001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Queue; 034import java.util.Set; 035import org.checkerframework.checker.nullness.compatqual.NullableDecl; 036 037/** 038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 039 * 040 * @author James Sexton 041 * @author Joshua O'Madadhain 042 * @since 20.0 043 */ 044@Beta 045public final class Graphs { 046 047 private Graphs() {} 048 049 // Graph query methods 050 051 /** 052 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 053 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 054 * and ending with the same node. 055 * 056 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 057 */ 058 public static <N> boolean hasCycle(Graph<N> graph) { 059 int numEdges = graph.edges().size(); 060 if (numEdges == 0) { 061 return false; // An edge-free graph is acyclic by definition. 062 } 063 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 064 return true; // Optimization for the undirected case: at least one cycle must exist. 065 } 066 067 Map<Object, NodeVisitState> visitedNodes = 068 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 069 for (N node : graph.nodes()) { 070 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 071 return true; 072 } 073 } 074 return false; 075 } 076 077 /** 078 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 079 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 080 * starting and ending with the same node. 081 * 082 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 083 */ 084 public static boolean hasCycle(Network<?, ?> network) { 085 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 086 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 087 if (!network.isDirected() 088 && network.allowsParallelEdges() 089 && network.edges().size() > network.asGraph().edges().size()) { 090 return true; 091 } 092 return hasCycle(network.asGraph()); 093 } 094 095 /** 096 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 097 * already visited (following only outgoing edges and without reusing edges), we know there's a 098 * cycle in the graph. 099 */ 100 private static <N> boolean subgraphHasCycle( 101 Graph<N> graph, 102 Map<Object, NodeVisitState> visitedNodes, 103 N node, 104 @NullableDecl N previousNode) { 105 NodeVisitState state = visitedNodes.get(node); 106 if (state == NodeVisitState.COMPLETE) { 107 return false; 108 } 109 if (state == NodeVisitState.PENDING) { 110 return true; 111 } 112 113 visitedNodes.put(node, NodeVisitState.PENDING); 114 for (N nextNode : graph.successors(node)) { 115 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 116 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 117 return true; 118 } 119 } 120 visitedNodes.put(node, NodeVisitState.COMPLETE); 121 return false; 122 } 123 124 /** 125 * Determines whether an edge has already been used during traversal. In the directed case a cycle 126 * is always detected before reusing an edge, so no special logic is required. In the undirected 127 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 128 * from B to A). 129 */ 130 private static boolean canTraverseWithoutReusingEdge( 131 Graph<?> graph, Object nextNode, @NullableDecl Object previousNode) { 132 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 133 return true; 134 } 135 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 136 // edges, so this traversal would require reusing the undirected AB edge. 137 return false; 138 } 139 140 /** 141 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 142 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 143 * Object) reachable} from node A. 144 * 145 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 146 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 147 * be updated after modifications to {@code graph}. 148 */ 149 // TODO(b/31438252): Consider potential optimizations for this algorithm. 150 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 151 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 152 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 153 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 154 155 if (graph.isDirected()) { 156 // Note: works for both directed and undirected graphs, but we only use in the directed case. 157 for (N node : graph.nodes()) { 158 for (N reachableNode : reachableNodes(graph, node)) { 159 transitiveClosure.putEdge(node, reachableNode); 160 } 161 } 162 } else { 163 // An optimization for the undirected case: for every node B reachable from node A, 164 // node A and node B have the same reachability set. 165 Set<N> visitedNodes = new HashSet<N>(); 166 for (N node : graph.nodes()) { 167 if (!visitedNodes.contains(node)) { 168 Set<N> reachableNodes = reachableNodes(graph, node); 169 visitedNodes.addAll(reachableNodes); 170 int pairwiseMatch = 1; // start at 1 to include self-loops 171 for (N nodeU : reachableNodes) { 172 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 173 transitiveClosure.putEdge(nodeU, nodeV); 174 } 175 } 176 } 177 } 178 } 179 180 return transitiveClosure; 181 } 182 183 /** 184 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 185 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 186 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 187 * 188 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 189 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 190 * not be updated after modifications to {@code graph}. 191 * 192 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 193 */ 194 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 195 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 196 Set<N> visitedNodes = new LinkedHashSet<N>(); 197 Queue<N> queuedNodes = new ArrayDeque<N>(); 198 visitedNodes.add(node); 199 queuedNodes.add(node); 200 // Perform a breadth-first traversal rooted at the input node. 201 while (!queuedNodes.isEmpty()) { 202 N currentNode = queuedNodes.remove(); 203 for (N successor : graph.successors(currentNode)) { 204 if (visitedNodes.add(successor)) { 205 queuedNodes.add(successor); 206 } 207 } 208 } 209 return Collections.unmodifiableSet(visitedNodes); 210 } 211 212 // Graph mutation methods 213 214 // Graph view methods 215 216 /** 217 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 218 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 219 */ 220 public static <N> Graph<N> transpose(Graph<N> graph) { 221 if (!graph.isDirected()) { 222 return graph; // the transpose of an undirected graph is an identical graph 223 } 224 225 if (graph instanceof TransposedGraph) { 226 return ((TransposedGraph<N>) graph).graph; 227 } 228 229 return new TransposedGraph<N>(graph); 230 } 231 232 /** 233 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 234 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 235 */ 236 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 237 if (!graph.isDirected()) { 238 return graph; // the transpose of an undirected graph is an identical graph 239 } 240 241 if (graph instanceof TransposedValueGraph) { 242 return ((TransposedValueGraph<N, V>) graph).graph; 243 } 244 245 return new TransposedValueGraph<>(graph); 246 } 247 248 /** 249 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 250 * properties remain intact, and further updates to {@code network} will be reflected in the view. 251 */ 252 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 253 if (!network.isDirected()) { 254 return network; // the transpose of an undirected network is an identical network 255 } 256 257 if (network instanceof TransposedNetwork) { 258 return ((TransposedNetwork<N, E>) network).network; 259 } 260 261 return new TransposedNetwork<>(network); 262 } 263 264 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 265 if (endpoints.isOrdered()) { 266 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 267 } 268 return endpoints; 269 } 270 271 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 272 // AbstractGraph) derives its behavior from calling successors(). 273 private static class TransposedGraph<N> extends ForwardingGraph<N> { 274 private final Graph<N> graph; 275 276 TransposedGraph(Graph<N> graph) { 277 this.graph = graph; 278 } 279 280 @Override 281 protected Graph<N> delegate() { 282 return graph; 283 } 284 285 @Override 286 public Set<N> predecessors(N node) { 287 return delegate().successors(node); // transpose 288 } 289 290 @Override 291 public Set<N> successors(N node) { 292 return delegate().predecessors(node); // transpose 293 } 294 295 @Override 296 public int inDegree(N node) { 297 return delegate().outDegree(node); // transpose 298 } 299 300 @Override 301 public int outDegree(N node) { 302 return delegate().inDegree(node); // transpose 303 } 304 305 @Override 306 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 307 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 308 } 309 310 @Override 311 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 312 return delegate().hasEdgeConnecting(transpose(endpoints)); 313 } 314 } 315 316 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 317 // AbstractValueGraph) derives its behavior from calling successors(). 318 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 319 private final ValueGraph<N, V> graph; 320 321 TransposedValueGraph(ValueGraph<N, V> graph) { 322 this.graph = graph; 323 } 324 325 @Override 326 protected ValueGraph<N, V> delegate() { 327 return graph; 328 } 329 330 @Override 331 public Set<N> predecessors(N node) { 332 return delegate().successors(node); // transpose 333 } 334 335 @Override 336 public Set<N> successors(N node) { 337 return delegate().predecessors(node); // transpose 338 } 339 340 @Override 341 public int inDegree(N node) { 342 return delegate().outDegree(node); // transpose 343 } 344 345 @Override 346 public int outDegree(N node) { 347 return delegate().inDegree(node); // transpose 348 } 349 350 @Override 351 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 352 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 353 } 354 355 @Override 356 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 357 return delegate().hasEdgeConnecting(transpose(endpoints)); 358 } 359 360 @Override 361 @NullableDecl 362 public V edgeValueOrDefault(N nodeU, N nodeV, @NullableDecl V defaultValue) { 363 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 364 } 365 366 @Override 367 @NullableDecl 368 public V edgeValueOrDefault(EndpointPair<N> endpoints, @NullableDecl V defaultValue) { 369 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 370 } 371 } 372 373 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 374 private final Network<N, E> network; 375 376 TransposedNetwork(Network<N, E> network) { 377 this.network = network; 378 } 379 380 @Override 381 protected Network<N, E> delegate() { 382 return network; 383 } 384 385 @Override 386 public Set<N> predecessors(N node) { 387 return delegate().successors(node); // transpose 388 } 389 390 @Override 391 public Set<N> successors(N node) { 392 return delegate().predecessors(node); // transpose 393 } 394 395 @Override 396 public int inDegree(N node) { 397 return delegate().outDegree(node); // transpose 398 } 399 400 @Override 401 public int outDegree(N node) { 402 return delegate().inDegree(node); // transpose 403 } 404 405 @Override 406 public Set<E> inEdges(N node) { 407 return delegate().outEdges(node); // transpose 408 } 409 410 @Override 411 public Set<E> outEdges(N node) { 412 return delegate().inEdges(node); // transpose 413 } 414 415 @Override 416 public EndpointPair<N> incidentNodes(E edge) { 417 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 418 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 419 } 420 421 @Override 422 public Set<E> edgesConnecting(N nodeU, N nodeV) { 423 return delegate().edgesConnecting(nodeV, nodeU); // transpose 424 } 425 426 @Override 427 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 428 return delegate().edgesConnecting(transpose(endpoints)); 429 } 430 431 @Override 432 public E edgeConnectingOrNull(N nodeU, N nodeV) { 433 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 434 } 435 436 @Override 437 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 438 return delegate().edgeConnectingOrNull(transpose(endpoints)); 439 } 440 441 @Override 442 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 443 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 444 } 445 446 @Override 447 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 448 return delegate().hasEdgeConnecting(transpose(endpoints)); 449 } 450 } 451 452 // Graph copy methods 453 454 /** 455 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 456 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 457 * from {@code graph} for which both nodes are contained by {@code nodes}. 458 * 459 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 460 */ 461 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 462 MutableGraph<N> subgraph = 463 (nodes instanceof Collection) 464 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 465 : GraphBuilder.from(graph).build(); 466 for (N node : nodes) { 467 subgraph.addNode(node); 468 } 469 for (N node : subgraph.nodes()) { 470 for (N successorNode : graph.successors(node)) { 471 if (subgraph.nodes().contains(successorNode)) { 472 subgraph.putEdge(node, successorNode); 473 } 474 } 475 } 476 return subgraph; 477 } 478 479 /** 480 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 481 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 482 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 483 * nodes}. 484 * 485 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 486 */ 487 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 488 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 489 MutableValueGraph<N, V> subgraph = 490 (nodes instanceof Collection) 491 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 492 : ValueGraphBuilder.from(graph).build(); 493 for (N node : nodes) { 494 subgraph.addNode(node); 495 } 496 for (N node : subgraph.nodes()) { 497 for (N successorNode : graph.successors(node)) { 498 if (subgraph.nodes().contains(successorNode)) { 499 subgraph.putEdgeValue( 500 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 501 } 502 } 503 } 504 return subgraph; 505 } 506 507 /** 508 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 509 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 510 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 511 * both contained by {@code nodes}. 512 * 513 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 514 */ 515 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 516 Network<N, E> network, Iterable<? extends N> nodes) { 517 MutableNetwork<N, E> subgraph = 518 (nodes instanceof Collection) 519 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 520 : NetworkBuilder.from(network).build(); 521 for (N node : nodes) { 522 subgraph.addNode(node); 523 } 524 for (N node : subgraph.nodes()) { 525 for (E edge : network.outEdges(node)) { 526 N successorNode = network.incidentNodes(edge).adjacentNode(node); 527 if (subgraph.nodes().contains(successorNode)) { 528 subgraph.addEdge(node, successorNode, edge); 529 } 530 } 531 } 532 return subgraph; 533 } 534 535 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 536 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 537 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 538 for (N node : graph.nodes()) { 539 copy.addNode(node); 540 } 541 for (EndpointPair<N> edge : graph.edges()) { 542 copy.putEdge(edge.nodeU(), edge.nodeV()); 543 } 544 return copy; 545 } 546 547 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 548 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 549 MutableValueGraph<N, V> copy = 550 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 551 for (N node : graph.nodes()) { 552 copy.addNode(node); 553 } 554 for (EndpointPair<N> edge : graph.edges()) { 555 copy.putEdgeValue( 556 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 557 } 558 return copy; 559 } 560 561 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 562 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 563 MutableNetwork<N, E> copy = 564 NetworkBuilder.from(network) 565 .expectedNodeCount(network.nodes().size()) 566 .expectedEdgeCount(network.edges().size()) 567 .build(); 568 for (N node : network.nodes()) { 569 copy.addNode(node); 570 } 571 for (E edge : network.edges()) { 572 EndpointPair<N> endpointPair = network.incidentNodes(edge); 573 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 574 } 575 return copy; 576 } 577 578 @CanIgnoreReturnValue 579 static int checkNonNegative(int value) { 580 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 581 return value; 582 } 583 584 @CanIgnoreReturnValue 585 static long checkNonNegative(long value) { 586 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 587 return value; 588 } 589 590 @CanIgnoreReturnValue 591 static int checkPositive(int value) { 592 checkArgument(value > 0, "Not true that %s is positive.", value); 593 return value; 594 } 595 596 @CanIgnoreReturnValue 597 static long checkPositive(long value) { 598 checkArgument(value > 0, "Not true that %s is positive.", value); 599 return value; 600 } 601 602 /** 603 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 604 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 605 * been already explored. Any node that has not been explored will not have a state at all. 606 */ 607 private enum NodeVisitState { 608 PENDING, 609 COMPLETE 610 } 611}