001/*
002 * Copyright (C) 2014 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.graph;
018
019import com.google.common.annotations.Beta;
020import java.util.Optional;
021import java.util.Set;
022import org.checkerframework.checker.nullness.qual.Nullable;
023
024/**
025 * An interface for <a
026 * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data,
027 * whose edges are unique objects.
028 *
029 * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes.
030 *
031 * <p>There are three primary interfaces provided to represent graphs. In order of increasing
032 * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally
033 * prefer the simplest interface that satisfies your use case. See the <a
034 * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type">
035 * "Choosing the right graph type"</a> section of the Guava User Guide for more details.
036 *
037 * <h3>Capabilities</h3>
038 *
039 * <p>{@code Network} supports the following use cases (<a
040 * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of
041 * terms</a>):
042 *
043 * <ul>
044 *   <li>directed graphs
045 *   <li>undirected graphs
046 *   <li>graphs that do/don't allow parallel edges
047 *   <li>graphs that do/don't allow self-loops
048 *   <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered
049 *   <li>graphs whose edges are unique objects
050 * </ul>
051 *
052 * <h3>Building a {@code Network}</h3>
053 *
054 * <p>The implementation classes that {@code common.graph} provides are not public, by design. To
055 * create an instance of one of the built-in implementations of {@code Network}, use the {@link
056 * NetworkBuilder} class:
057 *
058 * <pre>{@code
059 * MutableNetwork<Integer, MyEdge> graph = NetworkBuilder.directed().build();
060 * }</pre>
061 *
062 * <p>{@link NetworkBuilder#build()} returns an instance of {@link MutableNetwork}, which is a
063 * subtype of {@code Network} that provides methods for adding and removing nodes and edges. If you
064 * do not need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the
065 * graph), you should use the non-mutating {@link Network} interface, or an {@link
066 * ImmutableNetwork}.
067 *
068 * <p>You can create an immutable copy of an existing {@code Network} using {@link
069 * ImmutableNetwork#copyOf(Network)}:
070 *
071 * <pre>{@code
072 * ImmutableNetwork<Integer, MyEdge> immutableGraph = ImmutableNetwork.copyOf(graph);
073 * }</pre>
074 *
075 * <p>Instances of {@link ImmutableNetwork} do not implement {@link MutableNetwork} (obviously!) and
076 * are contractually guaranteed to be unmodifiable and thread-safe.
077 *
078 * <p>The Guava User Guide has <a
079 * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more
080 * information on (and examples of) building graphs</a>.
081 *
082 * <h3>Additional documentation</h3>
083 *
084 * <p>See the Guava User Guide for the {@code common.graph} package (<a
085 * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for
086 * additional documentation, including:
087 *
088 * <ul>
089 *   <li><a
090 *       href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence">
091 *       {@code equals()}, {@code hashCode()}, and graph equivalence</a>
092 *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization">
093 *       Synchronization policy</a>
094 *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes
095 *       for implementors</a>
096 * </ul>
097 *
098 * @author James Sexton
099 * @author Joshua O'Madadhain
100 * @param <N> Node parameter type
101 * @param <E> Edge parameter type
102 * @since 20.0
103 */
104@Beta
105public interface Network<N, E> extends SuccessorsFunction<N>, PredecessorsFunction<N> {
106  //
107  // Network-level accessors
108  //
109
110  /** Returns all nodes in this network, in the order specified by {@link #nodeOrder()}. */
111  Set<N> nodes();
112
113  /** Returns all edges in this network, in the order specified by {@link #edgeOrder()}. */
114  Set<E> edges();
115
116  /**
117   * Returns a live view of this network as a {@link Graph}. The resulting {@link Graph} will have
118   * an edge connecting node A to node B if this {@link Network} has an edge connecting A to B.
119   *
120   * <p>If this network {@link #allowsParallelEdges() allows parallel edges}, parallel edges will be
121   * treated as if collapsed into a single edge. For example, the {@link #degree(Object)} of a node
122   * in the {@link Graph} view may be less than the degree of the same node in this {@link Network}.
123   */
124  Graph<N> asGraph();
125
126  //
127  // Network properties
128  //
129
130  /**
131   * Returns true if the edges in this network are directed. Directed edges connect a {@link
132   * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while
133   * undirected edges connect a pair of nodes to each other.
134   */
135  boolean isDirected();
136
137  /**
138   * Returns true if this network allows parallel edges. Attempting to add a parallel edge to a
139   * network that does not allow them will throw an {@link IllegalArgumentException}.
140   */
141  boolean allowsParallelEdges();
142
143  /**
144   * Returns true if this network allows self-loops (edges that connect a node to itself).
145   * Attempting to add a self-loop to a network that does not allow them will throw an {@link
146   * IllegalArgumentException}.
147   */
148  boolean allowsSelfLoops();
149
150  /** Returns the order of iteration for the elements of {@link #nodes()}. */
151  ElementOrder<N> nodeOrder();
152
153  /** Returns the order of iteration for the elements of {@link #edges()}. */
154  ElementOrder<E> edgeOrder();
155
156  //
157  // Element-level accessors
158  //
159
160  /**
161   * Returns the nodes which have an incident edge in common with {@code node} in this network.
162   *
163   * @throws IllegalArgumentException if {@code node} is not an element of this network
164   */
165  Set<N> adjacentNodes(N node);
166
167  /**
168   * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
169   * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge.
170   *
171   * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
172   *
173   * @throws IllegalArgumentException if {@code node} is not an element of this network
174   */
175  @Override
176  Set<N> predecessors(N node);
177
178  /**
179   * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
180   * {@code node}'s outgoing edges in the direction (if any) of the edge.
181   *
182   * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
183   *
184   * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing
185   * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}.
186   *
187   * @throws IllegalArgumentException if {@code node} is not an element of this network
188   */
189  @Override
190  Set<N> successors(N node);
191
192  /**
193   * Returns the edges whose {@link #incidentNodes(Object) incident nodes} in this network include
194   * {@code node}.
195   *
196   * @throws IllegalArgumentException if {@code node} is not an element of this network
197   */
198  Set<E> incidentEdges(N node);
199
200  /**
201   * Returns all edges in this network which can be traversed in the direction (if any) of the edge
202   * to end at {@code node}.
203   *
204   * <p>In a directed network, an incoming edge's {@link EndpointPair#target()} equals {@code node}.
205   *
206   * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
207   *
208   * @throws IllegalArgumentException if {@code node} is not an element of this network
209   */
210  Set<E> inEdges(N node);
211
212  /**
213   * Returns all edges in this network which can be traversed in the direction (if any) of the edge
214   * starting from {@code node}.
215   *
216   * <p>In a directed network, an outgoing edge's {@link EndpointPair#source()} equals {@code node}.
217   *
218   * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
219   *
220   * @throws IllegalArgumentException if {@code node} is not an element of this network
221   */
222  Set<E> outEdges(N node);
223
224  /**
225   * Returns the count of {@code node}'s {@link #incidentEdges(Object) incident edges}, counting
226   * self-loops twice (equivalently, the number of times an edge touches {@code node}).
227   *
228   * <p>For directed networks, this is equal to {@code inDegree(node) + outDegree(node)}.
229   *
230   * <p>For undirected networks, this is equal to {@code incidentEdges(node).size()} + (number of
231   * self-loops incident to {@code node}).
232   *
233   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
234   *
235   * @throws IllegalArgumentException if {@code node} is not an element of this network
236   */
237  int degree(N node);
238
239  /**
240   * Returns the count of {@code node}'s {@link #inEdges(Object) incoming edges} in a directed
241   * network. In an undirected network, returns the {@link #degree(Object)}.
242   *
243   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
244   *
245   * @throws IllegalArgumentException if {@code node} is not an element of this network
246   */
247  int inDegree(N node);
248
249  /**
250   * Returns the count of {@code node}'s {@link #outEdges(Object) outgoing edges} in a directed
251   * network. In an undirected network, returns the {@link #degree(Object)}.
252   *
253   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
254   *
255   * @throws IllegalArgumentException if {@code node} is not an element of this network
256   */
257  int outDegree(N node);
258
259  /**
260   * Returns the nodes which are the endpoints of {@code edge} in this network.
261   *
262   * @throws IllegalArgumentException if {@code edge} is not an element of this network
263   */
264  EndpointPair<N> incidentNodes(E edge);
265
266  /**
267   * Returns the edges which have an {@link #incidentNodes(Object) incident node} in common with
268   * {@code edge}. An edge is not considered adjacent to itself.
269   *
270   * @throws IllegalArgumentException if {@code edge} is not an element of this network
271   */
272  Set<E> adjacentEdges(E edge);
273
274  /**
275   * Returns the set of edges directly connecting {@code nodeU} to {@code nodeV}.
276   *
277   * <p>In an undirected network, this is equal to {@code edgesConnecting(nodeV, nodeU)}.
278   *
279   * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}.
280   * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set
281   * will contain at most one edge (equivalent to {@code edgeConnecting(nodeU, nodeV).asSet()}).
282   *
283   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
284   *     network
285   */
286  Set<E> edgesConnecting(N nodeU, N nodeV);
287
288  /**
289   * Returns the single edge directly connecting {@code nodeU} to {@code nodeV}, if one is present,
290   * or {@code Optional.empty()} if no such edge exists.
291   *
292   * <p>In an undirected network, this is equal to {@code edgeConnecting(nodeV, nodeU)}.
293   *
294   * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
295   *     to {@code nodeV}
296   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
297   *     network
298   * @since 23.0
299   */
300  Optional<E> edgeConnecting(N nodeU, N nodeV);
301
302  /**
303   * Returns the single edge directly connecting {@code nodeU} to {@code nodeV}, if one is present,
304   * or {@code null} if no such edge exists.
305   *
306   * <p>In an undirected network, this is equal to {@code edgeConnectingOrNull(nodeV, nodeU)}.
307   *
308   * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
309   *     to {@code nodeV}
310   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
311   *     network
312   * @since 23.0
313   */
314  @Nullable
315  E edgeConnectingOrNull(N nodeU, N nodeV);
316
317  /**
318   * Returns true if there is an edge directly connecting {@code nodeU} to {@code nodeV}. This is
319   * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}, and to
320   * {@code edgeConnectingOrNull(nodeU, nodeV) != null}.
321   *
322   * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}.
323   *
324   * @since 23.0
325   */
326  boolean hasEdgeConnecting(N nodeU, N nodeV);
327
328  //
329  // Network identity
330  //
331
332  /**
333   * Returns {@code true} iff {@code object} is a {@link Network} that has the same elements and the
334   * same structural relationships as those in this network.
335   *
336   * <p>Thus, two networks A and B are equal if <b>all</b> of the following are true:
337   *
338   * <ul>
339   *   <li>A and B have equal {@link #isDirected() directedness}.
340   *   <li>A and B have equal {@link #nodes() node sets}.
341   *   <li>A and B have equal {@link #edges() edge sets}.
342   *   <li>Every edge in A and B connects the same nodes in the same direction (if any).
343   * </ul>
344   *
345   * <p>Network properties besides {@link #isDirected() directedness} do <b>not</b> affect equality.
346   * For example, two networks may be considered equal even if one allows parallel edges and the
347   * other doesn't. Additionally, the order in which nodes or edges are added to the network, and
348   * the order in which they are iterated over, are irrelevant.
349   *
350   * <p>A reference implementation of this is provided by {@link AbstractNetwork#equals(Object)}.
351   */
352  @Override
353  boolean equals(@Nullable Object object);
354
355  /**
356   * Returns the hash code for this network. The hash code of a network is defined as the hash code
357   * of a map from each of its {@link #edges() edges} to their {@link #incidentNodes(Object)
358   * incident nodes}.
359   *
360   * <p>A reference implementation of this is provided by {@link AbstractNetwork#hashCode()}.
361   */
362  @Override
363  int hashCode();
364}