001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Optional; 034import java.util.Queue; 035import java.util.Set; 036import org.checkerframework.checker.nullness.compatqual.NullableDecl; 037 038/** 039 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 040 * 041 * @author James Sexton 042 * @author Joshua O'Madadhain 043 * @since 20.0 044 */ 045@Beta 046public final class Graphs { 047 048 private Graphs() {} 049 050 // Graph query methods 051 052 /** 053 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 054 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 055 * and ending with the same node. 056 * 057 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 058 */ 059 public static <N> boolean hasCycle(Graph<N> graph) { 060 int numEdges = graph.edges().size(); 061 if (numEdges == 0) { 062 return false; // An edge-free graph is acyclic by definition. 063 } 064 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 065 return true; // Optimization for the undirected case: at least one cycle must exist. 066 } 067 068 Map<Object, NodeVisitState> visitedNodes = 069 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 070 for (N node : graph.nodes()) { 071 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 072 return true; 073 } 074 } 075 return false; 076 } 077 078 /** 079 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 080 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 081 * starting and ending with the same node. 082 * 083 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 084 */ 085 public static boolean hasCycle(Network<?, ?> network) { 086 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 087 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 088 if (!network.isDirected() 089 && network.allowsParallelEdges() 090 && network.edges().size() > network.asGraph().edges().size()) { 091 return true; 092 } 093 return hasCycle(network.asGraph()); 094 } 095 096 /** 097 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 098 * already visited (following only outgoing edges and without reusing edges), we know there's a 099 * cycle in the graph. 100 */ 101 private static <N> boolean subgraphHasCycle( 102 Graph<N> graph, 103 Map<Object, NodeVisitState> visitedNodes, 104 N node, 105 @NullableDecl N previousNode) { 106 NodeVisitState state = visitedNodes.get(node); 107 if (state == NodeVisitState.COMPLETE) { 108 return false; 109 } 110 if (state == NodeVisitState.PENDING) { 111 return true; 112 } 113 114 visitedNodes.put(node, NodeVisitState.PENDING); 115 for (N nextNode : graph.successors(node)) { 116 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 117 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 118 return true; 119 } 120 } 121 visitedNodes.put(node, NodeVisitState.COMPLETE); 122 return false; 123 } 124 125 /** 126 * Determines whether an edge has already been used during traversal. In the directed case a cycle 127 * is always detected before reusing an edge, so no special logic is required. In the undirected 128 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 129 * from B to A). 130 */ 131 private static boolean canTraverseWithoutReusingEdge( 132 Graph<?> graph, Object nextNode, @NullableDecl Object previousNode) { 133 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 134 return true; 135 } 136 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 137 // edges, so this traversal would require reusing the undirected AB edge. 138 return false; 139 } 140 141 /** 142 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 143 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 144 * Object) reachable} from node A. 145 * 146 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 147 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 148 * be updated after modifications to {@code graph}. 149 */ 150 // TODO(b/31438252): Consider potential optimizations for this algorithm. 151 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 152 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 153 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 154 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 155 156 if (graph.isDirected()) { 157 // Note: works for both directed and undirected graphs, but we only use in the directed case. 158 for (N node : graph.nodes()) { 159 for (N reachableNode : reachableNodes(graph, node)) { 160 transitiveClosure.putEdge(node, reachableNode); 161 } 162 } 163 } else { 164 // An optimization for the undirected case: for every node B reachable from node A, 165 // node A and node B have the same reachability set. 166 Set<N> visitedNodes = new HashSet<N>(); 167 for (N node : graph.nodes()) { 168 if (!visitedNodes.contains(node)) { 169 Set<N> reachableNodes = reachableNodes(graph, node); 170 visitedNodes.addAll(reachableNodes); 171 int pairwiseMatch = 1; // start at 1 to include self-loops 172 for (N nodeU : reachableNodes) { 173 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 174 transitiveClosure.putEdge(nodeU, nodeV); 175 } 176 } 177 } 178 } 179 } 180 181 return transitiveClosure; 182 } 183 184 /** 185 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 186 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 187 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 188 * 189 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 190 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 191 * not be updated after modifications to {@code graph}. 192 * 193 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 194 */ 195 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 196 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 197 Set<N> visitedNodes = new LinkedHashSet<N>(); 198 Queue<N> queuedNodes = new ArrayDeque<N>(); 199 visitedNodes.add(node); 200 queuedNodes.add(node); 201 // Perform a breadth-first traversal rooted at the input node. 202 while (!queuedNodes.isEmpty()) { 203 N currentNode = queuedNodes.remove(); 204 for (N successor : graph.successors(currentNode)) { 205 if (visitedNodes.add(successor)) { 206 queuedNodes.add(successor); 207 } 208 } 209 } 210 return Collections.unmodifiableSet(visitedNodes); 211 } 212 213 // Graph mutation methods 214 215 // Graph view methods 216 217 /** 218 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 219 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 220 */ 221 public static <N> Graph<N> transpose(Graph<N> graph) { 222 if (!graph.isDirected()) { 223 return graph; // the transpose of an undirected graph is an identical graph 224 } 225 226 if (graph instanceof TransposedGraph) { 227 return ((TransposedGraph<N>) graph).graph; 228 } 229 230 return new TransposedGraph<N>(graph); 231 } 232 233 /** 234 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 235 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 236 */ 237 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 238 if (!graph.isDirected()) { 239 return graph; // the transpose of an undirected graph is an identical graph 240 } 241 242 if (graph instanceof TransposedValueGraph) { 243 return ((TransposedValueGraph<N, V>) graph).graph; 244 } 245 246 return new TransposedValueGraph<>(graph); 247 } 248 249 /** 250 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 251 * properties remain intact, and further updates to {@code network} will be reflected in the view. 252 */ 253 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 254 if (!network.isDirected()) { 255 return network; // the transpose of an undirected network is an identical network 256 } 257 258 if (network instanceof TransposedNetwork) { 259 return ((TransposedNetwork<N, E>) network).network; 260 } 261 262 return new TransposedNetwork<>(network); 263 } 264 265 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 266 // AbstractGraph) derives its behavior from calling successors(). 267 private static class TransposedGraph<N> extends ForwardingGraph<N> { 268 private final Graph<N> graph; 269 270 TransposedGraph(Graph<N> graph) { 271 this.graph = graph; 272 } 273 274 @Override 275 protected Graph<N> delegate() { 276 return graph; 277 } 278 279 @Override 280 public Set<N> predecessors(N node) { 281 return delegate().successors(node); // transpose 282 } 283 284 @Override 285 public Set<N> successors(N node) { 286 return delegate().predecessors(node); // transpose 287 } 288 289 @Override 290 public int inDegree(N node) { 291 return delegate().outDegree(node); // transpose 292 } 293 294 @Override 295 public int outDegree(N node) { 296 return delegate().inDegree(node); // transpose 297 } 298 299 @Override 300 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 301 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 302 } 303 } 304 305 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 306 // AbstractValueGraph) derives its behavior from calling successors(). 307 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 308 private final ValueGraph<N, V> graph; 309 310 TransposedValueGraph(ValueGraph<N, V> graph) { 311 this.graph = graph; 312 } 313 314 @Override 315 protected ValueGraph<N, V> delegate() { 316 return graph; 317 } 318 319 @Override 320 public Set<N> predecessors(N node) { 321 return delegate().successors(node); // transpose 322 } 323 324 @Override 325 public Set<N> successors(N node) { 326 return delegate().predecessors(node); // transpose 327 } 328 329 @Override 330 public int inDegree(N node) { 331 return delegate().outDegree(node); // transpose 332 } 333 334 @Override 335 public int outDegree(N node) { 336 return delegate().inDegree(node); // transpose 337 } 338 339 @Override 340 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 341 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 342 } 343 344 @Override 345 public Optional<V> edgeValue(N nodeU, N nodeV) { 346 return delegate().edgeValue(nodeV, nodeU); // transpose 347 } 348 349 @Override 350 @NullableDecl 351 public V edgeValueOrDefault(N nodeU, N nodeV, @NullableDecl V defaultValue) { 352 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 353 } 354 } 355 356 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 357 private final Network<N, E> network; 358 359 TransposedNetwork(Network<N, E> network) { 360 this.network = network; 361 } 362 363 @Override 364 protected Network<N, E> delegate() { 365 return network; 366 } 367 368 @Override 369 public Set<N> predecessors(N node) { 370 return delegate().successors(node); // transpose 371 } 372 373 @Override 374 public Set<N> successors(N node) { 375 return delegate().predecessors(node); // transpose 376 } 377 378 @Override 379 public int inDegree(N node) { 380 return delegate().outDegree(node); // transpose 381 } 382 383 @Override 384 public int outDegree(N node) { 385 return delegate().inDegree(node); // transpose 386 } 387 388 @Override 389 public Set<E> inEdges(N node) { 390 return delegate().outEdges(node); // transpose 391 } 392 393 @Override 394 public Set<E> outEdges(N node) { 395 return delegate().inEdges(node); // transpose 396 } 397 398 @Override 399 public EndpointPair<N> incidentNodes(E edge) { 400 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 401 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 402 } 403 404 @Override 405 public Set<E> edgesConnecting(N nodeU, N nodeV) { 406 return delegate().edgesConnecting(nodeV, nodeU); // transpose 407 } 408 409 @Override 410 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 411 return delegate().edgeConnecting(nodeV, nodeU); // transpose 412 } 413 414 @Override 415 public E edgeConnectingOrNull(N nodeU, N nodeV) { 416 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 417 } 418 419 @Override 420 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 421 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 422 } 423 } 424 425 // Graph copy methods 426 427 /** 428 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 429 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 430 * from {@code graph} for which both nodes are contained by {@code nodes}. 431 * 432 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 433 */ 434 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 435 MutableGraph<N> subgraph = 436 (nodes instanceof Collection) 437 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 438 : GraphBuilder.from(graph).build(); 439 for (N node : nodes) { 440 subgraph.addNode(node); 441 } 442 for (N node : subgraph.nodes()) { 443 for (N successorNode : graph.successors(node)) { 444 if (subgraph.nodes().contains(successorNode)) { 445 subgraph.putEdge(node, successorNode); 446 } 447 } 448 } 449 return subgraph; 450 } 451 452 /** 453 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 454 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 455 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 456 * nodes}. 457 * 458 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 459 */ 460 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 461 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 462 MutableValueGraph<N, V> subgraph = 463 (nodes instanceof Collection) 464 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 465 : ValueGraphBuilder.from(graph).build(); 466 for (N node : nodes) { 467 subgraph.addNode(node); 468 } 469 for (N node : subgraph.nodes()) { 470 for (N successorNode : graph.successors(node)) { 471 if (subgraph.nodes().contains(successorNode)) { 472 subgraph.putEdgeValue( 473 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 474 } 475 } 476 } 477 return subgraph; 478 } 479 480 /** 481 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 482 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 483 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 484 * both contained by {@code nodes}. 485 * 486 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 487 */ 488 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 489 Network<N, E> network, Iterable<? extends N> nodes) { 490 MutableNetwork<N, E> subgraph = 491 (nodes instanceof Collection) 492 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 493 : NetworkBuilder.from(network).build(); 494 for (N node : nodes) { 495 subgraph.addNode(node); 496 } 497 for (N node : subgraph.nodes()) { 498 for (E edge : network.outEdges(node)) { 499 N successorNode = network.incidentNodes(edge).adjacentNode(node); 500 if (subgraph.nodes().contains(successorNode)) { 501 subgraph.addEdge(node, successorNode, edge); 502 } 503 } 504 } 505 return subgraph; 506 } 507 508 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 509 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 510 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 511 for (N node : graph.nodes()) { 512 copy.addNode(node); 513 } 514 for (EndpointPair<N> edge : graph.edges()) { 515 copy.putEdge(edge.nodeU(), edge.nodeV()); 516 } 517 return copy; 518 } 519 520 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 521 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 522 MutableValueGraph<N, V> copy = 523 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 524 for (N node : graph.nodes()) { 525 copy.addNode(node); 526 } 527 for (EndpointPair<N> edge : graph.edges()) { 528 copy.putEdgeValue( 529 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 530 } 531 return copy; 532 } 533 534 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 535 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 536 MutableNetwork<N, E> copy = 537 NetworkBuilder.from(network) 538 .expectedNodeCount(network.nodes().size()) 539 .expectedEdgeCount(network.edges().size()) 540 .build(); 541 for (N node : network.nodes()) { 542 copy.addNode(node); 543 } 544 for (E edge : network.edges()) { 545 EndpointPair<N> endpointPair = network.incidentNodes(edge); 546 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 547 } 548 return copy; 549 } 550 551 @CanIgnoreReturnValue 552 static int checkNonNegative(int value) { 553 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 554 return value; 555 } 556 557 @CanIgnoreReturnValue 558 static long checkNonNegative(long value) { 559 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 560 return value; 561 } 562 563 @CanIgnoreReturnValue 564 static int checkPositive(int value) { 565 checkArgument(value > 0, "Not true that %s is positive.", value); 566 return value; 567 } 568 569 @CanIgnoreReturnValue 570 static long checkPositive(long value) { 571 checkArgument(value > 0, "Not true that %s is positive.", value); 572 return value; 573 } 574 575 /** 576 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 577 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 578 * been already explored. Any node that has not been explored will not have a state at all. 579 */ 580 private enum NodeVisitState { 581 PENDING, 582 COMPLETE 583 } 584}