001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkNonnegative; 026import static com.google.common.collect.CollectPreconditions.checkRemove; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.base.Function; 033import com.google.common.base.Objects; 034import com.google.common.math.IntMath; 035import com.google.common.primitives.Ints; 036import com.google.errorprone.annotations.CanIgnoreReturnValue; 037import java.io.Serializable; 038import java.math.RoundingMode; 039import java.util.AbstractList; 040import java.util.AbstractSequentialList; 041import java.util.ArrayList; 042import java.util.Arrays; 043import java.util.Collection; 044import java.util.Collections; 045import java.util.Iterator; 046import java.util.LinkedList; 047import java.util.List; 048import java.util.ListIterator; 049import java.util.NoSuchElementException; 050import java.util.RandomAccess; 051import java.util.concurrent.CopyOnWriteArrayList; 052import java.util.function.Predicate; 053import org.checkerframework.checker.nullness.compatqual.NullableDecl; 054 055/** 056 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts 057 * {@link Sets}, {@link Maps} and {@link Queues}. 058 * 059 * <p>See the Guava User Guide article on <a href= 060 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> {@code Lists}</a>. 061 * 062 * @author Kevin Bourrillion 063 * @author Mike Bostock 064 * @author Louis Wasserman 065 * @since 2.0 066 */ 067@GwtCompatible(emulated = true) 068public final class Lists { 069 private Lists() {} 070 071 // ArrayList 072 073 /** 074 * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier). 075 * 076 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead. 077 * 078 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 079 * deprecated. Instead, use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} 080 * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 081 */ 082 @GwtCompatible(serializable = true) 083 public static <E> ArrayList<E> newArrayList() { 084 return new ArrayList<>(); 085 } 086 087 /** 088 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements. 089 * 090 * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or 091 * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for 092 * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements 093 * might be null, or you need support for {@link List#set(int, Object)}, use {@link 094 * Arrays#asList}. 095 * 096 * <p>Note that even when you do need the ability to add or remove, this method provides only a 097 * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code 098 * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is 099 * not actually very useful and will likely be deprecated in the future. 100 */ 101 @SafeVarargs 102 @CanIgnoreReturnValue // TODO(kak): Remove this 103 @GwtCompatible(serializable = true) 104 public static <E> ArrayList<E> newArrayList(E... elements) { 105 checkNotNull(elements); // for GWT 106 // Avoid integer overflow when a large array is passed in 107 int capacity = computeArrayListCapacity(elements.length); 108 ArrayList<E> list = new ArrayList<>(capacity); 109 Collections.addAll(list, elements); 110 return list; 111 } 112 113 /** 114 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin 115 * shortcut for creating an empty list then calling {@link Iterables#addAll}. 116 * 117 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 118 * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 119 * FluentIterable} and call {@code elements.toList()}.) 120 * 121 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 122 * need this method. Use the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) 123 * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" 124 * syntax</a>. 125 */ 126 @CanIgnoreReturnValue // TODO(kak): Remove this 127 @GwtCompatible(serializable = true) 128 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 129 checkNotNull(elements); // for GWT 130 // Let ArrayList's sizing logic work, if possible 131 return (elements instanceof Collection) 132 ? new ArrayList<>(Collections2.cast(elements)) 133 : newArrayList(elements.iterator()); 134 } 135 136 /** 137 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin 138 * shortcut for creating an empty list and then calling {@link Iterators#addAll}. 139 * 140 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 141 * ImmutableList#copyOf(Iterator)} instead. 142 */ 143 @CanIgnoreReturnValue // TODO(kak): Remove this 144 @GwtCompatible(serializable = true) 145 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 146 ArrayList<E> list = newArrayList(); 147 Iterators.addAll(list, elements); 148 return list; 149 } 150 151 @VisibleForTesting 152 static int computeArrayListCapacity(int arraySize) { 153 checkNonnegative(arraySize, "arraySize"); 154 155 // TODO(kevinb): Figure out the right behavior, and document it 156 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 157 } 158 159 /** 160 * Creates an {@code ArrayList} instance backed by an array with the specified initial size; 161 * simply delegates to {@link ArrayList#ArrayList(int)}. 162 * 163 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 164 * deprecated. Instead, use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} 165 * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 166 * (Unlike here, there is no risk of overload ambiguity, since the {@code ArrayList} constructors 167 * very wisely did not accept varargs.) 168 * 169 * @param initialArraySize the exact size of the initial backing array for the returned array list 170 * ({@code ArrayList} documentation calls this value the "capacity") 171 * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size 172 * reaches {@code initialArraySize + 1} 173 * @throws IllegalArgumentException if {@code initialArraySize} is negative 174 */ 175 @GwtCompatible(serializable = true) 176 public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) { 177 checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. 178 return new ArrayList<>(initialArraySize); 179 } 180 181 /** 182 * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an 183 * unspecified amount of padding; you almost certainly mean to call {@link 184 * #newArrayListWithCapacity} (see that method for further advice on usage). 185 * 186 * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want 187 * some amount of padding, it's best if you choose your desired amount explicitly. 188 * 189 * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list 190 * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of 191 * elements 192 * @throws IllegalArgumentException if {@code estimatedSize} is negative 193 */ 194 @GwtCompatible(serializable = true) 195 public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) { 196 return new ArrayList<>(computeArrayListCapacity(estimatedSize)); 197 } 198 199 // LinkedList 200 201 /** 202 * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier). 203 * 204 * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()} 205 * instead. 206 * 207 * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently 208 * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have 209 * spent a lot of time benchmarking your specific needs, use one of those instead. 210 * 211 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 212 * deprecated. Instead, use the {@code LinkedList} {@linkplain LinkedList#LinkedList() 213 * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" 214 * syntax</a>. 215 */ 216 @GwtCompatible(serializable = true) 217 public static <E> LinkedList<E> newLinkedList() { 218 return new LinkedList<>(); 219 } 220 221 /** 222 * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin 223 * shortcut for creating an empty list then calling {@link Iterables#addAll}. 224 * 225 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 226 * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 227 * FluentIterable} and call {@code elements.toList()}.) 228 * 229 * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently 230 * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have 231 * spent a lot of time benchmarking your specific needs, use one of those instead. 232 * 233 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 234 * need this method. Use the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) 235 * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" 236 * syntax</a>. 237 */ 238 @GwtCompatible(serializable = true) 239 public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) { 240 LinkedList<E> list = newLinkedList(); 241 Iterables.addAll(list, elements); 242 return list; 243 } 244 245 /** 246 * Creates an empty {@code CopyOnWriteArrayList} instance. 247 * 248 * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList} 249 * instead. 250 * 251 * @return a new, empty {@code CopyOnWriteArrayList} 252 * @since 12.0 253 */ 254 @GwtIncompatible // CopyOnWriteArrayList 255 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 256 return new CopyOnWriteArrayList<>(); 257 } 258 259 /** 260 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 261 * 262 * @param elements the elements that the list should contain, in order 263 * @return a new {@code CopyOnWriteArrayList} containing those elements 264 * @since 12.0 265 */ 266 @GwtIncompatible // CopyOnWriteArrayList 267 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 268 Iterable<? extends E> elements) { 269 // We copy elements to an ArrayList first, rather than incurring the 270 // quadratic cost of adding them to the COWAL directly. 271 Collection<? extends E> elementsCollection = 272 (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements); 273 return new CopyOnWriteArrayList<>(elementsCollection); 274 } 275 276 /** 277 * Returns an unmodifiable list containing the specified first element and backed by the specified 278 * array of additional elements. Changes to the {@code rest} array will be reflected in the 279 * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable. 280 * 281 * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo, 282 * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count. 283 * 284 * <p>The returned list is serializable and implements {@link RandomAccess}. 285 * 286 * @param first the first element 287 * @param rest an array of additional elements, possibly empty 288 * @return an unmodifiable list containing the specified elements 289 */ 290 public static <E> List<E> asList(@NullableDecl E first, E[] rest) { 291 return new OnePlusArrayList<>(first, rest); 292 } 293 294 /** 295 * Returns an unmodifiable list containing the specified first and second element, and backed by 296 * the specified array of additional elements. Changes to the {@code rest} array will be reflected 297 * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable. 298 * 299 * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo, 300 * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum 301 * argument count. 302 * 303 * <p>The returned list is serializable and implements {@link RandomAccess}. 304 * 305 * @param first the first element 306 * @param second the second element 307 * @param rest an array of additional elements, possibly empty 308 * @return an unmodifiable list containing the specified elements 309 */ 310 public static <E> List<E> asList(@NullableDecl E first, @NullableDecl E second, E[] rest) { 311 return new TwoPlusArrayList<>(first, second, rest); 312 } 313 314 /** @see Lists#asList(Object, Object[]) */ 315 private static class OnePlusArrayList<E> extends AbstractList<E> 316 implements Serializable, RandomAccess { 317 @NullableDecl final E first; 318 final E[] rest; 319 320 OnePlusArrayList(@NullableDecl E first, E[] rest) { 321 this.first = first; 322 this.rest = checkNotNull(rest); 323 } 324 325 @Override 326 public int size() { 327 return IntMath.saturatedAdd(rest.length, 1); 328 } 329 330 @Override 331 public E get(int index) { 332 // check explicitly so the IOOBE will have the right message 333 checkElementIndex(index, size()); 334 return (index == 0) ? first : rest[index - 1]; 335 } 336 337 private static final long serialVersionUID = 0; 338 } 339 340 /** @see Lists#asList(Object, Object, Object[]) */ 341 private static class TwoPlusArrayList<E> extends AbstractList<E> 342 implements Serializable, RandomAccess { 343 @NullableDecl final E first; 344 @NullableDecl final E second; 345 final E[] rest; 346 347 TwoPlusArrayList(@NullableDecl E first, @NullableDecl E second, E[] rest) { 348 this.first = first; 349 this.second = second; 350 this.rest = checkNotNull(rest); 351 } 352 353 @Override 354 public int size() { 355 return IntMath.saturatedAdd(rest.length, 2); 356 } 357 358 @Override 359 public E get(int index) { 360 switch (index) { 361 case 0: 362 return first; 363 case 1: 364 return second; 365 default: 366 // check explicitly so the IOOBE will have the right message 367 checkElementIndex(index, size()); 368 return rest[index - 2]; 369 } 370 } 371 372 private static final long serialVersionUID = 0; 373 } 374 375 /** 376 * Returns every possible list that can be formed by choosing one element from each of the given 377 * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 378 * product</a>" of the lists. For example: 379 * 380 * <pre>{@code 381 * Lists.cartesianProduct(ImmutableList.of( 382 * ImmutableList.of(1, 2), 383 * ImmutableList.of("A", "B", "C"))) 384 * }</pre> 385 * 386 * <p>returns a list containing six lists in the following order: 387 * 388 * <ul> 389 * <li>{@code ImmutableList.of(1, "A")} 390 * <li>{@code ImmutableList.of(1, "B")} 391 * <li>{@code ImmutableList.of(1, "C")} 392 * <li>{@code ImmutableList.of(2, "A")} 393 * <li>{@code ImmutableList.of(2, "B")} 394 * <li>{@code ImmutableList.of(2, "C")} 395 * </ul> 396 * 397 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 398 * products that you would get from nesting for loops: 399 * 400 * <pre>{@code 401 * for (B b0 : lists.get(0)) { 402 * for (B b1 : lists.get(1)) { 403 * ... 404 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 405 * // operate on tuple 406 * } 407 * } 408 * }</pre> 409 * 410 * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists 411 * at all are provided (an empty list), the resulting Cartesian product has one element, an empty 412 * list (counter-intuitive, but mathematically consistent). 413 * 414 * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a 415 * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the 416 * cartesian product is constructed, the input lists are merely copied. Only as the resulting list 417 * is iterated are the individual lists created, and these are not retained after iteration. 418 * 419 * @param lists the lists to choose elements from, in the order that the elements chosen from 420 * those lists should appear in the resulting lists 421 * @param <B> any common base class shared by all axes (often just {@link Object}) 422 * @return the Cartesian product, as an immutable list containing immutable lists 423 * @throws IllegalArgumentException if the size of the cartesian product would be greater than 424 * {@link Integer#MAX_VALUE} 425 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of 426 * a provided list is null 427 * @since 19.0 428 */ 429 public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) { 430 return CartesianList.create(lists); 431 } 432 433 /** 434 * Returns every possible list that can be formed by choosing one element from each of the given 435 * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 436 * product</a>" of the lists. For example: 437 * 438 * <pre>{@code 439 * Lists.cartesianProduct(ImmutableList.of( 440 * ImmutableList.of(1, 2), 441 * ImmutableList.of("A", "B", "C"))) 442 * }</pre> 443 * 444 * <p>returns a list containing six lists in the following order: 445 * 446 * <ul> 447 * <li>{@code ImmutableList.of(1, "A")} 448 * <li>{@code ImmutableList.of(1, "B")} 449 * <li>{@code ImmutableList.of(1, "C")} 450 * <li>{@code ImmutableList.of(2, "A")} 451 * <li>{@code ImmutableList.of(2, "B")} 452 * <li>{@code ImmutableList.of(2, "C")} 453 * </ul> 454 * 455 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 456 * products that you would get from nesting for loops: 457 * 458 * <pre>{@code 459 * for (B b0 : lists.get(0)) { 460 * for (B b1 : lists.get(1)) { 461 * ... 462 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 463 * // operate on tuple 464 * } 465 * } 466 * }</pre> 467 * 468 * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists 469 * at all are provided (an empty list), the resulting Cartesian product has one element, an empty 470 * list (counter-intuitive, but mathematically consistent). 471 * 472 * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a 473 * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the 474 * cartesian product is constructed, the input lists are merely copied. Only as the resulting list 475 * is iterated are the individual lists created, and these are not retained after iteration. 476 * 477 * @param lists the lists to choose elements from, in the order that the elements chosen from 478 * those lists should appear in the resulting lists 479 * @param <B> any common base class shared by all axes (often just {@link Object}) 480 * @return the Cartesian product, as an immutable list containing immutable lists 481 * @throws IllegalArgumentException if the size of the cartesian product would be greater than 482 * {@link Integer#MAX_VALUE} 483 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of 484 * a provided list is null 485 * @since 19.0 486 */ 487 @SafeVarargs 488 public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) { 489 return cartesianProduct(Arrays.asList(lists)); 490 } 491 492 /** 493 * Returns a list that applies {@code function} to each element of {@code fromList}. The returned 494 * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected 495 * in the returned list and vice versa. 496 * 497 * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored 498 * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported 499 * in the returned list. 500 * 501 * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list 502 * to be a view, but it means that the function will be applied many times for bulk operations 503 * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code 504 * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a 505 * view, copy the returned list into a new list of your choosing. 506 * 507 * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned 508 * list is threadsafe if the supplied list and function are. 509 * 510 * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link 511 * Collections2#transform} or {@link Iterables#transform}. 512 * 513 * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList}, 514 * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This 515 * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>. 516 * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then 517 * serialize the copy. Other methods similar to this do not implement serialization at all for 518 * this reason. 519 * 520 * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link 521 * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you 522 * to migrate to streams. 523 */ 524 public static <F, T> List<T> transform( 525 List<F> fromList, Function<? super F, ? extends T> function) { 526 return (fromList instanceof RandomAccess) 527 ? new TransformingRandomAccessList<>(fromList, function) 528 : new TransformingSequentialList<>(fromList, function); 529 } 530 531 /** 532 * Implementation of a sequential transforming list. 533 * 534 * @see Lists#transform 535 */ 536 private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T> 537 implements Serializable { 538 final List<F> fromList; 539 final Function<? super F, ? extends T> function; 540 541 TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) { 542 this.fromList = checkNotNull(fromList); 543 this.function = checkNotNull(function); 544 } 545 546 /** 547 * The default implementation inherited is based on iteration and removal of each element which 548 * can be overkill. That's why we forward this call directly to the backing list. 549 */ 550 @Override 551 public void clear() { 552 fromList.clear(); 553 } 554 555 @Override 556 public int size() { 557 return fromList.size(); 558 } 559 560 @Override 561 public ListIterator<T> listIterator(final int index) { 562 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 563 @Override 564 T transform(F from) { 565 return function.apply(from); 566 } 567 }; 568 } 569 570 @Override 571 public boolean removeIf(Predicate<? super T> filter) { 572 checkNotNull(filter); 573 return fromList.removeIf(element -> filter.test(function.apply(element))); 574 } 575 576 private static final long serialVersionUID = 0; 577 } 578 579 /** 580 * Implementation of a transforming random access list. We try to make as many of these methods 581 * pass-through to the source list as possible so that the performance characteristics of the 582 * source list and transformed list are similar. 583 * 584 * @see Lists#transform 585 */ 586 private static class TransformingRandomAccessList<F, T> extends AbstractList<T> 587 implements RandomAccess, Serializable { 588 final List<F> fromList; 589 final Function<? super F, ? extends T> function; 590 591 TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) { 592 this.fromList = checkNotNull(fromList); 593 this.function = checkNotNull(function); 594 } 595 596 @Override 597 public void clear() { 598 fromList.clear(); 599 } 600 601 @Override 602 public T get(int index) { 603 return function.apply(fromList.get(index)); 604 } 605 606 @Override 607 public Iterator<T> iterator() { 608 return listIterator(); 609 } 610 611 @Override 612 public ListIterator<T> listIterator(int index) { 613 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 614 @Override 615 T transform(F from) { 616 return function.apply(from); 617 } 618 }; 619 } 620 621 @Override 622 public boolean isEmpty() { 623 return fromList.isEmpty(); 624 } 625 626 @Override 627 public boolean removeIf(Predicate<? super T> filter) { 628 checkNotNull(filter); 629 return fromList.removeIf(element -> filter.test(function.apply(element))); 630 } 631 632 @Override 633 public T remove(int index) { 634 return function.apply(fromList.remove(index)); 635 } 636 637 @Override 638 public int size() { 639 return fromList.size(); 640 } 641 642 private static final long serialVersionUID = 0; 643 } 644 645 /** 646 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same 647 * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b, 648 * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list 649 * containing two inner lists of three and two elements, all in the original order. 650 * 651 * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner 652 * lists are sublist views of the original list, produced on demand using {@link List#subList(int, 653 * int)}, and are subject to all the usual caveats about modification as explained in that API. 654 * 655 * @param list the list to return consecutive sublists of 656 * @param size the desired size of each sublist (the last may be smaller) 657 * @return a list of consecutive sublists 658 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 659 */ 660 public static <T> List<List<T>> partition(List<T> list, int size) { 661 checkNotNull(list); 662 checkArgument(size > 0); 663 return (list instanceof RandomAccess) 664 ? new RandomAccessPartition<>(list, size) 665 : new Partition<>(list, size); 666 } 667 668 private static class Partition<T> extends AbstractList<List<T>> { 669 final List<T> list; 670 final int size; 671 672 Partition(List<T> list, int size) { 673 this.list = list; 674 this.size = size; 675 } 676 677 @Override 678 public List<T> get(int index) { 679 checkElementIndex(index, size()); 680 int start = index * size; 681 int end = Math.min(start + size, list.size()); 682 return list.subList(start, end); 683 } 684 685 @Override 686 public int size() { 687 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 688 } 689 690 @Override 691 public boolean isEmpty() { 692 return list.isEmpty(); 693 } 694 } 695 696 private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess { 697 RandomAccessPartition(List<T> list, int size) { 698 super(list, size); 699 } 700 } 701 702 /** 703 * Returns a view of the specified string as an immutable list of {@code Character} values. 704 * 705 * @since 7.0 706 */ 707 public static ImmutableList<Character> charactersOf(String string) { 708 return new StringAsImmutableList(checkNotNull(string)); 709 } 710 711 /** 712 * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing 713 * {@code sequence} as a sequence of Unicode code units. The view does not support any 714 * modification operations, but reflects any changes to the underlying character sequence. 715 * 716 * @param sequence the character sequence to view as a {@code List} of characters 717 * @return an {@code List<Character>} view of the character sequence 718 * @since 7.0 719 */ 720 @Beta 721 public static List<Character> charactersOf(CharSequence sequence) { 722 return new CharSequenceAsList(checkNotNull(sequence)); 723 } 724 725 @SuppressWarnings("serial") // serialized using ImmutableList serialization 726 private static final class StringAsImmutableList extends ImmutableList<Character> { 727 728 private final String string; 729 730 StringAsImmutableList(String string) { 731 this.string = string; 732 } 733 734 @Override 735 public int indexOf(@NullableDecl Object object) { 736 return (object instanceof Character) ? string.indexOf((Character) object) : -1; 737 } 738 739 @Override 740 public int lastIndexOf(@NullableDecl Object object) { 741 return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1; 742 } 743 744 @Override 745 public ImmutableList<Character> subList(int fromIndex, int toIndex) { 746 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 747 return charactersOf(string.substring(fromIndex, toIndex)); 748 } 749 750 @Override 751 boolean isPartialView() { 752 return false; 753 } 754 755 @Override 756 public Character get(int index) { 757 checkElementIndex(index, size()); // for GWT 758 return string.charAt(index); 759 } 760 761 @Override 762 public int size() { 763 return string.length(); 764 } 765 } 766 767 private static final class CharSequenceAsList extends AbstractList<Character> { 768 private final CharSequence sequence; 769 770 CharSequenceAsList(CharSequence sequence) { 771 this.sequence = sequence; 772 } 773 774 @Override 775 public Character get(int index) { 776 checkElementIndex(index, size()); // for GWT 777 return sequence.charAt(index); 778 } 779 780 @Override 781 public int size() { 782 return sequence.length(); 783 } 784 } 785 786 /** 787 * Returns a reversed view of the specified list. For example, {@code 788 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned 789 * list is backed by this list, so changes in the returned list are reflected in this list, and 790 * vice-versa. The returned list supports all of the optional list operations supported by this 791 * list. 792 * 793 * <p>The returned list is random-access if the specified list is random access. 794 * 795 * @since 7.0 796 */ 797 public static <T> List<T> reverse(List<T> list) { 798 if (list instanceof ImmutableList) { 799 return ((ImmutableList<T>) list).reverse(); 800 } else if (list instanceof ReverseList) { 801 return ((ReverseList<T>) list).getForwardList(); 802 } else if (list instanceof RandomAccess) { 803 return new RandomAccessReverseList<>(list); 804 } else { 805 return new ReverseList<>(list); 806 } 807 } 808 809 private static class ReverseList<T> extends AbstractList<T> { 810 private final List<T> forwardList; 811 812 ReverseList(List<T> forwardList) { 813 this.forwardList = checkNotNull(forwardList); 814 } 815 816 List<T> getForwardList() { 817 return forwardList; 818 } 819 820 private int reverseIndex(int index) { 821 int size = size(); 822 checkElementIndex(index, size); 823 return (size - 1) - index; 824 } 825 826 private int reversePosition(int index) { 827 int size = size(); 828 checkPositionIndex(index, size); 829 return size - index; 830 } 831 832 @Override 833 public void add(int index, @NullableDecl T element) { 834 forwardList.add(reversePosition(index), element); 835 } 836 837 @Override 838 public void clear() { 839 forwardList.clear(); 840 } 841 842 @Override 843 public T remove(int index) { 844 return forwardList.remove(reverseIndex(index)); 845 } 846 847 @Override 848 protected void removeRange(int fromIndex, int toIndex) { 849 subList(fromIndex, toIndex).clear(); 850 } 851 852 @Override 853 public T set(int index, @NullableDecl T element) { 854 return forwardList.set(reverseIndex(index), element); 855 } 856 857 @Override 858 public T get(int index) { 859 return forwardList.get(reverseIndex(index)); 860 } 861 862 @Override 863 public int size() { 864 return forwardList.size(); 865 } 866 867 @Override 868 public List<T> subList(int fromIndex, int toIndex) { 869 checkPositionIndexes(fromIndex, toIndex, size()); 870 return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex))); 871 } 872 873 @Override 874 public Iterator<T> iterator() { 875 return listIterator(); 876 } 877 878 @Override 879 public ListIterator<T> listIterator(int index) { 880 int start = reversePosition(index); 881 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 882 return new ListIterator<T>() { 883 884 boolean canRemoveOrSet; 885 886 @Override 887 public void add(T e) { 888 forwardIterator.add(e); 889 forwardIterator.previous(); 890 canRemoveOrSet = false; 891 } 892 893 @Override 894 public boolean hasNext() { 895 return forwardIterator.hasPrevious(); 896 } 897 898 @Override 899 public boolean hasPrevious() { 900 return forwardIterator.hasNext(); 901 } 902 903 @Override 904 public T next() { 905 if (!hasNext()) { 906 throw new NoSuchElementException(); 907 } 908 canRemoveOrSet = true; 909 return forwardIterator.previous(); 910 } 911 912 @Override 913 public int nextIndex() { 914 return reversePosition(forwardIterator.nextIndex()); 915 } 916 917 @Override 918 public T previous() { 919 if (!hasPrevious()) { 920 throw new NoSuchElementException(); 921 } 922 canRemoveOrSet = true; 923 return forwardIterator.next(); 924 } 925 926 @Override 927 public int previousIndex() { 928 return nextIndex() - 1; 929 } 930 931 @Override 932 public void remove() { 933 checkRemove(canRemoveOrSet); 934 forwardIterator.remove(); 935 canRemoveOrSet = false; 936 } 937 938 @Override 939 public void set(T e) { 940 checkState(canRemoveOrSet); 941 forwardIterator.set(e); 942 } 943 }; 944 } 945 } 946 947 private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess { 948 RandomAccessReverseList(List<T> forwardList) { 949 super(forwardList); 950 } 951 } 952 953 /** An implementation of {@link List#hashCode()}. */ 954 static int hashCodeImpl(List<?> list) { 955 // TODO(lowasser): worth optimizing for RandomAccess? 956 int hashCode = 1; 957 for (Object o : list) { 958 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 959 960 hashCode = ~~hashCode; 961 // needed to deal with GWT integer overflow 962 } 963 return hashCode; 964 } 965 966 /** An implementation of {@link List#equals(Object)}. */ 967 static boolean equalsImpl(List<?> thisList, @NullableDecl Object other) { 968 if (other == checkNotNull(thisList)) { 969 return true; 970 } 971 if (!(other instanceof List)) { 972 return false; 973 } 974 List<?> otherList = (List<?>) other; 975 int size = thisList.size(); 976 if (size != otherList.size()) { 977 return false; 978 } 979 if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) { 980 // avoid allocation and use the faster loop 981 for (int i = 0; i < size; i++) { 982 if (!Objects.equal(thisList.get(i), otherList.get(i))) { 983 return false; 984 } 985 } 986 return true; 987 } else { 988 return Iterators.elementsEqual(thisList.iterator(), otherList.iterator()); 989 } 990 } 991 992 /** An implementation of {@link List#addAll(int, Collection)}. */ 993 static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) { 994 boolean changed = false; 995 ListIterator<E> listIterator = list.listIterator(index); 996 for (E e : elements) { 997 listIterator.add(e); 998 changed = true; 999 } 1000 return changed; 1001 } 1002 1003 /** An implementation of {@link List#indexOf(Object)}. */ 1004 static int indexOfImpl(List<?> list, @NullableDecl Object element) { 1005 if (list instanceof RandomAccess) { 1006 return indexOfRandomAccess(list, element); 1007 } else { 1008 ListIterator<?> listIterator = list.listIterator(); 1009 while (listIterator.hasNext()) { 1010 if (Objects.equal(element, listIterator.next())) { 1011 return listIterator.previousIndex(); 1012 } 1013 } 1014 return -1; 1015 } 1016 } 1017 1018 private static int indexOfRandomAccess(List<?> list, @NullableDecl Object element) { 1019 int size = list.size(); 1020 if (element == null) { 1021 for (int i = 0; i < size; i++) { 1022 if (list.get(i) == null) { 1023 return i; 1024 } 1025 } 1026 } else { 1027 for (int i = 0; i < size; i++) { 1028 if (element.equals(list.get(i))) { 1029 return i; 1030 } 1031 } 1032 } 1033 return -1; 1034 } 1035 1036 /** An implementation of {@link List#lastIndexOf(Object)}. */ 1037 static int lastIndexOfImpl(List<?> list, @NullableDecl Object element) { 1038 if (list instanceof RandomAccess) { 1039 return lastIndexOfRandomAccess(list, element); 1040 } else { 1041 ListIterator<?> listIterator = list.listIterator(list.size()); 1042 while (listIterator.hasPrevious()) { 1043 if (Objects.equal(element, listIterator.previous())) { 1044 return listIterator.nextIndex(); 1045 } 1046 } 1047 return -1; 1048 } 1049 } 1050 1051 private static int lastIndexOfRandomAccess(List<?> list, @NullableDecl Object element) { 1052 if (element == null) { 1053 for (int i = list.size() - 1; i >= 0; i--) { 1054 if (list.get(i) == null) { 1055 return i; 1056 } 1057 } 1058 } else { 1059 for (int i = list.size() - 1; i >= 0; i--) { 1060 if (element.equals(list.get(i))) { 1061 return i; 1062 } 1063 } 1064 } 1065 return -1; 1066 } 1067 1068 /** Returns an implementation of {@link List#listIterator(int)}. */ 1069 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 1070 return new AbstractListWrapper<>(list).listIterator(index); 1071 } 1072 1073 /** An implementation of {@link List#subList(int, int)}. */ 1074 static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) { 1075 List<E> wrapper; 1076 if (list instanceof RandomAccess) { 1077 wrapper = 1078 new RandomAccessListWrapper<E>(list) { 1079 @Override 1080 public ListIterator<E> listIterator(int index) { 1081 return backingList.listIterator(index); 1082 } 1083 1084 private static final long serialVersionUID = 0; 1085 }; 1086 } else { 1087 wrapper = 1088 new AbstractListWrapper<E>(list) { 1089 @Override 1090 public ListIterator<E> listIterator(int index) { 1091 return backingList.listIterator(index); 1092 } 1093 1094 private static final long serialVersionUID = 0; 1095 }; 1096 } 1097 return wrapper.subList(fromIndex, toIndex); 1098 } 1099 1100 private static class AbstractListWrapper<E> extends AbstractList<E> { 1101 final List<E> backingList; 1102 1103 AbstractListWrapper(List<E> backingList) { 1104 this.backingList = checkNotNull(backingList); 1105 } 1106 1107 @Override 1108 public void add(int index, E element) { 1109 backingList.add(index, element); 1110 } 1111 1112 @Override 1113 public boolean addAll(int index, Collection<? extends E> c) { 1114 return backingList.addAll(index, c); 1115 } 1116 1117 @Override 1118 public E get(int index) { 1119 return backingList.get(index); 1120 } 1121 1122 @Override 1123 public E remove(int index) { 1124 return backingList.remove(index); 1125 } 1126 1127 @Override 1128 public E set(int index, E element) { 1129 return backingList.set(index, element); 1130 } 1131 1132 @Override 1133 public boolean contains(Object o) { 1134 return backingList.contains(o); 1135 } 1136 1137 @Override 1138 public int size() { 1139 return backingList.size(); 1140 } 1141 } 1142 1143 private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E> 1144 implements RandomAccess { 1145 RandomAccessListWrapper(List<E> backingList) { 1146 super(backingList); 1147 } 1148 } 1149 1150 /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */ 1151 static <T> List<T> cast(Iterable<T> iterable) { 1152 return (List<T>) iterable; 1153 } 1154}