001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.net;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019
020import com.google.common.annotations.Beta;
021import com.google.common.annotations.GwtIncompatible;
022import com.google.common.base.MoreObjects;
023import com.google.common.base.Splitter;
024import com.google.common.collect.Iterables;
025import com.google.common.hash.Hashing;
026import com.google.common.io.ByteStreams;
027import com.google.common.primitives.Ints;
028import java.net.Inet4Address;
029import java.net.Inet6Address;
030import java.net.InetAddress;
031import java.net.UnknownHostException;
032import java.nio.ByteBuffer;
033import java.util.Arrays;
034import java.util.List;
035import java.util.Locale;
036import org.checkerframework.checker.nullness.qual.Nullable;
037
038/**
039 * Static utility methods pertaining to {@link InetAddress} instances.
040 *
041 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never
042 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as
043 * possible over their JDK equivalents whenever you are expecting to handle only IP address string
044 * literals -- there is no blocking DNS penalty for a malformed string.
045 *
046 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis.
047 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent
048 * the address in network byte order.
049 *
050 * <p>Examples of IP addresses and their byte representations:
051 *
052 * <dl>
053 *   <dt>The IPv4 loopback address, {@code "127.0.0.1"}.
054 *   <dd>{@code 7f 00 00 01}
055 *   <dt>The IPv6 loopback address, {@code "::1"}.
056 *   <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01}
057 *   <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}.
058 *   <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01}
059 *   <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}.
060 *   <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01}
061 *   <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}.
062 *   <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01}
063 * </dl>
064 *
065 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java.
066 *
067 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6
068 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY}
069 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses
070 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in
071 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler.
072 *
073 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped"
074 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress
075 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all
076 * "mapped" addresses return {@link Inet4Address} objects.
077 *
078 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either
079 * the source or destination address appears to be a "compat" or "mapped" address. Filtering
080 * suggestions usually recommend discarding any packets with source or destination addresses in the
081 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more
082 * information on "bogons", including lists of IPv6 bogon space, see:
083 *
084 * <ul>
085 *   <li><a target="_parent"
086 *       href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia.
087 *       org/wiki/Bogon_filtering</a>
088 *   <li><a target="_parent"
089 *       href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a>
090 *   <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/
091 *       Bogons/v6bogon.html</a>
092 *   <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www.
093 *       space.net/~gert/RIPE/ipv6-filters.html</a>
094 * </ul>
095 *
096 * @author Erik Kline
097 * @since 5.0
098 */
099@Beta
100@GwtIncompatible
101public final class InetAddresses {
102  private static final int IPV4_PART_COUNT = 4;
103  private static final int IPV6_PART_COUNT = 8;
104  private static final Splitter IPV4_SPLITTER = Splitter.on('.').limit(IPV4_PART_COUNT);
105  private static final Splitter IPV6_SPLITTER = Splitter.on(':').limit(IPV6_PART_COUNT + 2);
106  private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1");
107  private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0");
108
109  private InetAddresses() {}
110
111  /**
112   * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address.
113   *
114   * @param bytes byte array representing an IPv4 address (should be of length 4)
115   * @return {@link Inet4Address} corresponding to the supplied byte array
116   * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created
117   */
118  private static Inet4Address getInet4Address(byte[] bytes) {
119    checkArgument(
120        bytes.length == 4,
121        "Byte array has invalid length for an IPv4 address: %s != 4.",
122        bytes.length);
123
124    // Given a 4-byte array, this cast should always succeed.
125    return (Inet4Address) bytesToInetAddress(bytes);
126  }
127
128  /**
129   * Returns the {@link InetAddress} having the given string representation.
130   *
131   * <p>This deliberately avoids all nameservice lookups (e.g. no DNS).
132   *
133   * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code
134   *     "192.168.0.1"} or {@code "2001:db8::1"}
135   * @return {@link InetAddress} representing the argument
136   * @throws IllegalArgumentException if the argument is not a valid IP string literal
137   */
138  public static InetAddress forString(String ipString) {
139    byte[] addr = ipStringToBytes(ipString);
140
141    // The argument was malformed, i.e. not an IP string literal.
142    if (addr == null) {
143      throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString);
144    }
145
146    return bytesToInetAddress(addr);
147  }
148
149  /**
150   * Returns {@code true} if the supplied string is a valid IP string literal, {@code false}
151   * otherwise.
152   *
153   * @param ipString {@code String} to evaluated as an IP string literal
154   * @return {@code true} if the argument is a valid IP string literal
155   */
156  public static boolean isInetAddress(String ipString) {
157    return ipStringToBytes(ipString) != null;
158  }
159
160  private static byte @Nullable [] ipStringToBytes(String ipString) {
161    // Make a first pass to categorize the characters in this string.
162    boolean hasColon = false;
163    boolean hasDot = false;
164    for (int i = 0; i < ipString.length(); i++) {
165      char c = ipString.charAt(i);
166      if (c == '.') {
167        hasDot = true;
168      } else if (c == ':') {
169        if (hasDot) {
170          return null; // Colons must not appear after dots.
171        }
172        hasColon = true;
173      } else if (Character.digit(c, 16) == -1) {
174        return null; // Everything else must be a decimal or hex digit.
175      }
176    }
177
178    // Now decide which address family to parse.
179    if (hasColon) {
180      if (hasDot) {
181        ipString = convertDottedQuadToHex(ipString);
182        if (ipString == null) {
183          return null;
184        }
185      }
186      return textToNumericFormatV6(ipString);
187    } else if (hasDot) {
188      return textToNumericFormatV4(ipString);
189    }
190    return null;
191  }
192
193  private static byte @Nullable [] textToNumericFormatV4(String ipString) {
194    byte[] bytes = new byte[IPV4_PART_COUNT];
195    int i = 0;
196    try {
197      for (String octet : IPV4_SPLITTER.split(ipString)) {
198        bytes[i++] = parseOctet(octet);
199      }
200    } catch (NumberFormatException ex) {
201      return null;
202    }
203
204    return i == IPV4_PART_COUNT ? bytes : null;
205  }
206
207  private static byte @Nullable [] textToNumericFormatV6(String ipString) {
208    // An address can have [2..8] colons, and N colons make N+1 parts.
209    List<String> parts = IPV6_SPLITTER.splitToList(ipString);
210    if (parts.size() < 3 || parts.size() > IPV6_PART_COUNT + 1) {
211      return null;
212    }
213
214    // Disregarding the endpoints, find "::" with nothing in between.
215    // This indicates that a run of zeroes has been skipped.
216    int skipIndex = -1;
217    for (int i = 1; i < parts.size() - 1; i++) {
218      if (parts.get(i).length() == 0) {
219        if (skipIndex >= 0) {
220          return null; // Can't have more than one ::
221        }
222        skipIndex = i;
223      }
224    }
225
226    int partsHi; // Number of parts to copy from above/before the "::"
227    int partsLo; // Number of parts to copy from below/after the "::"
228    if (skipIndex >= 0) {
229      // If we found a "::", then check if it also covers the endpoints.
230      partsHi = skipIndex;
231      partsLo = parts.size() - skipIndex - 1;
232      if (parts.get(0).length() == 0 && --partsHi != 0) {
233        return null; // ^: requires ^::
234      }
235       if (Iterables.getLast(parts).length() == 0 && --partsLo != 0) {
236        return null; // :$ requires ::$
237      }
238    } else {
239      // Otherwise, allocate the entire address to partsHi. The endpoints
240      // could still be empty, but parseHextet() will check for that.
241      partsHi = parts.size();
242      partsLo = 0;
243    }
244
245    // If we found a ::, then we must have skipped at least one part.
246    // Otherwise, we must have exactly the right number of parts.
247    int partsSkipped = IPV6_PART_COUNT - (partsHi + partsLo);
248    if (!(skipIndex >= 0 ? partsSkipped >= 1 : partsSkipped == 0)) {
249      return null;
250    }
251
252    // Now parse the hextets into a byte array.
253    ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT);
254    try {
255      for (int i = 0; i < partsHi; i++) {
256        rawBytes.putShort(parseHextet(parts.get(i)));
257      }
258      for (int i = 0; i < partsSkipped; i++) {
259        rawBytes.putShort((short) 0);
260      }
261      for (int i = partsLo; i > 0; i--) {
262        rawBytes.putShort(parseHextet(parts.get(parts.size() - i)));
263      }
264    } catch (NumberFormatException ex) {
265      return null;
266    }
267    return rawBytes.array();
268  }
269
270  private static @Nullable String convertDottedQuadToHex(String ipString) {
271    int lastColon = ipString.lastIndexOf(':');
272    String initialPart = ipString.substring(0, lastColon + 1);
273    String dottedQuad = ipString.substring(lastColon + 1);
274    byte[] quad = textToNumericFormatV4(dottedQuad);
275    if (quad == null) {
276      return null;
277    }
278    String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff));
279    String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff));
280    return initialPart + penultimate + ":" + ultimate;
281  }
282
283  private static byte parseOctet(String ipPart) {
284    // Note: we already verified that this string contains only hex digits.
285    int octet = Integer.parseInt(ipPart);
286    // Disallow leading zeroes, because no clear standard exists on
287    // whether these should be interpreted as decimal or octal.
288    if (octet > 255 || (ipPart.startsWith("0") && ipPart.length() > 1)) {
289      throw new NumberFormatException();
290    }
291    return (byte) octet;
292  }
293
294  private static short parseHextet(String ipPart) {
295    // Note: we already verified that this string contains only hex digits.
296    int hextet = Integer.parseInt(ipPart, 16);
297    if (hextet > 0xffff) {
298      throw new NumberFormatException();
299    }
300    return (short) hextet;
301  }
302
303  /**
304   * Convert a byte array into an InetAddress.
305   *
306   * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP
307   * address is of illegal length." We replace it with an unchecked exception, for use by callers
308   * who already know that addr is an array of length 4 or 16.
309   *
310   * @param addr the raw 4-byte or 16-byte IP address in big-endian order
311   * @return an InetAddress object created from the raw IP address
312   */
313  private static InetAddress bytesToInetAddress(byte[] addr) {
314    try {
315      return InetAddress.getByAddress(addr);
316    } catch (UnknownHostException e) {
317      throw new AssertionError(e);
318    }
319  }
320
321  /**
322   * Returns the string representation of an {@link InetAddress}.
323   *
324   * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6
325   * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section
326   * 4. The main difference is that this method uses "::" for zero compression, while Java's version
327   * uses the uncompressed form.
328   *
329   * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses
330   * such as "::c000:201". The output does not include a Scope ID.
331   *
332   * @param ip {@link InetAddress} to be converted to an address string
333   * @return {@code String} containing the text-formatted IP address
334   * @since 10.0
335   */
336  public static String toAddrString(InetAddress ip) {
337    checkNotNull(ip);
338    if (ip instanceof Inet4Address) {
339      // For IPv4, Java's formatting is good enough.
340      return ip.getHostAddress();
341    }
342    checkArgument(ip instanceof Inet6Address);
343    byte[] bytes = ip.getAddress();
344    int[] hextets = new int[IPV6_PART_COUNT];
345    for (int i = 0; i < hextets.length; i++) {
346      hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]);
347    }
348    compressLongestRunOfZeroes(hextets);
349    return hextetsToIPv6String(hextets);
350  }
351
352  /**
353   * Identify and mark the longest run of zeroes in an IPv6 address.
354   *
355   * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If
356   * a qualifying run is found, its hextets are replaced by the sentinel value -1.
357   *
358   * @param hextets {@code int[]} mutable array of eight 16-bit hextets
359   */
360  private static void compressLongestRunOfZeroes(int[] hextets) {
361    int bestRunStart = -1;
362    int bestRunLength = -1;
363    int runStart = -1;
364    for (int i = 0; i < hextets.length + 1; i++) {
365      if (i < hextets.length && hextets[i] == 0) {
366        if (runStart < 0) {
367          runStart = i;
368        }
369      } else if (runStart >= 0) {
370        int runLength = i - runStart;
371        if (runLength > bestRunLength) {
372          bestRunStart = runStart;
373          bestRunLength = runLength;
374        }
375        runStart = -1;
376      }
377    }
378    if (bestRunLength >= 2) {
379      Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1);
380    }
381  }
382
383  /**
384   * Convert a list of hextets into a human-readable IPv6 address.
385   *
386   * <p>In order for "::" compression to work, the input should contain negative sentinel values in
387   * place of the elided zeroes.
388   *
389   * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s
390   */
391  private static String hextetsToIPv6String(int[] hextets) {
392    // While scanning the array, handle these state transitions:
393    //   start->num => "num"     start->gap => "::"
394    //   num->num   => ":num"    num->gap   => "::"
395    //   gap->num   => "num"     gap->gap   => ""
396    StringBuilder buf = new StringBuilder(39);
397    boolean lastWasNumber = false;
398    for (int i = 0; i < hextets.length; i++) {
399      boolean thisIsNumber = hextets[i] >= 0;
400      if (thisIsNumber) {
401        if (lastWasNumber) {
402          buf.append(':');
403        }
404        buf.append(Integer.toHexString(hextets[i]));
405      } else {
406        if (i == 0 || lastWasNumber) {
407          buf.append("::");
408        }
409      }
410      lastWasNumber = thisIsNumber;
411    }
412    return buf.toString();
413  }
414
415  /**
416   * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI.
417   *
418   * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6
419   * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code
420   * "[2001:db8::1]"}.
421   *
422   * <p>Per section 3.2.2 of <a target="_parent"
423   * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6
424   * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}.
425   *
426   * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or
427   * this method is recommended over {@link InetAddress#toString()} when an IP address string
428   * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the
429   * IP address string joined by a "/".
430   *
431   * @param ip {@link InetAddress} to be converted to URI string literal
432   * @return {@code String} containing URI-safe string literal
433   */
434  public static String toUriString(InetAddress ip) {
435    if (ip instanceof Inet6Address) {
436      return "[" + toAddrString(ip) + "]";
437    }
438    return toAddrString(ip);
439  }
440
441  /**
442   * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in
443   * the format specified by RFC 3986 section 3.2.2.
444   *
445   * <p>This function is similar to {@link InetAddresses#forString(String)}, however, it requires
446   * that IPv6 addresses are surrounded by square brackets.
447   *
448   * <p>This function is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}.
449   *
450   * @param hostAddr A RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address
451   * @return an InetAddress representing the address in {@code hostAddr}
452   * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6
453   *     address surrounded by square brackets
454   */
455  public static InetAddress forUriString(String hostAddr) {
456    InetAddress addr = forUriStringNoThrow(hostAddr);
457    if (addr == null) {
458      throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr);
459    }
460
461    return addr;
462  }
463
464  private static @Nullable InetAddress forUriStringNoThrow(String hostAddr) {
465    checkNotNull(hostAddr);
466
467    // Decide if this should be an IPv6 or IPv4 address.
468    String ipString;
469    int expectBytes;
470    if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) {
471      ipString = hostAddr.substring(1, hostAddr.length() - 1);
472      expectBytes = 16;
473    } else {
474      ipString = hostAddr;
475      expectBytes = 4;
476    }
477
478    // Parse the address, and make sure the length/version is correct.
479    byte[] addr = ipStringToBytes(ipString);
480    if (addr == null || addr.length != expectBytes) {
481      return null;
482    }
483
484    return bytesToInetAddress(addr);
485  }
486
487  /**
488   * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false}
489   * otherwise.
490   *
491   * @param ipString {@code String} to evaluated as an IP URI host string literal
492   * @return {@code true} if the argument is a valid IP URI host
493   */
494  public static boolean isUriInetAddress(String ipString) {
495    return forUriStringNoThrow(ipString) != null;
496  }
497
498  /**
499   * Evaluates whether the argument is an IPv6 "compat" address.
500   *
501   * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the
502   * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in
503   * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an
504   * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}).
505   *
506   * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent"
507   * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>.
508   *
509   * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it
510   * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they
511   * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be).
512   *
513   * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format
514   * @return {@code true} if the argument is a valid "compat" address
515   */
516  public static boolean isCompatIPv4Address(Inet6Address ip) {
517    if (!ip.isIPv4CompatibleAddress()) {
518      return false;
519    }
520
521    byte[] bytes = ip.getAddress();
522    if ((bytes[12] == 0)
523        && (bytes[13] == 0)
524        && (bytes[14] == 0)
525        && ((bytes[15] == 0) || (bytes[15] == 1))) {
526      return false;
527    }
528
529    return true;
530  }
531
532  /**
533   * Returns the IPv4 address embedded in an IPv4 compatible address.
534   *
535   * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address
536   * @return {@link Inet4Address} of the embedded IPv4 address
537   * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address
538   */
539  public static Inet4Address getCompatIPv4Address(Inet6Address ip) {
540    checkArgument(
541        isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip));
542
543    return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16));
544  }
545
546  /**
547   * Evaluates whether the argument is a 6to4 address.
548   *
549   * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4
550   * address of the host to which IPv6-in-IPv4 tunneled packets should be routed.
551   *
552   * <p>For more on 6to4 addresses see section 2 of <a target="_parent"
553   * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>.
554   *
555   * @param ip {@link Inet6Address} to be examined for 6to4 address format
556   * @return {@code true} if the argument is a 6to4 address
557   */
558  public static boolean is6to4Address(Inet6Address ip) {
559    byte[] bytes = ip.getAddress();
560    return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02);
561  }
562
563  /**
564   * Returns the IPv4 address embedded in a 6to4 address.
565   *
566   * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address
567   * @return {@link Inet4Address} of embedded IPv4 in 6to4 address
568   * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address
569   */
570  public static Inet4Address get6to4IPv4Address(Inet6Address ip) {
571    checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip));
572
573    return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6));
574  }
575
576  /**
577   * A simple immutable data class to encapsulate the information to be found in a Teredo address.
578   *
579   * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part
580   * of the protocol. More protocols details can be found at: <a target="_parent"
581   * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia.
582   * org/wiki/Teredo_tunneling</a>.
583   *
584   * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC
585   * 4380</a>.
586   *
587   * @since 5.0
588   */
589  @Beta
590  public static final class TeredoInfo {
591    private final Inet4Address server;
592    private final Inet4Address client;
593    private final int port;
594    private final int flags;
595
596    /**
597     * Constructs a TeredoInfo instance.
598     *
599     * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will
600     * be assumed.
601     *
602     * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments
603     *     are out of range of an unsigned short
604     */
605    // TODO: why is this public?
606    public TeredoInfo(
607        @Nullable Inet4Address server, @Nullable Inet4Address client, int port, int flags) {
608      checkArgument(
609          (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port);
610      checkArgument(
611          (flags >= 0) && (flags <= 0xffff),
612          "flags '%s' is out of range (0 <= flags <= 0xffff)",
613          flags);
614
615      this.server = MoreObjects.firstNonNull(server, ANY4);
616      this.client = MoreObjects.firstNonNull(client, ANY4);
617      this.port = port;
618      this.flags = flags;
619    }
620
621    public Inet4Address getServer() {
622      return server;
623    }
624
625    public Inet4Address getClient() {
626      return client;
627    }
628
629    public int getPort() {
630      return port;
631    }
632
633    public int getFlags() {
634      return flags;
635    }
636  }
637
638  /**
639   * Evaluates whether the argument is a Teredo address.
640   *
641   * <p>Teredo addresses begin with the {@code "2001::/32"} prefix.
642   *
643   * @param ip {@link Inet6Address} to be examined for Teredo address format
644   * @return {@code true} if the argument is a Teredo address
645   */
646  public static boolean isTeredoAddress(Inet6Address ip) {
647    byte[] bytes = ip.getAddress();
648    return (bytes[0] == (byte) 0x20)
649        && (bytes[1] == (byte) 0x01)
650        && (bytes[2] == 0)
651        && (bytes[3] == 0);
652  }
653
654  /**
655   * Returns the Teredo information embedded in a Teredo address.
656   *
657   * @param ip {@link Inet6Address} to be examined for embedded Teredo information
658   * @return extracted {@code TeredoInfo}
659   * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address
660   */
661  public static TeredoInfo getTeredoInfo(Inet6Address ip) {
662    checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip));
663
664    byte[] bytes = ip.getAddress();
665    Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8));
666
667    int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff;
668
669    // Teredo obfuscates the mapped client port, per section 4 of the RFC.
670    int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff;
671
672    byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16);
673    for (int i = 0; i < clientBytes.length; i++) {
674      // Teredo obfuscates the mapped client IP, per section 4 of the RFC.
675      clientBytes[i] = (byte) ~clientBytes[i];
676    }
677    Inet4Address client = getInet4Address(clientBytes);
678
679    return new TeredoInfo(server, client, port, flags);
680  }
681
682  /**
683   * Evaluates whether the argument is an ISATAP address.
684   *
685   * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...]
686   * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit
687   * IPv4 address in network byte order [...]"
688   *
689   * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent"
690   * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>.
691   *
692   * @param ip {@link Inet6Address} to be examined for ISATAP address format
693   * @return {@code true} if the argument is an ISATAP address
694   */
695  public static boolean isIsatapAddress(Inet6Address ip) {
696
697    // If it's a Teredo address with the right port (41217, or 0xa101)
698    // which would be encoded as 0x5efe then it can't be an ISATAP address.
699    if (isTeredoAddress(ip)) {
700      return false;
701    }
702
703    byte[] bytes = ip.getAddress();
704
705    if ((bytes[8] | (byte) 0x03) != (byte) 0x03) {
706
707      // Verify that high byte of the 64 bit identifier is zero, modulo
708      // the U/L and G bits, with which we are not concerned.
709      return false;
710    }
711
712    return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe);
713  }
714
715  /**
716   * Returns the IPv4 address embedded in an ISATAP address.
717   *
718   * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address
719   * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address
720   * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address
721   */
722  public static Inet4Address getIsatapIPv4Address(Inet6Address ip) {
723    checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip));
724
725    return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16));
726  }
727
728  /**
729   * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address
730   * types that contain an embedded IPv4 address.
731   *
732   * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial
733   * spoofability. With other transition addresses spoofing involves (at least) infection of one's
734   * BGP routing table.
735   *
736   * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address
737   * @return {@code true} if there is an embedded IPv4 client address
738   * @since 7.0
739   */
740  public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) {
741    return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip);
742  }
743
744  /**
745   * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an
746   * IPv6 address of one of the specified address types that contain an embedded IPv4 address.
747   *
748   * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial
749   * spoofability. With other transition addresses spoofing involves (at least) infection of one's
750   * BGP routing table.
751   *
752   * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address
753   * @return {@link Inet4Address} of embedded IPv4 client address
754   * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address
755   */
756  public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) {
757    if (isCompatIPv4Address(ip)) {
758      return getCompatIPv4Address(ip);
759    }
760
761    if (is6to4Address(ip)) {
762      return get6to4IPv4Address(ip);
763    }
764
765    if (isTeredoAddress(ip)) {
766      return getTeredoInfo(ip).getClient();
767    }
768
769    throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip));
770  }
771
772  /**
773   * Evaluates whether the argument is an "IPv4 mapped" IPv6 address.
774   *
775   * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as
776   * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address.
777   *
778   * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent"
779   * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>.
780   *
781   * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically
782   * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the
783   * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a
784   * poorly-documented feature.)
785   *
786   * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format
787   * @return {@code true} if the argument is a valid "mapped" address
788   * @since 10.0
789   */
790  public static boolean isMappedIPv4Address(String ipString) {
791    byte[] bytes = ipStringToBytes(ipString);
792    if (bytes != null && bytes.length == 16) {
793      for (int i = 0; i < 10; i++) {
794        if (bytes[i] != 0) {
795          return false;
796        }
797      }
798      for (int i = 10; i < 12; i++) {
799        if (bytes[i] != (byte) 0xff) {
800          return false;
801        }
802      }
803      return true;
804    }
805    return false;
806  }
807
808  /**
809   * Coerces an IPv6 address into an IPv4 address.
810   *
811   * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables,
812   * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses.
813   * This function does so by hashing the upper 64 bits into {@code 224.0.0.0/3} (64 bits into 29
814   * bits).
815   *
816   * <p>A "coerced" IPv4 address is equivalent to itself.
817   *
818   * <p>NOTE: This function is failsafe for security purposes: ALL IPv6 addresses (except localhost
819   * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4
820   * address that might permit elevated privileges.
821   *
822   * @param ip {@link InetAddress} to "coerce"
823   * @return {@link Inet4Address} represented "coerced" address
824   * @since 7.0
825   */
826  public static Inet4Address getCoercedIPv4Address(InetAddress ip) {
827    if (ip instanceof Inet4Address) {
828      return (Inet4Address) ip;
829    }
830
831    // Special cases:
832    byte[] bytes = ip.getAddress();
833    boolean leadingBytesOfZero = true;
834    for (int i = 0; i < 15; ++i) {
835      if (bytes[i] != 0) {
836        leadingBytesOfZero = false;
837        break;
838      }
839    }
840    if (leadingBytesOfZero && (bytes[15] == 1)) {
841      return LOOPBACK4; // ::1
842    } else if (leadingBytesOfZero && (bytes[15] == 0)) {
843      return ANY4; // ::0
844    }
845
846    Inet6Address ip6 = (Inet6Address) ip;
847    long addressAsLong = 0;
848    if (hasEmbeddedIPv4ClientAddress(ip6)) {
849      addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode();
850    } else {
851
852      // Just extract the high 64 bits (assuming the rest is user-modifiable).
853      addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong();
854    }
855
856    // Many strategies for hashing are possible. This might suffice for now.
857    int coercedHash = Hashing.murmur3_32().hashLong(addressAsLong).asInt();
858
859    // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3).
860    coercedHash |= 0xe0000000;
861
862    // Fixup to avoid some "illegal" values. Currently the only potential
863    // illegal value is 255.255.255.255.
864    if (coercedHash == 0xffffffff) {
865      coercedHash = 0xfffffffe;
866    }
867
868    return getInet4Address(Ints.toByteArray(coercedHash));
869  }
870
871  /**
872   * Returns an integer representing an IPv4 address regardless of whether the supplied argument is
873   * an IPv4 address or not.
874   *
875   * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers.
876   *
877   * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and
878   * can therefore be converted safely to integers (for whatever purpose) this function can be used
879   * to handle IPv6 addresses as well until the application is suitably fixed.
880   *
881   * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as
882   * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They
883   * cannot be used as real addresses for the purposes of network communication.
884   *
885   * @param ip {@link InetAddress} to convert
886   * @return {@code int}, "coerced" if ip is not an IPv4 address
887   * @since 7.0
888   */
889  public static int coerceToInteger(InetAddress ip) {
890    return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt();
891  }
892
893  /**
894   * Returns an Inet4Address having the integer value specified by the argument.
895   *
896   * @param address {@code int}, the 32bit integer address to be converted
897   * @return {@link Inet4Address} equivalent of the argument
898   */
899  public static Inet4Address fromInteger(int address) {
900    return getInet4Address(Ints.toByteArray(address));
901  }
902
903  /**
904   * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link
905   * InetAddress#getByAddress} expects).
906   *
907   * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long.
908   *
909   * @param addr the raw IP address in little-endian byte order
910   * @return an InetAddress object created from the raw IP address
911   * @throws UnknownHostException if IP address is of illegal length
912   */
913  public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException {
914    byte[] reversed = new byte[addr.length];
915    for (int i = 0; i < addr.length; i++) {
916      reversed[i] = addr[addr.length - i - 1];
917    }
918    return InetAddress.getByAddress(reversed);
919  }
920
921  /**
922   * Returns a new InetAddress that is one less than the passed in address. This method works for
923   * both IPv4 and IPv6 addresses.
924   *
925   * @param address the InetAddress to decrement
926   * @return a new InetAddress that is one less than the passed in address
927   * @throws IllegalArgumentException if InetAddress is at the beginning of its range
928   * @since 18.0
929   */
930  public static InetAddress decrement(InetAddress address) {
931    byte[] addr = address.getAddress();
932    int i = addr.length - 1;
933    while (i >= 0 && addr[i] == (byte) 0x00) {
934      addr[i] = (byte) 0xff;
935      i--;
936    }
937
938    checkArgument(i >= 0, "Decrementing %s would wrap.", address);
939
940    addr[i]--;
941    return bytesToInetAddress(addr);
942  }
943
944  /**
945   * Returns a new InetAddress that is one more than the passed in address. This method works for
946   * both IPv4 and IPv6 addresses.
947   *
948   * @param address the InetAddress to increment
949   * @return a new InetAddress that is one more than the passed in address
950   * @throws IllegalArgumentException if InetAddress is at the end of its range
951   * @since 10.0
952   */
953  public static InetAddress increment(InetAddress address) {
954    byte[] addr = address.getAddress();
955    int i = addr.length - 1;
956    while (i >= 0 && addr[i] == (byte) 0xff) {
957      addr[i] = 0;
958      i--;
959    }
960
961    checkArgument(i >= 0, "Incrementing %s would wrap.", address);
962
963    addr[i]++;
964    return bytesToInetAddress(addr);
965  }
966
967  /**
968   * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or
969   * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6.
970   *
971   * @return true if the InetAddress is either 255.255.255.255 for IPv4 or
972   *     ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6
973   * @since 10.0
974   */
975  public static boolean isMaximum(InetAddress address) {
976    byte[] addr = address.getAddress();
977    for (int i = 0; i < addr.length; i++) {
978      if (addr[i] != (byte) 0xff) {
979        return false;
980      }
981    }
982    return true;
983  }
984
985  private static IllegalArgumentException formatIllegalArgumentException(
986      String format, Object... args) {
987    return new IllegalArgumentException(String.format(Locale.ROOT, format, args));
988  }
989}