001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Optional; 034import java.util.Queue; 035import java.util.Set; 036import org.checkerframework.checker.nullness.qual.Nullable; 037 038/** 039 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 040 * 041 * @author James Sexton 042 * @author Joshua O'Madadhain 043 * @since 20.0 044 */ 045@Beta 046public final class Graphs { 047 048 private Graphs() {} 049 050 // Graph query methods 051 052 /** 053 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 054 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 055 * and ending with the same node. 056 * 057 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 058 */ 059 public static <N> boolean hasCycle(Graph<N> graph) { 060 int numEdges = graph.edges().size(); 061 if (numEdges == 0) { 062 return false; // An edge-free graph is acyclic by definition. 063 } 064 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 065 return true; // Optimization for the undirected case: at least one cycle must exist. 066 } 067 068 Map<Object, NodeVisitState> visitedNodes = 069 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 070 for (N node : graph.nodes()) { 071 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 072 return true; 073 } 074 } 075 return false; 076 } 077 078 /** 079 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 080 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 081 * starting and ending with the same node. 082 * 083 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 084 */ 085 public static boolean hasCycle(Network<?, ?> network) { 086 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 087 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 088 if (!network.isDirected() 089 && network.allowsParallelEdges() 090 && network.edges().size() > network.asGraph().edges().size()) { 091 return true; 092 } 093 return hasCycle(network.asGraph()); 094 } 095 096 /** 097 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 098 * already visited (following only outgoing edges and without reusing edges), we know there's a 099 * cycle in the graph. 100 */ 101 private static <N> boolean subgraphHasCycle( 102 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N node, @Nullable N previousNode) { 103 NodeVisitState state = visitedNodes.get(node); 104 if (state == NodeVisitState.COMPLETE) { 105 return false; 106 } 107 if (state == NodeVisitState.PENDING) { 108 return true; 109 } 110 111 visitedNodes.put(node, NodeVisitState.PENDING); 112 for (N nextNode : graph.successors(node)) { 113 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 114 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 115 return true; 116 } 117 } 118 visitedNodes.put(node, NodeVisitState.COMPLETE); 119 return false; 120 } 121 122 /** 123 * Determines whether an edge has already been used during traversal. In the directed case a cycle 124 * is always detected before reusing an edge, so no special logic is required. In the undirected 125 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 126 * from B to A). 127 */ 128 private static boolean canTraverseWithoutReusingEdge( 129 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 130 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 131 return true; 132 } 133 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 134 // edges, so this traversal would require reusing the undirected AB edge. 135 return false; 136 } 137 138 /** 139 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 140 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 141 * Object) reachable} from node A. 142 * 143 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 144 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 145 * be updated after modifications to {@code graph}. 146 */ 147 // TODO(b/31438252): Consider potential optimizations for this algorithm. 148 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 149 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 150 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 151 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 152 153 if (graph.isDirected()) { 154 // Note: works for both directed and undirected graphs, but we only use in the directed case. 155 for (N node : graph.nodes()) { 156 for (N reachableNode : reachableNodes(graph, node)) { 157 transitiveClosure.putEdge(node, reachableNode); 158 } 159 } 160 } else { 161 // An optimization for the undirected case: for every node B reachable from node A, 162 // node A and node B have the same reachability set. 163 Set<N> visitedNodes = new HashSet<N>(); 164 for (N node : graph.nodes()) { 165 if (!visitedNodes.contains(node)) { 166 Set<N> reachableNodes = reachableNodes(graph, node); 167 visitedNodes.addAll(reachableNodes); 168 int pairwiseMatch = 1; // start at 1 to include self-loops 169 for (N nodeU : reachableNodes) { 170 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 171 transitiveClosure.putEdge(nodeU, nodeV); 172 } 173 } 174 } 175 } 176 } 177 178 return transitiveClosure; 179 } 180 181 /** 182 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 183 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 184 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 185 * 186 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 187 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 188 * not be updated after modifications to {@code graph}. 189 * 190 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 191 */ 192 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 193 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 194 Set<N> visitedNodes = new LinkedHashSet<N>(); 195 Queue<N> queuedNodes = new ArrayDeque<N>(); 196 visitedNodes.add(node); 197 queuedNodes.add(node); 198 // Perform a breadth-first traversal rooted at the input node. 199 while (!queuedNodes.isEmpty()) { 200 N currentNode = queuedNodes.remove(); 201 for (N successor : graph.successors(currentNode)) { 202 if (visitedNodes.add(successor)) { 203 queuedNodes.add(successor); 204 } 205 } 206 } 207 return Collections.unmodifiableSet(visitedNodes); 208 } 209 210 // Graph mutation methods 211 212 // Graph view methods 213 214 /** 215 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 216 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 217 */ 218 public static <N> Graph<N> transpose(Graph<N> graph) { 219 if (!graph.isDirected()) { 220 return graph; // the transpose of an undirected graph is an identical graph 221 } 222 223 if (graph instanceof TransposedGraph) { 224 return ((TransposedGraph<N>) graph).graph; 225 } 226 227 return new TransposedGraph<N>(graph); 228 } 229 230 /** 231 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 232 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 233 */ 234 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 235 if (!graph.isDirected()) { 236 return graph; // the transpose of an undirected graph is an identical graph 237 } 238 239 if (graph instanceof TransposedValueGraph) { 240 return ((TransposedValueGraph<N, V>) graph).graph; 241 } 242 243 return new TransposedValueGraph<>(graph); 244 } 245 246 /** 247 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 248 * properties remain intact, and further updates to {@code network} will be reflected in the view. 249 */ 250 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 251 if (!network.isDirected()) { 252 return network; // the transpose of an undirected network is an identical network 253 } 254 255 if (network instanceof TransposedNetwork) { 256 return ((TransposedNetwork<N, E>) network).network; 257 } 258 259 return new TransposedNetwork<>(network); 260 } 261 262 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 263 // AbstractGraph) derives its behavior from calling successors(). 264 private static class TransposedGraph<N> extends ForwardingGraph<N> { 265 private final Graph<N> graph; 266 267 TransposedGraph(Graph<N> graph) { 268 this.graph = graph; 269 } 270 271 @Override 272 protected Graph<N> delegate() { 273 return graph; 274 } 275 276 @Override 277 public Set<N> predecessors(N node) { 278 return delegate().successors(node); // transpose 279 } 280 281 @Override 282 public Set<N> successors(N node) { 283 return delegate().predecessors(node); // transpose 284 } 285 286 @Override 287 public int inDegree(N node) { 288 return delegate().outDegree(node); // transpose 289 } 290 291 @Override 292 public int outDegree(N node) { 293 return delegate().inDegree(node); // transpose 294 } 295 296 @Override 297 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 298 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 299 } 300 } 301 302 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 303 // AbstractValueGraph) derives its behavior from calling successors(). 304 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 305 private final ValueGraph<N, V> graph; 306 307 TransposedValueGraph(ValueGraph<N, V> graph) { 308 this.graph = graph; 309 } 310 311 @Override 312 protected ValueGraph<N, V> delegate() { 313 return graph; 314 } 315 316 @Override 317 public Set<N> predecessors(N node) { 318 return delegate().successors(node); // transpose 319 } 320 321 @Override 322 public Set<N> successors(N node) { 323 return delegate().predecessors(node); // transpose 324 } 325 326 @Override 327 public int inDegree(N node) { 328 return delegate().outDegree(node); // transpose 329 } 330 331 @Override 332 public int outDegree(N node) { 333 return delegate().inDegree(node); // transpose 334 } 335 336 @Override 337 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 338 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 339 } 340 341 @Override 342 public Optional<V> edgeValue(N nodeU, N nodeV) { 343 return delegate().edgeValue(nodeV, nodeU); // transpose 344 } 345 346 @Override 347 public @Nullable V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) { 348 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 349 } 350 } 351 352 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 353 private final Network<N, E> network; 354 355 TransposedNetwork(Network<N, E> network) { 356 this.network = network; 357 } 358 359 @Override 360 protected Network<N, E> delegate() { 361 return network; 362 } 363 364 @Override 365 public Set<N> predecessors(N node) { 366 return delegate().successors(node); // transpose 367 } 368 369 @Override 370 public Set<N> successors(N node) { 371 return delegate().predecessors(node); // transpose 372 } 373 374 @Override 375 public int inDegree(N node) { 376 return delegate().outDegree(node); // transpose 377 } 378 379 @Override 380 public int outDegree(N node) { 381 return delegate().inDegree(node); // transpose 382 } 383 384 @Override 385 public Set<E> inEdges(N node) { 386 return delegate().outEdges(node); // transpose 387 } 388 389 @Override 390 public Set<E> outEdges(N node) { 391 return delegate().inEdges(node); // transpose 392 } 393 394 @Override 395 public EndpointPair<N> incidentNodes(E edge) { 396 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 397 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 398 } 399 400 @Override 401 public Set<E> edgesConnecting(N nodeU, N nodeV) { 402 return delegate().edgesConnecting(nodeV, nodeU); // transpose 403 } 404 405 @Override 406 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 407 return delegate().edgeConnecting(nodeV, nodeU); // transpose 408 } 409 410 @Override 411 public E edgeConnectingOrNull(N nodeU, N nodeV) { 412 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 413 } 414 415 @Override 416 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 417 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 418 } 419 } 420 421 // Graph copy methods 422 423 /** 424 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 425 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 426 * from {@code graph} for which both nodes are contained by {@code nodes}. 427 * 428 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 429 */ 430 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 431 MutableGraph<N> subgraph = 432 (nodes instanceof Collection) 433 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 434 : GraphBuilder.from(graph).build(); 435 for (N node : nodes) { 436 subgraph.addNode(node); 437 } 438 for (N node : subgraph.nodes()) { 439 for (N successorNode : graph.successors(node)) { 440 if (subgraph.nodes().contains(successorNode)) { 441 subgraph.putEdge(node, successorNode); 442 } 443 } 444 } 445 return subgraph; 446 } 447 448 /** 449 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 450 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 451 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 452 * nodes}. 453 * 454 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 455 */ 456 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 457 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 458 MutableValueGraph<N, V> subgraph = 459 (nodes instanceof Collection) 460 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 461 : ValueGraphBuilder.from(graph).build(); 462 for (N node : nodes) { 463 subgraph.addNode(node); 464 } 465 for (N node : subgraph.nodes()) { 466 for (N successorNode : graph.successors(node)) { 467 if (subgraph.nodes().contains(successorNode)) { 468 subgraph.putEdgeValue( 469 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 470 } 471 } 472 } 473 return subgraph; 474 } 475 476 /** 477 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 478 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 479 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 480 * both contained by {@code nodes}. 481 * 482 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 483 */ 484 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 485 Network<N, E> network, Iterable<? extends N> nodes) { 486 MutableNetwork<N, E> subgraph = 487 (nodes instanceof Collection) 488 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 489 : NetworkBuilder.from(network).build(); 490 for (N node : nodes) { 491 subgraph.addNode(node); 492 } 493 for (N node : subgraph.nodes()) { 494 for (E edge : network.outEdges(node)) { 495 N successorNode = network.incidentNodes(edge).adjacentNode(node); 496 if (subgraph.nodes().contains(successorNode)) { 497 subgraph.addEdge(node, successorNode, edge); 498 } 499 } 500 } 501 return subgraph; 502 } 503 504 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 505 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 506 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 507 for (N node : graph.nodes()) { 508 copy.addNode(node); 509 } 510 for (EndpointPair<N> edge : graph.edges()) { 511 copy.putEdge(edge.nodeU(), edge.nodeV()); 512 } 513 return copy; 514 } 515 516 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 517 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 518 MutableValueGraph<N, V> copy = 519 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 520 for (N node : graph.nodes()) { 521 copy.addNode(node); 522 } 523 for (EndpointPair<N> edge : graph.edges()) { 524 copy.putEdgeValue( 525 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 526 } 527 return copy; 528 } 529 530 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 531 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 532 MutableNetwork<N, E> copy = 533 NetworkBuilder.from(network) 534 .expectedNodeCount(network.nodes().size()) 535 .expectedEdgeCount(network.edges().size()) 536 .build(); 537 for (N node : network.nodes()) { 538 copy.addNode(node); 539 } 540 for (E edge : network.edges()) { 541 EndpointPair<N> endpointPair = network.incidentNodes(edge); 542 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 543 } 544 return copy; 545 } 546 547 @CanIgnoreReturnValue 548 static int checkNonNegative(int value) { 549 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 550 return value; 551 } 552 553 @CanIgnoreReturnValue 554 static long checkNonNegative(long value) { 555 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 556 return value; 557 } 558 559 @CanIgnoreReturnValue 560 static int checkPositive(int value) { 561 checkArgument(value > 0, "Not true that %s is positive.", value); 562 return value; 563 } 564 565 @CanIgnoreReturnValue 566 static long checkPositive(long value) { 567 checkArgument(value > 0, "Not true that %s is positive.", value); 568 return value; 569 } 570 571 /** 572 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 573 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 574 * been already explored. Any node that has not been explored will not have a state at all. 575 */ 576 private enum NodeVisitState { 577 PENDING, 578 COMPLETE 579 } 580}