a {@link 134 * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while 135 * undirected edges connect a pair of nodes to each other. 136 */ 137 @Override 138 boolean isDirected(); 139 140 /** 141 * Returns true if this graph allows self-loops (edges that connect a node to itself). Attempting 142 * to add a self-loop to a graph that does not allow them will throw an {@link 143 * IllegalArgumentException}. 144 */ 145 @Override 146 boolean allowsSelfLoops(); 147 148 /** Returns the order of iteration for the elements of {@link #nodes()}. */ 149 @Override 150 ElementOrder<N> nodeOrder(); 151 152 // 153 // Element-level accessors 154 // 155 156 /** 157 * Returns the nodes which have an incident edge in common with {@code node} in this graph. 158 * 159 * <p>This is equal to the union of {@link #predecessors(Object)} and {@link #successors(Object)}. 160 * 161 * @throws IllegalArgumentException if {@code node} is not an element of this graph 162 */ 163 @Override 164 Set<N> adjacentNodes(N node); 165 166 /** 167 * Returns all nodes in this graph adjacent to {@code node} which can be reached by traversing 168 * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge. 169 * 170 * <p>In an undirected graph, this is equivalent to {@link #adjacentNodes(Object)}. 171 * 172 * @throws IllegalArgumentException if {@code node} is not an element of this graph 173 */ 174 @Override 175 Set<N> predecessors(N node); 176 177 /** 178 * Returns all nodes in this graph adjacent to {@code node} which can be reached by traversing 179 * {@code node}'s outgoing edges in the direction (if any) of the edge. 180 * 181 * <p>In an undirected graph, this is equivalent to {@link #adjacentNodes(Object)}. 182 * 183 * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing 184 * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}. 185 * 186 * @throws IllegalArgumentException if {@code node} is not an element of this graph 187 */ 188 @Override 189 Set<N> successors(N node); 190 191 /** 192 * Returns the edges in this graph whose endpoints include {@code node}. 193 * 194 * <p>This is equal to the union of incoming and outgoing edges. 195 * 196 * @throws IllegalArgumentException if {@code node} is not an element of this graph 197 * @since 24.0 198 */ 199 @Override 200 Set<EndpointPair<N>> incidentEdges(N node); 201 202 /** 203 * Returns the count of {@code node}'s incident edges, counting self-loops twice (equivalently, 204 * the number of times an edge touches {@code node}). 205 * 206 * <p>For directed graphs, this is equal to {@code inDegree(node) + outDegree(node)}. 207 * 208 * <p>For undirected graphs, this is equal to {@code incidentEdges(node).size()} + (number of 209 * self-loops incident to {@code node}). 210 * 211 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 212 * 213 * @throws IllegalArgumentException if {@code node} is not an element of this graph 214 */ 215 @Override 216 int degree(N node); 217 218 /** 219 * Returns the count of {@code node}'s incoming edges (equal to {@code predecessors(node).size()}) 220 * in a directed graph. In an undirected graph, returns the {@link #degree(Object)}. 221 * 222 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 223 * 224 * @throws IllegalArgumentException if {@code node} is not an element of this graph 225 */ 226 @Override 227 int inDegree(N node); 228 229 /** 230 * Returns the count of {@code node}'s outgoing edges (equal to {@code successors(node).size()}) 231 * in a directed graph. In an undirected graph, returns the {@link #degree(Object)}. 232 * 233 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 234 * 235 * @throws IllegalArgumentException if {@code node} is not an element of this graph 236 */ 237 @Override 238 int outDegree(N node); 239 240 /** 241 * Returns true if there is an edge that directly connects {@code nodeU} to {@code nodeV}. This is 242 * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}. 243 * 244 * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}. 245 * 246 * @since 23.0 247 */ 248 @Override 249 boolean hasEdgeConnecting(N nodeU, N nodeV); 250 251 /** 252 * Returns true if there is an edge that directly connects {@code endpoints} (in the order, if 253 * any, specified by {@code endpoints}). This is equivalent to {@code 254 * edges().contains(endpoints)}. 255 * 256 * <p>Unlike the other {@code EndpointPair}-accepting methods, this method does not throw if the 257 * endpoints are unordered and the graph is directed; it simply returns {@code false}. This is for 258 * consistency with the behavior of {@link Collection#contains(Object)} (which does not generally 259 * throw if the object cannot be present in the collection), and the desire to have this method's 260 * behavior be compatible with {@code edges().contains(endpoints)}. 261 * 262 * @since 27.1 263 */ 264 @Override 265 boolean hasEdgeConnecting(EndpointPair<N> endpoints); 266 267 /** 268 * Returns the value of the edge that connects {@code nodeU} to {@code nodeV}, if one is present; 269 * otherwise, returns {@code defaultValue}. 270 * 271 * <p>In an undirected graph, this is equal to {@code edgeValueOrDefault(nodeV, nodeU, 272 * defaultValue)}. 273 * 274 * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this 275 * graph 276 */ 277 @NullableDecl 278 V edgeValueOrDefault(N nodeU, N nodeV, @NullableDecl V defaultValue); 279 280 /** 281 * Returns the value of the edge that connects {@code endpoints} (in the order, if any, specified 282 * by {@code endpoints}), if one is present; otherwise, returns {@code defaultValue}. 283 * 284 * <p>If this graph is directed, the endpoints must be ordered. 285 * 286 * @throws IllegalArgumentException if either endpoint is not an element of this graph 287 * @throws IllegalArgumentException if the endpoints are unordered and the graph is directed 288 * @since 27.1 289 */ 290 @NullableDecl 291 V edgeValueOrDefault(EndpointPair<N> endpoints, @NullableDecl V defaultValue); 292 293 // 294 // ValueGraph identity 295 // 296 297 /** 298 * Returns {@code true} iff {@code object} is a {@link ValueGraph} that has the same elements and 299 * the same structural relationships as those in this graph. 300 * 301 * <p>Thus, two value graphs A and B are equal if <b>all</b> of the following are true: 302 * 303 * <ul> 304 * <li>A and B have equal {@link #isDirected() directedness}. 305 * <li>A and B have equal {@link #nodes() node sets}. 306 * <li>A and B have equal {@link #edges() edge sets}. 307 * <li>The {@link #edgeValue(Object, Object) value} of a given edge is the same in both A and B. 308 * </ul> 309 * 310 * <p>Graph properties besides {@link #isDirected() directedness} do <b>not</b> affect equality. 311 * For example, two graphs may be considered equal even if one allows self-loops and the other 312 * doesn't. Additionally, the order in which nodes or edges are added to the graph, and the order 313 * in which they are iterated over, are irrelevant. 314 * 315 * <p>A reference implementation of this is provided by {@link AbstractValueGraph#equals(Object)}. 316 */ 317 @Override 318 boolean equals(@NullableDecl Object object); 319 320 /** 321 * Returns the hash code for this graph. The hash code of a graph is defined as the hash code of a 322 * map from each of its {@link #edges() edges} to the associated {@link #edgeValue(Object, Object) 323 * edge value}. 324 * 325 * <p>A reference implementation of this is provided by {@link AbstractValueGraph#hashCode()}. 326 */ 327 @Override 328 int hashCode(); 329}