001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.Beta; 024import com.google.common.annotations.GwtCompatible; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.collect.Collections2.FilteredCollection; 029import com.google.common.math.IntMath; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import java.io.Serializable; 032import java.util.AbstractSet; 033import java.util.Arrays; 034import java.util.BitSet; 035import java.util.Collection; 036import java.util.Collections; 037import java.util.Comparator; 038import java.util.EnumSet; 039import java.util.HashSet; 040import java.util.Iterator; 041import java.util.LinkedHashSet; 042import java.util.List; 043import java.util.Map; 044import java.util.NavigableSet; 045import java.util.NoSuchElementException; 046import java.util.Set; 047import java.util.SortedSet; 048import java.util.TreeSet; 049import java.util.concurrent.ConcurrentHashMap; 050import java.util.concurrent.CopyOnWriteArraySet; 051import java.util.function.Consumer; 052import java.util.stream.Collector; 053import java.util.stream.Stream; 054import org.checkerframework.checker.nullness.compatqual.MonotonicNonNullDecl; 055import org.checkerframework.checker.nullness.compatqual.NullableDecl; 056 057/** 058 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts 059 * {@link Lists}, {@link Maps} and {@link Queues}. 060 * 061 * <p>See the Guava User Guide article on <a href= 062 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>. 063 * 064 * @author Kevin Bourrillion 065 * @author Jared Levy 066 * @author Chris Povirk 067 * @since 2.0 068 */ 069@GwtCompatible(emulated = true) 070public final class Sets { 071 private Sets() {} 072 073 /** 074 * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll} 075 * implementation. 076 */ 077 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 078 @Override 079 public boolean removeAll(Collection<?> c) { 080 return removeAllImpl(this, c); 081 } 082 083 @Override 084 public boolean retainAll(Collection<?> c) { 085 return super.retainAll(checkNotNull(c)); // GWT compatibility 086 } 087 } 088 089 /** 090 * Returns an immutable set instance containing the given enum elements. Internally, the returned 091 * set will be backed by an {@link EnumSet}. 092 * 093 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 094 * which the elements are provided to the method. 095 * 096 * @param anElement one of the elements the set should contain 097 * @param otherElements the rest of the elements the set should contain 098 * @return an immutable set containing those elements, minus duplicates 099 */ 100 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 101 @GwtCompatible(serializable = true) 102 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 103 E anElement, E... otherElements) { 104 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 105 } 106 107 /** 108 * Returns an immutable set instance containing the given enum elements. Internally, the returned 109 * set will be backed by an {@link EnumSet}. 110 * 111 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 112 * which the elements appear in the given collection. 113 * 114 * @param elements the elements, all of the same {@code enum} type, that the set should contain 115 * @return an immutable set containing those elements, minus duplicates 116 */ 117 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 118 @GwtCompatible(serializable = true) 119 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 120 if (elements instanceof ImmutableEnumSet) { 121 return (ImmutableEnumSet<E>) elements; 122 } else if (elements instanceof Collection) { 123 Collection<E> collection = (Collection<E>) elements; 124 if (collection.isEmpty()) { 125 return ImmutableSet.of(); 126 } else { 127 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 128 } 129 } else { 130 Iterator<E> itr = elements.iterator(); 131 if (itr.hasNext()) { 132 EnumSet<E> enumSet = EnumSet.of(itr.next()); 133 Iterators.addAll(enumSet, itr); 134 return ImmutableEnumSet.asImmutable(enumSet); 135 } else { 136 return ImmutableSet.of(); 137 } 138 } 139 } 140 141 private static final class Accumulator<E extends Enum<E>> { 142 static final Collector<Enum<?>, ?, ImmutableSet<? extends Enum<?>>> TO_IMMUTABLE_ENUM_SET = 143 (Collector) 144 Collector.<Enum, Accumulator, ImmutableSet<?>>of( 145 Accumulator::new, 146 Accumulator::add, 147 Accumulator::combine, 148 Accumulator::toImmutableSet, 149 Collector.Characteristics.UNORDERED); 150 151 @MonotonicNonNullDecl private EnumSet<E> set; 152 153 void add(E e) { 154 if (set == null) { 155 set = EnumSet.of(e); 156 } else { 157 set.add(e); 158 } 159 } 160 161 Accumulator<E> combine(Accumulator<E> other) { 162 if (this.set == null) { 163 return other; 164 } else if (other.set == null) { 165 return this; 166 } else { 167 this.set.addAll(other.set); 168 return this; 169 } 170 } 171 172 ImmutableSet<E> toImmutableSet() { 173 return (set == null) ? ImmutableSet.<E>of() : ImmutableEnumSet.asImmutable(set); 174 } 175 } 176 177 /** 178 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 179 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 180 * resulting set will iterate over elements in their enum definition order, not encounter order. 181 * 182 * @since 21.0 183 */ 184 @Beta 185 public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 186 return (Collector) Accumulator.TO_IMMUTABLE_ENUM_SET; 187 } 188 189 /** 190 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 191 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 192 * accepts non-{@code Collection} iterables and empty iterables. 193 */ 194 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 195 Iterable<E> iterable, Class<E> elementType) { 196 EnumSet<E> set = EnumSet.noneOf(elementType); 197 Iterables.addAll(set, iterable); 198 return set; 199 } 200 201 // HashSet 202 203 /** 204 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 205 * 206 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code 207 * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider 208 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 209 * deterministic iteration behavior. 210 * 211 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 212 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 213 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 214 */ 215 public static <E> HashSet<E> newHashSet() { 216 return new HashSet<E>(); 217 } 218 219 /** 220 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 221 * 222 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 223 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 224 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 225 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 226 * deterministic iteration behavior. 227 * 228 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 229 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 230 * This method is not actually very useful and will likely be deprecated in the future. 231 */ 232 public static <E> HashSet<E> newHashSet(E... elements) { 233 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 234 Collections.addAll(set, elements); 235 return set; 236 } 237 238 /** 239 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 240 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 241 * Iterables#addAll}. 242 * 243 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 244 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 245 * FluentIterable} and call {@code elements.toSet()}.) 246 * 247 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 248 * instead. 249 * 250 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 251 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 252 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 253 * 254 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 255 */ 256 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 257 return (elements instanceof Collection) 258 ? new HashSet<E>(Collections2.cast(elements)) 259 : newHashSet(elements.iterator()); 260 } 261 262 /** 263 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 264 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 265 * 266 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 267 * ImmutableSet#copyOf(Iterator)} instead. 268 * 269 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 270 * instead. 271 * 272 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 273 */ 274 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 275 HashSet<E> set = newHashSet(); 276 Iterators.addAll(set, elements); 277 return set; 278 } 279 280 /** 281 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 282 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 283 * is what most users want and expect it to do. 284 * 285 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 286 * 287 * @param expectedSize the number of elements you expect to add to the returned set 288 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 289 * without resizing 290 * @throws IllegalArgumentException if {@code expectedSize} is negative 291 */ 292 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 293 return new HashSet<E>(Maps.capacity(expectedSize)); 294 } 295 296 /** 297 * Creates a thread-safe set backed by a hash map. The set is backed by a {@link 298 * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees. 299 * 300 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 301 * set is serializable. 302 * 303 * @return a new, empty thread-safe {@code Set} 304 * @since 15.0 305 */ 306 public static <E> Set<E> newConcurrentHashSet() { 307 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 308 } 309 310 /** 311 * Creates a thread-safe set backed by a hash map and containing the given elements. The set is 312 * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency 313 * guarantees. 314 * 315 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 316 * set is serializable. 317 * 318 * @param elements the elements that the set should contain 319 * @return a new thread-safe set containing those elements (minus duplicates) 320 * @throws NullPointerException if {@code elements} or any of its contents is null 321 * @since 15.0 322 */ 323 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 324 Set<E> set = newConcurrentHashSet(); 325 Iterables.addAll(set, elements); 326 return set; 327 } 328 329 // LinkedHashSet 330 331 /** 332 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 333 * 334 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 335 * 336 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 337 * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of 338 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 339 * 340 * @return a new, empty {@code LinkedHashSet} 341 */ 342 public static <E> LinkedHashSet<E> newLinkedHashSet() { 343 return new LinkedHashSet<E>(); 344 } 345 346 /** 347 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 348 * 349 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 350 * ImmutableSet#copyOf(Iterable)} instead. 351 * 352 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 353 * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage 354 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 355 * 356 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 357 * 358 * @param elements the elements that the set should contain, in order 359 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 360 */ 361 public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) { 362 if (elements instanceof Collection) { 363 return new LinkedHashSet<E>(Collections2.cast(elements)); 364 } 365 LinkedHashSet<E> set = newLinkedHashSet(); 366 Iterables.addAll(set, elements); 367 return set; 368 } 369 370 /** 371 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 372 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 373 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 374 * that the method isn't inadvertently <i>oversizing</i> the returned set. 375 * 376 * @param expectedSize the number of elements you expect to add to the returned set 377 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 378 * elements without resizing 379 * @throws IllegalArgumentException if {@code expectedSize} is negative 380 * @since 11.0 381 */ 382 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) { 383 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 384 } 385 386 // TreeSet 387 388 /** 389 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 390 * its elements. 391 * 392 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 393 * 394 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 395 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 396 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 397 * 398 * @return a new, empty {@code TreeSet} 399 */ 400 public static <E extends Comparable> TreeSet<E> newTreeSet() { 401 return new TreeSet<E>(); 402 } 403 404 /** 405 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 406 * natural ordering. 407 * 408 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 409 * instead. 410 * 411 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 412 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 413 * TreeSet} with that comparator. 414 * 415 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 416 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 417 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 418 * 419 * <p>This method is just a small convenience for creating an empty set and then calling {@link 420 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 421 * 422 * @param elements the elements that the set should contain 423 * @return a new {@code TreeSet} containing those elements (minus duplicates) 424 */ 425 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 426 TreeSet<E> set = newTreeSet(); 427 Iterables.addAll(set, elements); 428 return set; 429 } 430 431 /** 432 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 433 * 434 * <p><b>Note:</b> if mutability is not required, use {@code 435 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 436 * 437 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 438 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 439 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code 440 * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this 441 * factory rejects null. Clean your code accordingly. 442 * 443 * @param comparator the comparator to use to sort the set 444 * @return a new, empty {@code TreeSet} 445 * @throws NullPointerException if {@code comparator} is null 446 */ 447 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 448 return new TreeSet<E>(checkNotNull(comparator)); 449 } 450 451 /** 452 * Creates an empty {@code Set} that uses identity to determine equality. It compares object 453 * references, instead of calling {@code equals}, to determine whether a provided object matches 454 * an element in the set. For example, {@code contains} returns {@code false} when passed an 455 * object that equals a set member, but isn't the same instance. This behavior is similar to the 456 * way {@code IdentityHashMap} handles key lookups. 457 * 458 * @since 8.0 459 */ 460 public static <E> Set<E> newIdentityHashSet() { 461 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 462 } 463 464 /** 465 * Creates an empty {@code CopyOnWriteArraySet} instance. 466 * 467 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet} 468 * instead. 469 * 470 * @return a new, empty {@code CopyOnWriteArraySet} 471 * @since 12.0 472 */ 473 @GwtIncompatible // CopyOnWriteArraySet 474 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 475 return new CopyOnWriteArraySet<E>(); 476 } 477 478 /** 479 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 480 * 481 * @param elements the elements that the set should contain, in order 482 * @return a new {@code CopyOnWriteArraySet} containing those elements 483 * @since 12.0 484 */ 485 @GwtIncompatible // CopyOnWriteArraySet 486 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) { 487 // We copy elements to an ArrayList first, rather than incurring the 488 // quadratic cost of adding them to the COWAS directly. 489 Collection<? extends E> elementsCollection = 490 (elements instanceof Collection) 491 ? Collections2.cast(elements) 492 : Lists.newArrayList(elements); 493 return new CopyOnWriteArraySet<E>(elementsCollection); 494 } 495 496 /** 497 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 498 * collection. If the collection is an {@link EnumSet}, this method has the same behavior as 499 * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one 500 * element, in order to determine the element type. If the collection could be empty, use {@link 501 * #complementOf(Collection, Class)} instead of this method. 502 * 503 * @param collection the collection whose complement should be stored in the enum set 504 * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present 505 * in the given collection 506 * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and 507 * contains no elements 508 */ 509 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 510 if (collection instanceof EnumSet) { 511 return EnumSet.complementOf((EnumSet<E>) collection); 512 } 513 checkArgument( 514 !collection.isEmpty(), "collection is empty; use the other version of this method"); 515 Class<E> type = collection.iterator().next().getDeclaringClass(); 516 return makeComplementByHand(collection, type); 517 } 518 519 /** 520 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 521 * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input 522 * collection, as long as the elements are of enum type. 523 * 524 * @param collection the collection whose complement should be stored in the {@code EnumSet} 525 * @param type the type of the elements in the set 526 * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not 527 * present in the given collection 528 */ 529 public static <E extends Enum<E>> EnumSet<E> complementOf( 530 Collection<E> collection, Class<E> type) { 531 checkNotNull(collection); 532 return (collection instanceof EnumSet) 533 ? EnumSet.complementOf((EnumSet<E>) collection) 534 : makeComplementByHand(collection, type); 535 } 536 537 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 538 Collection<E> collection, Class<E> type) { 539 EnumSet<E> result = EnumSet.allOf(type); 540 result.removeAll(collection); 541 return result; 542 } 543 544 /** 545 * Returns a set backed by the specified map. The resulting set displays the same ordering, 546 * concurrency, and performance characteristics as the backing map. In essence, this factory 547 * method provides a {@link Set} implementation corresponding to any {@link Map} implementation. 548 * There is no need to use this method on a {@link Map} implementation that already has a 549 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link 550 * java.util.TreeMap}). 551 * 552 * <p>Each method invocation on the set returned by this method results in exactly one method 553 * invocation on the backing map or its {@code keySet} view, with one exception. The {@code 554 * addAll} method is implemented as a sequence of {@code put} invocations on the backing map. 555 * 556 * <p>The specified map must be empty at the time this method is invoked, and should not be 557 * accessed directly after this method returns. These conditions are ensured if the map is created 558 * empty, passed directly to this method, and no reference to the map is retained, as illustrated 559 * in the following code fragment: 560 * 561 * <pre>{@code 562 * Set<Object> identityHashSet = Sets.newSetFromMap( 563 * new IdentityHashMap<Object, Boolean>()); 564 * }</pre> 565 * 566 * <p>The returned set is serializable if the backing map is. 567 * 568 * @param map the backing map 569 * @return the set backed by the map 570 * @throws IllegalArgumentException if {@code map} is not empty 571 * @deprecated Use {@link Collections#newSetFromMap} instead. 572 */ 573 @Deprecated 574 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 575 return Collections.newSetFromMap(map); 576 } 577 578 /** 579 * An unmodifiable view of a set which may be backed by other sets; this view will change as the 580 * backing sets do. Contains methods to copy the data into a new set which will then remain 581 * stable. There is usually no reason to retain a reference of type {@code SetView}; typically, 582 * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 583 * {@link #copyInto} and forget the {@code SetView} itself. 584 * 585 * @since 2.0 586 */ 587 public abstract static class SetView<E> extends AbstractSet<E> { 588 private SetView() {} // no subclasses but our own 589 590 /** 591 * Returns an immutable copy of the current contents of this set view. Does not support null 592 * elements. 593 * 594 * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a 595 * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator 596 * that is inconsistent with {@link Object#equals(Object)}. 597 */ 598 public ImmutableSet<E> immutableCopy() { 599 return ImmutableSet.copyOf(this); 600 } 601 602 /** 603 * Copies the current contents of this set view into an existing set. This method has equivalent 604 * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the 605 * same notion of equivalence. 606 * 607 * @return a reference to {@code set}, for convenience 608 */ 609 // Note: S should logically extend Set<? super E> but can't due to either 610 // some javac bug or some weirdness in the spec, not sure which. 611 @CanIgnoreReturnValue 612 public <S extends Set<E>> S copyInto(S set) { 613 set.addAll(this); 614 return set; 615 } 616 617 /** 618 * Guaranteed to throw an exception and leave the collection unmodified. 619 * 620 * @throws UnsupportedOperationException always 621 * @deprecated Unsupported operation. 622 */ 623 @CanIgnoreReturnValue 624 @Deprecated 625 @Override 626 public final boolean add(E e) { 627 throw new UnsupportedOperationException(); 628 } 629 630 /** 631 * Guaranteed to throw an exception and leave the collection unmodified. 632 * 633 * @throws UnsupportedOperationException always 634 * @deprecated Unsupported operation. 635 */ 636 @CanIgnoreReturnValue 637 @Deprecated 638 @Override 639 public final boolean remove(Object object) { 640 throw new UnsupportedOperationException(); 641 } 642 643 /** 644 * Guaranteed to throw an exception and leave the collection unmodified. 645 * 646 * @throws UnsupportedOperationException always 647 * @deprecated Unsupported operation. 648 */ 649 @CanIgnoreReturnValue 650 @Deprecated 651 @Override 652 public final boolean addAll(Collection<? extends E> newElements) { 653 throw new UnsupportedOperationException(); 654 } 655 656 /** 657 * Guaranteed to throw an exception and leave the collection unmodified. 658 * 659 * @throws UnsupportedOperationException always 660 * @deprecated Unsupported operation. 661 */ 662 @CanIgnoreReturnValue 663 @Deprecated 664 @Override 665 public final boolean removeAll(Collection<?> oldElements) { 666 throw new UnsupportedOperationException(); 667 } 668 669 /** 670 * Guaranteed to throw an exception and leave the collection unmodified. 671 * 672 * @throws UnsupportedOperationException always 673 * @deprecated Unsupported operation. 674 */ 675 @CanIgnoreReturnValue 676 @Deprecated 677 @Override 678 public final boolean removeIf(java.util.function.Predicate<? super E> filter) { 679 throw new UnsupportedOperationException(); 680 } 681 682 /** 683 * Guaranteed to throw an exception and leave the collection unmodified. 684 * 685 * @throws UnsupportedOperationException always 686 * @deprecated Unsupported operation. 687 */ 688 @CanIgnoreReturnValue 689 @Deprecated 690 @Override 691 public final boolean retainAll(Collection<?> elementsToKeep) { 692 throw new UnsupportedOperationException(); 693 } 694 695 /** 696 * Guaranteed to throw an exception and leave the collection unmodified. 697 * 698 * @throws UnsupportedOperationException always 699 * @deprecated Unsupported operation. 700 */ 701 @Deprecated 702 @Override 703 public final void clear() { 704 throw new UnsupportedOperationException(); 705 } 706 707 /** 708 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 709 * 710 * @since 20.0 (present with return type {@link Iterator} since 2.0) 711 */ 712 @Override 713 public abstract UnmodifiableIterator<E> iterator(); 714 } 715 716 /** 717 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all 718 * elements that are contained in either backing set. Iterating over the returned set iterates 719 * first over all the elements of {@code set1}, then over each element of {@code set2}, in order, 720 * that is not contained in {@code set1}. 721 * 722 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 723 * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an 724 * {@code IdentityHashMap} all are). 725 */ 726 public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) { 727 checkNotNull(set1, "set1"); 728 checkNotNull(set2, "set2"); 729 730 return new SetView<E>() { 731 @Override 732 public int size() { 733 int size = set1.size(); 734 for (E e : set2) { 735 if (!set1.contains(e)) { 736 size++; 737 } 738 } 739 return size; 740 } 741 742 @Override 743 public boolean isEmpty() { 744 return set1.isEmpty() && set2.isEmpty(); 745 } 746 747 @Override 748 public UnmodifiableIterator<E> iterator() { 749 return new AbstractIterator<E>() { 750 final Iterator<? extends E> itr1 = set1.iterator(); 751 final Iterator<? extends E> itr2 = set2.iterator(); 752 753 @Override 754 protected E computeNext() { 755 if (itr1.hasNext()) { 756 return itr1.next(); 757 } 758 while (itr2.hasNext()) { 759 E e = itr2.next(); 760 if (!set1.contains(e)) { 761 return e; 762 } 763 } 764 return endOfData(); 765 } 766 }; 767 } 768 769 @Override 770 public Stream<E> stream() { 771 return Stream.concat(set1.stream(), set2.stream().filter(e -> !set1.contains(e))); 772 } 773 774 @Override 775 public Stream<E> parallelStream() { 776 return stream().parallel(); 777 } 778 779 @Override 780 public boolean contains(Object object) { 781 return set1.contains(object) || set2.contains(object); 782 } 783 784 @Override 785 public <S extends Set<E>> S copyInto(S set) { 786 set.addAll(set1); 787 set.addAll(set2); 788 return set; 789 } 790 791 @Override 792 public ImmutableSet<E> immutableCopy() { 793 return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); 794 } 795 }; 796 } 797 798 /** 799 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains 800 * all elements that are contained by both backing sets. The iteration order of the returned set 801 * matches that of {@code set1}. 802 * 803 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 804 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 805 * IdentityHashMap} all are). 806 * 807 * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of 808 * the two sets. If you have reason to believe one of your sets will generally be smaller than the 809 * other, pass it first. Unfortunately, since this method sets the generic type of the returned 810 * set based on the type of the first set passed, this could in rare cases force you to make a 811 * cast, for example: 812 * 813 * <pre>{@code 814 * Set<Object> aFewBadObjects = ... 815 * Set<String> manyBadStrings = ... 816 * 817 * // impossible for a non-String to be in the intersection 818 * SuppressWarnings("unchecked") 819 * Set<String> badStrings = (Set) Sets.intersection( 820 * aFewBadObjects, manyBadStrings); 821 * }</pre> 822 * 823 * <p>This is unfortunate, but should come up only very rarely. 824 */ 825 public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) { 826 checkNotNull(set1, "set1"); 827 checkNotNull(set2, "set2"); 828 829 return new SetView<E>() { 830 @Override 831 public UnmodifiableIterator<E> iterator() { 832 return new AbstractIterator<E>() { 833 final Iterator<E> itr = set1.iterator(); 834 835 @Override 836 protected E computeNext() { 837 while (itr.hasNext()) { 838 E e = itr.next(); 839 if (set2.contains(e)) { 840 return e; 841 } 842 } 843 return endOfData(); 844 } 845 }; 846 } 847 848 @Override 849 public Stream<E> stream() { 850 return set1.stream().filter(set2::contains); 851 } 852 853 @Override 854 public Stream<E> parallelStream() { 855 return set1.parallelStream().filter(set2::contains); 856 } 857 858 @Override 859 public int size() { 860 int size = 0; 861 for (E e : set1) { 862 if (set2.contains(e)) { 863 size++; 864 } 865 } 866 return size; 867 } 868 869 @Override 870 public boolean isEmpty() { 871 return Collections.disjoint(set1, set2); 872 } 873 874 @Override 875 public boolean contains(Object object) { 876 return set1.contains(object) && set2.contains(object); 877 } 878 879 @Override 880 public boolean containsAll(Collection<?> collection) { 881 return set1.containsAll(collection) && set2.containsAll(collection); 882 } 883 }; 884 } 885 886 /** 887 * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains 888 * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2} 889 * may also contain elements not present in {@code set1}; these are simply ignored. The iteration 890 * order of the returned set matches that of {@code set1}. 891 * 892 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 893 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 894 * IdentityHashMap} all are). 895 */ 896 public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) { 897 checkNotNull(set1, "set1"); 898 checkNotNull(set2, "set2"); 899 900 return new SetView<E>() { 901 @Override 902 public UnmodifiableIterator<E> iterator() { 903 return new AbstractIterator<E>() { 904 final Iterator<E> itr = set1.iterator(); 905 906 @Override 907 protected E computeNext() { 908 while (itr.hasNext()) { 909 E e = itr.next(); 910 if (!set2.contains(e)) { 911 return e; 912 } 913 } 914 return endOfData(); 915 } 916 }; 917 } 918 919 @Override 920 public Stream<E> stream() { 921 return set1.stream().filter(e -> !set2.contains(e)); 922 } 923 924 @Override 925 public Stream<E> parallelStream() { 926 return set1.parallelStream().filter(e -> !set2.contains(e)); 927 } 928 929 @Override 930 public int size() { 931 int size = 0; 932 for (E e : set1) { 933 if (!set2.contains(e)) { 934 size++; 935 } 936 } 937 return size; 938 } 939 940 @Override 941 public boolean isEmpty() { 942 return set2.containsAll(set1); 943 } 944 945 @Override 946 public boolean contains(Object element) { 947 return set1.contains(element) && !set2.contains(element); 948 } 949 }; 950 } 951 952 /** 953 * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set 954 * contains all elements that are contained in either {@code set1} or {@code set2} but not in 955 * both. The iteration order of the returned set is undefined. 956 * 957 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 958 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 959 * IdentityHashMap} all are). 960 * 961 * @since 3.0 962 */ 963 public static <E> SetView<E> symmetricDifference( 964 final Set<? extends E> set1, final Set<? extends E> set2) { 965 checkNotNull(set1, "set1"); 966 checkNotNull(set2, "set2"); 967 968 return new SetView<E>() { 969 @Override 970 public UnmodifiableIterator<E> iterator() { 971 final Iterator<? extends E> itr1 = set1.iterator(); 972 final Iterator<? extends E> itr2 = set2.iterator(); 973 return new AbstractIterator<E>() { 974 @Override 975 public E computeNext() { 976 while (itr1.hasNext()) { 977 E elem1 = itr1.next(); 978 if (!set2.contains(elem1)) { 979 return elem1; 980 } 981 } 982 while (itr2.hasNext()) { 983 E elem2 = itr2.next(); 984 if (!set1.contains(elem2)) { 985 return elem2; 986 } 987 } 988 return endOfData(); 989 } 990 }; 991 } 992 993 @Override 994 public int size() { 995 int size = 0; 996 for (E e : set1) { 997 if (!set2.contains(e)) { 998 size++; 999 } 1000 } 1001 for (E e : set2) { 1002 if (!set1.contains(e)) { 1003 size++; 1004 } 1005 } 1006 return size; 1007 } 1008 1009 @Override 1010 public boolean isEmpty() { 1011 return set1.equals(set2); 1012 } 1013 1014 @Override 1015 public boolean contains(Object element) { 1016 return set1.contains(element) ^ set2.contains(element); 1017 } 1018 }; 1019 } 1020 1021 /** 1022 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live 1023 * view of {@code unfiltered}; changes to one affect the other. 1024 * 1025 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1026 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1027 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1028 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1029 * that satisfy the filter will be removed from the underlying set. 1030 * 1031 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1032 * 1033 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1034 * the underlying set and determine which elements satisfy the filter. When a live view is 1035 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1036 * use the copy. 1037 * 1038 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1039 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1040 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1041 * Iterables#filter(Iterable, Class)} for related functionality.) 1042 * 1043 * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link 1044 * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage 1045 * you to migrate to streams. 1046 */ 1047 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 1048 public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) { 1049 if (unfiltered instanceof SortedSet) { 1050 return filter((SortedSet<E>) unfiltered, predicate); 1051 } 1052 if (unfiltered instanceof FilteredSet) { 1053 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1054 // collection. 1055 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1056 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1057 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 1058 } 1059 1060 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1061 } 1062 1063 /** 1064 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The 1065 * returned set is a live view of {@code unfiltered}; changes to one affect the other. 1066 * 1067 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1068 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1069 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1070 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1071 * that satisfy the filter will be removed from the underlying set. 1072 * 1073 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1074 * 1075 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1076 * the underlying set and determine which elements satisfy the filter. When a live view is 1077 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1078 * use the copy. 1079 * 1080 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1081 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1082 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1083 * Iterables#filter(Iterable, Class)} for related functionality.) 1084 * 1085 * @since 11.0 1086 */ 1087 public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1088 if (unfiltered instanceof FilteredSet) { 1089 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1090 // collection. 1091 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1092 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1093 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1094 } 1095 1096 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1097 } 1098 1099 /** 1100 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate. 1101 * The returned set is a live view of {@code unfiltered}; changes to one affect the other. 1102 * 1103 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1104 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1105 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1106 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1107 * that satisfy the filter will be removed from the underlying set. 1108 * 1109 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1110 * 1111 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1112 * the underlying set and determine which elements satisfy the filter. When a live view is 1113 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1114 * use the copy. 1115 * 1116 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1117 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1118 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1119 * Iterables#filter(Iterable, Class)} for related functionality.) 1120 * 1121 * @since 14.0 1122 */ 1123 @GwtIncompatible // NavigableSet 1124 @SuppressWarnings("unchecked") 1125 public static <E> NavigableSet<E> filter( 1126 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1127 if (unfiltered instanceof FilteredSet) { 1128 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1129 // collection. 1130 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1131 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1132 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1133 } 1134 1135 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1136 } 1137 1138 private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> { 1139 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1140 super(unfiltered, predicate); 1141 } 1142 1143 @Override 1144 public boolean equals(@NullableDecl Object object) { 1145 return equalsImpl(this, object); 1146 } 1147 1148 @Override 1149 public int hashCode() { 1150 return hashCodeImpl(this); 1151 } 1152 } 1153 1154 private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> { 1155 1156 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1157 super(unfiltered, predicate); 1158 } 1159 1160 @Override 1161 public Comparator<? super E> comparator() { 1162 return ((SortedSet<E>) unfiltered).comparator(); 1163 } 1164 1165 @Override 1166 public SortedSet<E> subSet(E fromElement, E toElement) { 1167 return new FilteredSortedSet<E>( 1168 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1169 } 1170 1171 @Override 1172 public SortedSet<E> headSet(E toElement) { 1173 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1174 } 1175 1176 @Override 1177 public SortedSet<E> tailSet(E fromElement) { 1178 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1179 } 1180 1181 @Override 1182 public E first() { 1183 return Iterators.find(unfiltered.iterator(), predicate); 1184 } 1185 1186 @Override 1187 public E last() { 1188 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1189 while (true) { 1190 E element = sortedUnfiltered.last(); 1191 if (predicate.apply(element)) { 1192 return element; 1193 } 1194 sortedUnfiltered = sortedUnfiltered.headSet(element); 1195 } 1196 } 1197 } 1198 1199 @GwtIncompatible // NavigableSet 1200 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 1201 implements NavigableSet<E> { 1202 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1203 super(unfiltered, predicate); 1204 } 1205 1206 NavigableSet<E> unfiltered() { 1207 return (NavigableSet<E>) unfiltered; 1208 } 1209 1210 @Override 1211 @NullableDecl 1212 public E lower(E e) { 1213 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1214 } 1215 1216 @Override 1217 @NullableDecl 1218 public E floor(E e) { 1219 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1220 } 1221 1222 @Override 1223 public E ceiling(E e) { 1224 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1225 } 1226 1227 @Override 1228 public E higher(E e) { 1229 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1230 } 1231 1232 @Override 1233 public E pollFirst() { 1234 return Iterables.removeFirstMatching(unfiltered(), predicate); 1235 } 1236 1237 @Override 1238 public E pollLast() { 1239 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1240 } 1241 1242 @Override 1243 public NavigableSet<E> descendingSet() { 1244 return Sets.filter(unfiltered().descendingSet(), predicate); 1245 } 1246 1247 @Override 1248 public Iterator<E> descendingIterator() { 1249 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1250 } 1251 1252 @Override 1253 public E last() { 1254 return Iterators.find(unfiltered().descendingIterator(), predicate); 1255 } 1256 1257 @Override 1258 public NavigableSet<E> subSet( 1259 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1260 return filter( 1261 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1262 } 1263 1264 @Override 1265 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1266 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1267 } 1268 1269 @Override 1270 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1271 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1272 } 1273 } 1274 1275 /** 1276 * Returns every possible list that can be formed by choosing one element from each of the given 1277 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1278 * product</a>" of the sets. For example: 1279 * 1280 * <pre>{@code 1281 * Sets.cartesianProduct(ImmutableList.of( 1282 * ImmutableSet.of(1, 2), 1283 * ImmutableSet.of("A", "B", "C"))) 1284 * }</pre> 1285 * 1286 * <p>returns a set containing six lists: 1287 * 1288 * <ul> 1289 * <li>{@code ImmutableList.of(1, "A")} 1290 * <li>{@code ImmutableList.of(1, "B")} 1291 * <li>{@code ImmutableList.of(1, "C")} 1292 * <li>{@code ImmutableList.of(2, "A")} 1293 * <li>{@code ImmutableList.of(2, "B")} 1294 * <li>{@code ImmutableList.of(2, "C")} 1295 * </ul> 1296 * 1297 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1298 * products that you would get from nesting for loops: 1299 * 1300 * <pre>{@code 1301 * for (B b0 : sets.get(0)) { 1302 * for (B b1 : sets.get(1)) { 1303 * ... 1304 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1305 * // operate on tuple 1306 * } 1307 * } 1308 * }</pre> 1309 * 1310 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1311 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1312 * list (counter-intuitive, but mathematically consistent). 1313 * 1314 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1315 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1316 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1317 * iterated are the individual lists created, and these are not retained after iteration. 1318 * 1319 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1320 * sets should appear in the resulting lists 1321 * @param <B> any common base class shared by all axes (often just {@link Object}) 1322 * @return the Cartesian product, as an immutable set containing immutable lists 1323 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1324 * provided set is null 1325 * @since 2.0 1326 */ 1327 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1328 return CartesianSet.create(sets); 1329 } 1330 1331 /** 1332 * Returns every possible list that can be formed by choosing one element from each of the given 1333 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1334 * product</a>" of the sets. For example: 1335 * 1336 * <pre>{@code 1337 * Sets.cartesianProduct( 1338 * ImmutableSet.of(1, 2), 1339 * ImmutableSet.of("A", "B", "C")) 1340 * }</pre> 1341 * 1342 * <p>returns a set containing six lists: 1343 * 1344 * <ul> 1345 * <li>{@code ImmutableList.of(1, "A")} 1346 * <li>{@code ImmutableList.of(1, "B")} 1347 * <li>{@code ImmutableList.of(1, "C")} 1348 * <li>{@code ImmutableList.of(2, "A")} 1349 * <li>{@code ImmutableList.of(2, "B")} 1350 * <li>{@code ImmutableList.of(2, "C")} 1351 * </ul> 1352 * 1353 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1354 * products that you would get from nesting for loops: 1355 * 1356 * <pre>{@code 1357 * for (B b0 : sets.get(0)) { 1358 * for (B b1 : sets.get(1)) { 1359 * ... 1360 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1361 * // operate on tuple 1362 * } 1363 * } 1364 * }</pre> 1365 * 1366 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1367 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1368 * list (counter-intuitive, but mathematically consistent). 1369 * 1370 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1371 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1372 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1373 * iterated are the individual lists created, and these are not retained after iteration. 1374 * 1375 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1376 * sets should appear in the resulting lists 1377 * @param <B> any common base class shared by all axes (often just {@link Object}) 1378 * @return the Cartesian product, as an immutable set containing immutable lists 1379 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1380 * provided set is null 1381 * @since 2.0 1382 */ 1383 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1384 return cartesianProduct(Arrays.asList(sets)); 1385 } 1386 1387 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1388 implements Set<List<E>> { 1389 private final transient ImmutableList<ImmutableSet<E>> axes; 1390 private final transient CartesianList<E> delegate; 1391 1392 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1393 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1394 for (Set<? extends E> set : sets) { 1395 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1396 if (copy.isEmpty()) { 1397 return ImmutableSet.of(); 1398 } 1399 axesBuilder.add(copy); 1400 } 1401 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1402 ImmutableList<List<E>> listAxes = 1403 new ImmutableList<List<E>>() { 1404 @Override 1405 public int size() { 1406 return axes.size(); 1407 } 1408 1409 @Override 1410 public List<E> get(int index) { 1411 return axes.get(index).asList(); 1412 } 1413 1414 @Override 1415 boolean isPartialView() { 1416 return true; 1417 } 1418 }; 1419 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1420 } 1421 1422 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1423 this.axes = axes; 1424 this.delegate = delegate; 1425 } 1426 1427 @Override 1428 protected Collection<List<E>> delegate() { 1429 return delegate; 1430 } 1431 1432 @Override 1433 public boolean equals(@NullableDecl Object object) { 1434 // Warning: this is broken if size() == 0, so it is critical that we 1435 // substitute an empty ImmutableSet to the user in place of this 1436 if (object instanceof CartesianSet) { 1437 CartesianSet<?> that = (CartesianSet<?>) object; 1438 return this.axes.equals(that.axes); 1439 } 1440 return super.equals(object); 1441 } 1442 1443 @Override 1444 public int hashCode() { 1445 // Warning: this is broken if size() == 0, so it is critical that we 1446 // substitute an empty ImmutableSet to the user in place of this 1447 1448 // It's a weird formula, but tests prove it works. 1449 int adjust = size() - 1; 1450 for (int i = 0; i < axes.size(); i++) { 1451 adjust *= 31; 1452 adjust = ~~adjust; 1453 // in GWT, we have to deal with integer overflow carefully 1454 } 1455 int hash = 1; 1456 for (Set<E> axis : axes) { 1457 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1458 1459 hash = ~~hash; 1460 } 1461 hash += adjust; 1462 return ~~hash; 1463 } 1464 } 1465 1466 /** 1467 * Returns the set of all possible subsets of {@code set}. For example, {@code 1468 * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}. 1469 * 1470 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1471 * set. The order in which these subsets appear in the outer set is undefined. Note that the power 1472 * set of the empty set is not the empty set, but a one-element set containing the empty set. 1473 * 1474 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1475 * are identical, even if the input set uses a different concept of equivalence. 1476 * 1477 * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code 1478 * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set 1479 * is merely copied. Only as the power set is iterated are the individual subsets created, and 1480 * these subsets themselves occupy only a small constant amount of memory. 1481 * 1482 * @param set the set of elements to construct a power set from 1483 * @return the power set, as an immutable set of immutable sets 1484 * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the 1485 * power set size to exceed the {@code int} range) 1486 * @throws NullPointerException if {@code set} is or contains {@code null} 1487 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a> 1488 * @since 4.0 1489 */ 1490 @GwtCompatible(serializable = false) 1491 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1492 return new PowerSet<E>(set); 1493 } 1494 1495 private static final class SubSet<E> extends AbstractSet<E> { 1496 private final ImmutableMap<E, Integer> inputSet; 1497 private final int mask; 1498 1499 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1500 this.inputSet = inputSet; 1501 this.mask = mask; 1502 } 1503 1504 @Override 1505 public Iterator<E> iterator() { 1506 return new UnmodifiableIterator<E>() { 1507 final ImmutableList<E> elements = inputSet.keySet().asList(); 1508 int remainingSetBits = mask; 1509 1510 @Override 1511 public boolean hasNext() { 1512 return remainingSetBits != 0; 1513 } 1514 1515 @Override 1516 public E next() { 1517 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1518 if (index == 32) { 1519 throw new NoSuchElementException(); 1520 } 1521 remainingSetBits &= ~(1 << index); 1522 return elements.get(index); 1523 } 1524 }; 1525 } 1526 1527 @Override 1528 public int size() { 1529 return Integer.bitCount(mask); 1530 } 1531 1532 @Override 1533 public boolean contains(@NullableDecl Object o) { 1534 Integer index = inputSet.get(o); 1535 return index != null && (mask & (1 << index)) != 0; 1536 } 1537 } 1538 1539 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1540 final ImmutableMap<E, Integer> inputSet; 1541 1542 PowerSet(Set<E> input) { 1543 this.inputSet = Maps.indexMap(input); 1544 checkArgument( 1545 inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size()); 1546 } 1547 1548 @Override 1549 public int size() { 1550 return 1 << inputSet.size(); 1551 } 1552 1553 @Override 1554 public boolean isEmpty() { 1555 return false; 1556 } 1557 1558 @Override 1559 public Iterator<Set<E>> iterator() { 1560 return new AbstractIndexedListIterator<Set<E>>(size()) { 1561 @Override 1562 protected Set<E> get(final int setBits) { 1563 return new SubSet<E>(inputSet, setBits); 1564 } 1565 }; 1566 } 1567 1568 @Override 1569 public boolean contains(@NullableDecl Object obj) { 1570 if (obj instanceof Set) { 1571 Set<?> set = (Set<?>) obj; 1572 return inputSet.keySet().containsAll(set); 1573 } 1574 return false; 1575 } 1576 1577 @Override 1578 public boolean equals(@NullableDecl Object obj) { 1579 if (obj instanceof PowerSet) { 1580 PowerSet<?> that = (PowerSet<?>) obj; 1581 return inputSet.equals(that.inputSet); 1582 } 1583 return super.equals(obj); 1584 } 1585 1586 @Override 1587 public int hashCode() { 1588 /* 1589 * The sum of the sums of the hash codes in each subset is just the sum of 1590 * each input element's hash code times the number of sets that element 1591 * appears in. Each element appears in exactly half of the 2^n sets, so: 1592 */ 1593 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1594 } 1595 1596 @Override 1597 public String toString() { 1598 return "powerSet(" + inputSet + ")"; 1599 } 1600 } 1601 1602 /** 1603 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1604 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1605 * 1606 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1607 * set. The order in which these subsets appear in the outer set is undefined. 1608 * 1609 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1610 * are identical, even if the input set uses a different concept of equivalence. 1611 * 1612 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1613 * the result set is constructed, the input set is merely copied. Only as the result set is 1614 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1615 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1616 * {@code combinations} does not retain the individual subsets. 1617 * 1618 * @param set the set of elements to take combinations of 1619 * @param size the number of elements per combination 1620 * @return the set of all combinations of {@code size} elements from {@code set} 1621 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1622 * inclusive 1623 * @throws NullPointerException if {@code set} is or contains {@code null} 1624 * @since 23.0 1625 */ 1626 @Beta 1627 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1628 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1629 checkNonnegative(size, "size"); 1630 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1631 if (size == 0) { 1632 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1633 } else if (size == index.size()) { 1634 return ImmutableSet.<Set<E>>of(index.keySet()); 1635 } 1636 return new AbstractSet<Set<E>>() { 1637 @Override 1638 public boolean contains(@NullableDecl Object o) { 1639 if (o instanceof Set) { 1640 Set<?> s = (Set<?>) o; 1641 return s.size() == size && index.keySet().containsAll(s); 1642 } 1643 return false; 1644 } 1645 1646 @Override 1647 public Iterator<Set<E>> iterator() { 1648 return new AbstractIterator<Set<E>>() { 1649 final BitSet bits = new BitSet(index.size()); 1650 1651 @Override 1652 protected Set<E> computeNext() { 1653 if (bits.isEmpty()) { 1654 bits.set(0, size); 1655 } else { 1656 int firstSetBit = bits.nextSetBit(0); 1657 int bitToFlip = bits.nextClearBit(firstSetBit); 1658 1659 if (bitToFlip == index.size()) { 1660 return endOfData(); 1661 } 1662 1663 /* 1664 * The current set in sorted order looks like 1665 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1666 * where it does *not* contain bitToFlip. 1667 * 1668 * The next combination is 1669 * 1670 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1671 * 1672 * This is lexicographically next if you look at the combinations in descending order 1673 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1674 */ 1675 1676 bits.set(0, bitToFlip - firstSetBit - 1); 1677 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1678 bits.set(bitToFlip); 1679 } 1680 final BitSet copy = (BitSet) bits.clone(); 1681 return new AbstractSet<E>() { 1682 @Override 1683 public boolean contains(@NullableDecl Object o) { 1684 Integer i = index.get(o); 1685 return i != null && copy.get(i); 1686 } 1687 1688 @Override 1689 public Iterator<E> iterator() { 1690 return new AbstractIterator<E>() { 1691 int i = -1; 1692 1693 @Override 1694 protected E computeNext() { 1695 i = copy.nextSetBit(i + 1); 1696 if (i == -1) { 1697 return endOfData(); 1698 } 1699 return index.keySet().asList().get(i); 1700 } 1701 }; 1702 } 1703 1704 @Override 1705 public int size() { 1706 return size; 1707 } 1708 }; 1709 } 1710 }; 1711 } 1712 1713 @Override 1714 public int size() { 1715 return IntMath.binomial(index.size(), size); 1716 } 1717 1718 @Override 1719 public String toString() { 1720 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1721 } 1722 }; 1723 } 1724 1725 /** An implementation for {@link Set#hashCode()}. */ 1726 static int hashCodeImpl(Set<?> s) { 1727 int hashCode = 0; 1728 for (Object o : s) { 1729 hashCode += o != null ? o.hashCode() : 0; 1730 1731 hashCode = ~~hashCode; 1732 // Needed to deal with unusual integer overflow in GWT. 1733 } 1734 return hashCode; 1735 } 1736 1737 /** An implementation for {@link Set#equals(Object)}. */ 1738 static boolean equalsImpl(Set<?> s, @NullableDecl Object object) { 1739 if (s == object) { 1740 return true; 1741 } 1742 if (object instanceof Set) { 1743 Set<?> o = (Set<?>) object; 1744 1745 try { 1746 return s.size() == o.size() && s.containsAll(o); 1747 } catch (NullPointerException | ClassCastException ignored) { 1748 return false; 1749 } 1750 } 1751 return false; 1752 } 1753 1754 /** 1755 * Returns an unmodifiable view of the specified navigable set. This method allows modules to 1756 * provide users with "read-only" access to internal navigable sets. Query operations on the 1757 * returned set "read through" to the specified set, and attempts to modify the returned set, 1758 * whether direct or via its collection views, result in an {@code UnsupportedOperationException}. 1759 * 1760 * <p>The returned navigable set will be serializable if the specified navigable set is 1761 * serializable. 1762 * 1763 * @param set the navigable set for which an unmodifiable view is to be returned 1764 * @return an unmodifiable view of the specified navigable set 1765 * @since 12.0 1766 */ 1767 public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) { 1768 if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) { 1769 return set; 1770 } 1771 return new UnmodifiableNavigableSet<E>(set); 1772 } 1773 1774 static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E> 1775 implements NavigableSet<E>, Serializable { 1776 private final NavigableSet<E> delegate; 1777 private final SortedSet<E> unmodifiableDelegate; 1778 1779 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1780 this.delegate = checkNotNull(delegate); 1781 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1782 } 1783 1784 @Override 1785 protected SortedSet<E> delegate() { 1786 return unmodifiableDelegate; 1787 } 1788 1789 // default methods not forwarded by ForwardingSortedSet 1790 1791 @Override 1792 public boolean removeIf(java.util.function.Predicate<? super E> filter) { 1793 throw new UnsupportedOperationException(); 1794 } 1795 1796 @Override 1797 public Stream<E> stream() { 1798 return delegate.stream(); 1799 } 1800 1801 @Override 1802 public Stream<E> parallelStream() { 1803 return delegate.parallelStream(); 1804 } 1805 1806 @Override 1807 public void forEach(Consumer<? super E> action) { 1808 delegate.forEach(action); 1809 } 1810 1811 @Override 1812 public E lower(E e) { 1813 return delegate.lower(e); 1814 } 1815 1816 @Override 1817 public E floor(E e) { 1818 return delegate.floor(e); 1819 } 1820 1821 @Override 1822 public E ceiling(E e) { 1823 return delegate.ceiling(e); 1824 } 1825 1826 @Override 1827 public E higher(E e) { 1828 return delegate.higher(e); 1829 } 1830 1831 @Override 1832 public E pollFirst() { 1833 throw new UnsupportedOperationException(); 1834 } 1835 1836 @Override 1837 public E pollLast() { 1838 throw new UnsupportedOperationException(); 1839 } 1840 1841 @MonotonicNonNullDecl private transient UnmodifiableNavigableSet<E> descendingSet; 1842 1843 @Override 1844 public NavigableSet<E> descendingSet() { 1845 UnmodifiableNavigableSet<E> result = descendingSet; 1846 if (result == null) { 1847 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1848 result.descendingSet = this; 1849 } 1850 return result; 1851 } 1852 1853 @Override 1854 public Iterator<E> descendingIterator() { 1855 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1856 } 1857 1858 @Override 1859 public NavigableSet<E> subSet( 1860 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1861 return unmodifiableNavigableSet( 1862 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1863 } 1864 1865 @Override 1866 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1867 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1868 } 1869 1870 @Override 1871 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1872 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1873 } 1874 1875 private static final long serialVersionUID = 0; 1876 } 1877 1878 /** 1879 * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In 1880 * order to guarantee serial access, it is critical that <b>all</b> access to the backing 1881 * navigable set is accomplished through the returned navigable set (or its views). 1882 * 1883 * <p>It is imperative that the user manually synchronize on the returned sorted set when 1884 * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or 1885 * {@code tailSet} views. 1886 * 1887 * <pre>{@code 1888 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1889 * ... 1890 * synchronized (set) { 1891 * // Must be in the synchronized block 1892 * Iterator<E> it = set.iterator(); 1893 * while (it.hasNext()) { 1894 * foo(it.next()); 1895 * } 1896 * } 1897 * }</pre> 1898 * 1899 * <p>or: 1900 * 1901 * <pre>{@code 1902 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1903 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1904 * ... 1905 * synchronized (set) { // Note: set, not set2!!! 1906 * // Must be in the synchronized block 1907 * Iterator<E> it = set2.descendingIterator(); 1908 * while (it.hasNext()) 1909 * foo(it.next()); 1910 * } 1911 * } 1912 * }</pre> 1913 * 1914 * <p>Failure to follow this advice may result in non-deterministic behavior. 1915 * 1916 * <p>The returned navigable set will be serializable if the specified navigable set is 1917 * serializable. 1918 * 1919 * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set. 1920 * @return a synchronized view of the specified navigable set. 1921 * @since 13.0 1922 */ 1923 @GwtIncompatible // NavigableSet 1924 public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) { 1925 return Synchronized.navigableSet(navigableSet); 1926 } 1927 1928 /** Remove each element in an iterable from a set. */ 1929 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1930 boolean changed = false; 1931 while (iterator.hasNext()) { 1932 changed |= set.remove(iterator.next()); 1933 } 1934 return changed; 1935 } 1936 1937 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1938 checkNotNull(collection); // for GWT 1939 if (collection instanceof Multiset) { 1940 collection = ((Multiset<?>) collection).elementSet(); 1941 } 1942 /* 1943 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1944 * is just more than the set's size. We augment the test by 1945 * assuming that sets have fast contains() performance, and other 1946 * collections don't. See 1947 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1948 */ 1949 if (collection instanceof Set && collection.size() > set.size()) { 1950 return Iterators.removeAll(set.iterator(), collection); 1951 } else { 1952 return removeAllImpl(set, collection.iterator()); 1953 } 1954 } 1955 1956 @GwtIncompatible // NavigableSet 1957 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 1958 private final NavigableSet<E> forward; 1959 1960 DescendingSet(NavigableSet<E> forward) { 1961 this.forward = forward; 1962 } 1963 1964 @Override 1965 protected NavigableSet<E> delegate() { 1966 return forward; 1967 } 1968 1969 @Override 1970 public E lower(E e) { 1971 return forward.higher(e); 1972 } 1973 1974 @Override 1975 public E floor(E e) { 1976 return forward.ceiling(e); 1977 } 1978 1979 @Override 1980 public E ceiling(E e) { 1981 return forward.floor(e); 1982 } 1983 1984 @Override 1985 public E higher(E e) { 1986 return forward.lower(e); 1987 } 1988 1989 @Override 1990 public E pollFirst() { 1991 return forward.pollLast(); 1992 } 1993 1994 @Override 1995 public E pollLast() { 1996 return forward.pollFirst(); 1997 } 1998 1999 @Override 2000 public NavigableSet<E> descendingSet() { 2001 return forward; 2002 } 2003 2004 @Override 2005 public Iterator<E> descendingIterator() { 2006 return forward.iterator(); 2007 } 2008 2009 @Override 2010 public NavigableSet<E> subSet( 2011 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 2012 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 2013 } 2014 2015 @Override 2016 public SortedSet<E> subSet(E fromElement, E toElement) { 2017 return standardSubSet(fromElement, toElement); 2018 } 2019 2020 @Override 2021 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 2022 return forward.tailSet(toElement, inclusive).descendingSet(); 2023 } 2024 2025 @Override 2026 public SortedSet<E> headSet(E toElement) { 2027 return standardHeadSet(toElement); 2028 } 2029 2030 @Override 2031 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 2032 return forward.headSet(fromElement, inclusive).descendingSet(); 2033 } 2034 2035 @Override 2036 public SortedSet<E> tailSet(E fromElement) { 2037 return standardTailSet(fromElement); 2038 } 2039 2040 @SuppressWarnings("unchecked") 2041 @Override 2042 public Comparator<? super E> comparator() { 2043 Comparator<? super E> forwardComparator = forward.comparator(); 2044 if (forwardComparator == null) { 2045 return (Comparator) Ordering.natural().reverse(); 2046 } else { 2047 return reverse(forwardComparator); 2048 } 2049 } 2050 2051 // If we inline this, we get a javac error. 2052 private static <T> Ordering<T> reverse(Comparator<T> forward) { 2053 return Ordering.from(forward).reverse(); 2054 } 2055 2056 @Override 2057 public E first() { 2058 return forward.last(); 2059 } 2060 2061 @Override 2062 public E last() { 2063 return forward.first(); 2064 } 2065 2066 @Override 2067 public Iterator<E> iterator() { 2068 return forward.descendingIterator(); 2069 } 2070 2071 @Override 2072 public Object[] toArray() { 2073 return standardToArray(); 2074 } 2075 2076 @Override 2077 public <T> T[] toArray(T[] array) { 2078 return standardToArray(array); 2079 } 2080 2081 @Override 2082 public String toString() { 2083 return standardToString(); 2084 } 2085 } 2086 2087 /** 2088 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2089 * 2090 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link 2091 * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link 2092 * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object, 2093 * boolean) headSet()}) to actually construct the view. Consult these methods for a full 2094 * description of the returned view's behavior. 2095 * 2096 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2097 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link 2098 * Comparator}, which can violate the natural ordering. Using this method (or in general using 2099 * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior. 2100 * 2101 * @since 20.0 2102 */ 2103 @Beta 2104 @GwtIncompatible // NavigableSet 2105 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2106 NavigableSet<K> set, Range<K> range) { 2107 if (set.comparator() != null 2108 && set.comparator() != Ordering.natural() 2109 && range.hasLowerBound() 2110 && range.hasUpperBound()) { 2111 checkArgument( 2112 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2113 "set is using a custom comparator which is inconsistent with the natural ordering."); 2114 } 2115 if (range.hasLowerBound() && range.hasUpperBound()) { 2116 return set.subSet( 2117 range.lowerEndpoint(), 2118 range.lowerBoundType() == BoundType.CLOSED, 2119 range.upperEndpoint(), 2120 range.upperBoundType() == BoundType.CLOSED); 2121 } else if (range.hasLowerBound()) { 2122 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2123 } else if (range.hasUpperBound()) { 2124 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2125 } 2126 return checkNotNull(set); 2127 } 2128}