001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.util.concurrent; 016 017import com.google.common.annotations.Beta; 018import com.google.common.annotations.GwtIncompatible; 019import com.google.common.annotations.VisibleForTesting; 020import com.google.common.base.MoreObjects; 021import com.google.common.base.Preconditions; 022import com.google.common.base.Supplier; 023import com.google.common.collect.ImmutableList; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.MapMaker; 026import com.google.common.math.IntMath; 027import com.google.common.primitives.Ints; 028import java.lang.ref.Reference; 029import java.lang.ref.ReferenceQueue; 030import java.lang.ref.WeakReference; 031import java.math.RoundingMode; 032import java.util.Arrays; 033import java.util.Collections; 034import java.util.List; 035import java.util.concurrent.ConcurrentMap; 036import java.util.concurrent.Semaphore; 037import java.util.concurrent.atomic.AtomicReferenceArray; 038import java.util.concurrent.locks.Condition; 039import java.util.concurrent.locks.Lock; 040import java.util.concurrent.locks.ReadWriteLock; 041import java.util.concurrent.locks.ReentrantLock; 042import java.util.concurrent.locks.ReentrantReadWriteLock; 043 044/** 045 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping similar 046 * to that of {@code ConcurrentHashMap} in a reusable form, and extends it for semaphores and 047 * read-write locks. Conceptually, lock striping is the technique of dividing a lock into many 048 * <i>stripes</i>, increasing the granularity of a single lock and allowing independent operations 049 * to lock different stripes and proceed concurrently, instead of creating contention for a single 050 * lock. 051 * 052 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore), 053 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} (assuming 054 * {@link Object#hashCode()} is correctly implemented for the keys). Note that if {@code key1} is 055 * <strong>not</strong> equal to {@code key2}, it is <strong>not</strong> guaranteed that {@code 056 * striped.get(key1) != striped.get(key2)}; the elements might nevertheless be mapped to the same 057 * lock. The lower the number of stripes, the higher the probability of this happening. 058 * 059 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>}, and 060 * {@code Striped<ReadWriteLock>}. For each type, two implementations are offered: {@linkplain 061 * #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak} {@code Striped<Lock>}, {@linkplain 062 * #semaphore(int, int) strong} and {@linkplain #lazyWeakSemaphore(int, int) weak} {@code 063 * Striped<Semaphore>}, and {@linkplain #readWriteLock(int) strong} and {@linkplain 064 * #lazyWeakReadWriteLock(int) weak} {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all 065 * stripes (locks/semaphores) are initialized eagerly, and are not reclaimed unless {@code Striped} 066 * itself is reclaimable. <i>Weak</i> means that locks/semaphores are created lazily, and they are 067 * allowed to be reclaimed if nobody is holding on to them. This is useful, for example, if one 068 * wants to create a {@code Striped<Lock>} of many locks, but worries that in most cases only a 069 * small portion of these would be in use. 070 * 071 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K} 072 * represents the task. This maximizes concurrency by having each unique key mapped to a unique 073 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock for 074 * all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of choosing 075 * either of these extremes, {@code Striped} allows the user to trade between required concurrency 076 * and memory footprint. For example, if a set of tasks are CPU-bound, one could easily create a 077 * very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes, instead of 078 * possibly thousands of locks which could be created in a {@code Map<K, Lock>} structure. 079 * 080 * @author Dimitris Andreou 081 * @since 13.0 082 */ 083@Beta 084@GwtIncompatible 085public abstract class Striped<L> { 086 /** 087 * If there are at least this many stripes, we assume the memory usage of a ConcurrentMap will be 088 * smaller than a large array. (This assumes that in the lazy case, most stripes are unused. As 089 * always, if many stripes are in use, a non-lazy striped makes more sense.) 090 */ 091 private static final int LARGE_LAZY_CUTOFF = 1024; 092 093 private Striped() {} 094 095 /** 096 * Returns the stripe that corresponds to the passed key. It is always guaranteed that if {@code 097 * key1.equals(key2)}, then {@code get(key1) == get(key2)}. 098 * 099 * @param key an arbitrary, non-null key 100 * @return the stripe that the passed key corresponds to 101 */ 102 public abstract L get(Object key); 103 104 /** 105 * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to {@code size()}, 106 * exclusively. 107 * 108 * @param index the index of the stripe to return; must be in {@code [0...size())} 109 * @return the stripe at the specified index 110 */ 111 public abstract L getAt(int index); 112 113 /** 114 * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key). 115 */ 116 abstract int indexFor(Object key); 117 118 /** Returns the total number of stripes in this instance. */ 119 public abstract int size(); 120 121 /** 122 * Returns the stripes that correspond to the passed objects, in ascending (as per {@link 123 * #getAt(int)}) order. Thus, threads that use the stripes in the order returned by this method 124 * are guaranteed to not deadlock each other. 125 * 126 * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and {@code 127 * bulkGet(keys)} with a relative large number of keys can cause an excessive number of shared 128 * stripes (much like the birthday paradox, where much fewer than anticipated birthdays are needed 129 * for a pair of them to match). Please consider carefully the implications of the number of 130 * stripes, the intended concurrency level, and the typical number of keys used in a {@code 131 * bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls in 132 * Bins model</a> for mathematical formulas that can be used to estimate the probability of 133 * collisions. 134 * 135 * @param keys arbitrary non-null keys 136 * @return the stripes corresponding to the objects (one per each object, derived by delegating to 137 * {@link #get(Object)}; may contain duplicates), in an increasing index order. 138 */ 139 public Iterable<L> bulkGet(Iterable<?> keys) { 140 // Initially using the array to store the keys, then reusing it to store the respective L's 141 final Object[] array = Iterables.toArray(keys, Object.class); 142 if (array.length == 0) { 143 return ImmutableList.of(); 144 } 145 int[] stripes = new int[array.length]; 146 for (int i = 0; i < array.length; i++) { 147 stripes[i] = indexFor(array[i]); 148 } 149 Arrays.sort(stripes); 150 // optimize for runs of identical stripes 151 int previousStripe = stripes[0]; 152 array[0] = getAt(previousStripe); 153 for (int i = 1; i < array.length; i++) { 154 int currentStripe = stripes[i]; 155 if (currentStripe == previousStripe) { 156 array[i] = array[i - 1]; 157 } else { 158 array[i] = getAt(currentStripe); 159 previousStripe = currentStripe; 160 } 161 } 162 /* 163 * Note that the returned Iterable holds references to the returned stripes, to avoid 164 * error-prone code like: 165 * 166 * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)' 167 * Iterable<Lock> locks = stripedLock.bulkGet(keys); 168 * for (Lock lock : locks) { 169 * lock.lock(); 170 * } 171 * operation(); 172 * for (Lock lock : locks) { 173 * lock.unlock(); 174 * } 175 * 176 * If we only held the int[] stripes, translating it on the fly to L's, the original locks might 177 * be garbage collected after locking them, ending up in a huge mess. 178 */ 179 @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's 180 List<L> asList = (List<L>) Arrays.asList(array); 181 return Collections.unmodifiableList(asList); 182 } 183 184 // Static factories 185 186 /** 187 * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks. Every lock 188 * is reentrant. 189 * 190 * @param stripes the minimum number of stripes (locks) required 191 * @return a new {@code Striped<Lock>} 192 */ 193 public static Striped<Lock> lock(int stripes) { 194 return new CompactStriped<>( 195 stripes, 196 new Supplier<Lock>() { 197 @Override 198 public Lock get() { 199 return new PaddedLock(); 200 } 201 }); 202 } 203 204 /** 205 * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks. Every lock is 206 * reentrant. 207 * 208 * @param stripes the minimum number of stripes (locks) required 209 * @return a new {@code Striped<Lock>} 210 */ 211 public static Striped<Lock> lazyWeakLock(int stripes) { 212 return lazy( 213 stripes, 214 new Supplier<Lock>() { 215 @Override 216 public Lock get() { 217 return new ReentrantLock(false); 218 } 219 }); 220 } 221 222 private static <L> Striped<L> lazy(int stripes, Supplier<L> supplier) { 223 return stripes < LARGE_LAZY_CUTOFF 224 ? new SmallLazyStriped<L>(stripes, supplier) 225 : new LargeLazyStriped<L>(stripes, supplier); 226 } 227 228 /** 229 * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores, 230 * with the specified number of permits. 231 * 232 * @param stripes the minimum number of stripes (semaphores) required 233 * @param permits the number of permits in each semaphore 234 * @return a new {@code Striped<Semaphore>} 235 */ 236 public static Striped<Semaphore> semaphore(int stripes, final int permits) { 237 return new CompactStriped<>( 238 stripes, 239 new Supplier<Semaphore>() { 240 @Override 241 public Semaphore get() { 242 return new PaddedSemaphore(permits); 243 } 244 }); 245 } 246 247 /** 248 * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores, 249 * with the specified number of permits. 250 * 251 * @param stripes the minimum number of stripes (semaphores) required 252 * @param permits the number of permits in each semaphore 253 * @return a new {@code Striped<Semaphore>} 254 */ 255 public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) { 256 return lazy( 257 stripes, 258 new Supplier<Semaphore>() { 259 @Override 260 public Semaphore get() { 261 return new Semaphore(permits, false); 262 } 263 }); 264 } 265 266 /** 267 * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced 268 * read-write locks. Every lock is reentrant. 269 * 270 * @param stripes the minimum number of stripes (locks) required 271 * @return a new {@code Striped<ReadWriteLock>} 272 */ 273 public static Striped<ReadWriteLock> readWriteLock(int stripes) { 274 return new CompactStriped<>(stripes, READ_WRITE_LOCK_SUPPLIER); 275 } 276 277 /** 278 * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced read-write 279 * locks. Every lock is reentrant. 280 * 281 * @param stripes the minimum number of stripes (locks) required 282 * @return a new {@code Striped<ReadWriteLock>} 283 */ 284 public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) { 285 return lazy(stripes, WEAK_SAFE_READ_WRITE_LOCK_SUPPLIER); 286 } 287 288 private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER = 289 new Supplier<ReadWriteLock>() { 290 @Override 291 public ReadWriteLock get() { 292 return new ReentrantReadWriteLock(); 293 } 294 }; 295 296 private static final Supplier<ReadWriteLock> WEAK_SAFE_READ_WRITE_LOCK_SUPPLIER = 297 new Supplier<ReadWriteLock>() { 298 @Override 299 public ReadWriteLock get() { 300 return new WeakSafeReadWriteLock(); 301 } 302 }; 303 304 /** 305 * ReadWriteLock implementation whose read and write locks retain a reference back to this lock. 306 * Otherwise, a reference to just the read lock or just the write lock would not suffice to ensure 307 * the {@code ReadWriteLock} is retained. 308 */ 309 private static final class WeakSafeReadWriteLock implements ReadWriteLock { 310 private final ReadWriteLock delegate; 311 312 WeakSafeReadWriteLock() { 313 this.delegate = new ReentrantReadWriteLock(); 314 } 315 316 @Override 317 public Lock readLock() { 318 return new WeakSafeLock(delegate.readLock(), this); 319 } 320 321 @Override 322 public Lock writeLock() { 323 return new WeakSafeLock(delegate.writeLock(), this); 324 } 325 } 326 327 /** Lock object that ensures a strong reference is retained to a specified object. */ 328 private static final class WeakSafeLock extends ForwardingLock { 329 private final Lock delegate; 330 331 @SuppressWarnings("unused") 332 private final WeakSafeReadWriteLock strongReference; 333 334 WeakSafeLock(Lock delegate, WeakSafeReadWriteLock strongReference) { 335 this.delegate = delegate; 336 this.strongReference = strongReference; 337 } 338 339 @Override 340 Lock delegate() { 341 return delegate; 342 } 343 344 @Override 345 public Condition newCondition() { 346 return new WeakSafeCondition(delegate.newCondition(), strongReference); 347 } 348 } 349 350 /** Condition object that ensures a strong reference is retained to a specified object. */ 351 private static final class WeakSafeCondition extends ForwardingCondition { 352 private final Condition delegate; 353 354 @SuppressWarnings("unused") 355 private final WeakSafeReadWriteLock strongReference; 356 357 WeakSafeCondition(Condition delegate, WeakSafeReadWriteLock strongReference) { 358 this.delegate = delegate; 359 this.strongReference = strongReference; 360 } 361 362 @Override 363 Condition delegate() { 364 return delegate; 365 } 366 } 367 368 private abstract static class PowerOfTwoStriped<L> extends Striped<L> { 369 /** Capacity (power of two) minus one, for fast mod evaluation */ 370 final int mask; 371 372 PowerOfTwoStriped(int stripes) { 373 Preconditions.checkArgument(stripes > 0, "Stripes must be positive"); 374 this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1; 375 } 376 377 @Override 378 final int indexFor(Object key) { 379 int hash = smear(key.hashCode()); 380 return hash & mask; 381 } 382 383 @Override 384 public final L get(Object key) { 385 return getAt(indexFor(key)); 386 } 387 } 388 389 /** 390 * Implementation of Striped where 2^k stripes are represented as an array of the same length, 391 * eagerly initialized. 392 */ 393 private static class CompactStriped<L> extends PowerOfTwoStriped<L> { 394 /** Size is a power of two. */ 395 private final Object[] array; 396 397 private CompactStriped(int stripes, Supplier<L> supplier) { 398 super(stripes); 399 Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)"); 400 401 this.array = new Object[mask + 1]; 402 for (int i = 0; i < array.length; i++) { 403 array[i] = supplier.get(); 404 } 405 } 406 407 @SuppressWarnings("unchecked") // we only put L's in the array 408 @Override 409 public L getAt(int index) { 410 return (L) array[index]; 411 } 412 413 @Override 414 public int size() { 415 return array.length; 416 } 417 } 418 419 /** 420 * Implementation of Striped where up to 2^k stripes can be represented, using an 421 * AtomicReferenceArray of size 2^k. To map a user key into a stripe, we take a k-bit slice of the 422 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 423 */ 424 @VisibleForTesting 425 static class SmallLazyStriped<L> extends PowerOfTwoStriped<L> { 426 final AtomicReferenceArray<ArrayReference<? extends L>> locks; 427 final Supplier<L> supplier; 428 final int size; 429 final ReferenceQueue<L> queue = new ReferenceQueue<L>(); 430 431 SmallLazyStriped(int stripes, Supplier<L> supplier) { 432 super(stripes); 433 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 434 this.locks = new AtomicReferenceArray<>(size); 435 this.supplier = supplier; 436 } 437 438 @Override 439 public L getAt(int index) { 440 if (size != Integer.MAX_VALUE) { 441 Preconditions.checkElementIndex(index, size()); 442 } // else no check necessary, all index values are valid 443 ArrayReference<? extends L> existingRef = locks.get(index); 444 L existing = existingRef == null ? null : existingRef.get(); 445 if (existing != null) { 446 return existing; 447 } 448 L created = supplier.get(); 449 ArrayReference<L> newRef = new ArrayReference<L>(created, index, queue); 450 while (!locks.compareAndSet(index, existingRef, newRef)) { 451 // we raced, we need to re-read and try again 452 existingRef = locks.get(index); 453 existing = existingRef == null ? null : existingRef.get(); 454 if (existing != null) { 455 return existing; 456 } 457 } 458 drainQueue(); 459 return created; 460 } 461 462 // N.B. Draining the queue is only necessary to ensure that we don't accumulate empty references 463 // in the array. We could skip this if we decide we don't care about holding on to Reference 464 // objects indefinitely. 465 private void drainQueue() { 466 Reference<? extends L> ref; 467 while ((ref = queue.poll()) != null) { 468 // We only ever register ArrayReferences with the queue so this is always safe. 469 ArrayReference<? extends L> arrayRef = (ArrayReference<? extends L>) ref; 470 // Try to clear out the array slot, n.b. if we fail that is fine, in either case the 471 // arrayRef will be out of the array after this step. 472 locks.compareAndSet(arrayRef.index, arrayRef, null); 473 } 474 } 475 476 @Override 477 public int size() { 478 return size; 479 } 480 481 private static final class ArrayReference<L> extends WeakReference<L> { 482 final int index; 483 484 ArrayReference(L referent, int index, ReferenceQueue<L> queue) { 485 super(referent, queue); 486 this.index = index; 487 } 488 } 489 } 490 491 /** 492 * Implementation of Striped where up to 2^k stripes can be represented, using a ConcurrentMap 493 * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the 494 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 495 */ 496 @VisibleForTesting 497 static class LargeLazyStriped<L> extends PowerOfTwoStriped<L> { 498 final ConcurrentMap<Integer, L> locks; 499 final Supplier<L> supplier; 500 final int size; 501 502 LargeLazyStriped(int stripes, Supplier<L> supplier) { 503 super(stripes); 504 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 505 this.supplier = supplier; 506 this.locks = new MapMaker().weakValues().makeMap(); 507 } 508 509 @Override 510 public L getAt(int index) { 511 if (size != Integer.MAX_VALUE) { 512 Preconditions.checkElementIndex(index, size()); 513 } // else no check necessary, all index values are valid 514 L existing = locks.get(index); 515 if (existing != null) { 516 return existing; 517 } 518 L created = supplier.get(); 519 existing = locks.putIfAbsent(index, created); 520 return MoreObjects.firstNonNull(existing, created); 521 } 522 523 @Override 524 public int size() { 525 return size; 526 } 527 } 528 529 /** A bit mask were all bits are set. */ 530 private static final int ALL_SET = ~0; 531 532 private static int ceilToPowerOfTwo(int x) { 533 return 1 << IntMath.log2(x, RoundingMode.CEILING); 534 } 535 536 /* 537 * This method was written by Doug Lea with assistance from members of JCP JSR-166 Expert Group 538 * and released to the public domain, as explained at 539 * http://creativecommons.org/licenses/publicdomain 540 * 541 * As of 2010/06/11, this method is identical to the (package private) hash method in OpenJDK 7's 542 * java.util.HashMap class. 543 */ 544 // Copied from java/com/google/common/collect/Hashing.java 545 private static int smear(int hashCode) { 546 hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12); 547 return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4); 548 } 549 550 private static class PaddedLock extends ReentrantLock { 551 /* 552 * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add a fourth 553 * long here, to minimize chance of interference between consecutive locks, but I couldn't 554 * observe any benefit from that. 555 */ 556 long unused1; 557 long unused2; 558 long unused3; 559 560 PaddedLock() { 561 super(false); 562 } 563 } 564 565 private static class PaddedSemaphore extends Semaphore { 566 // See PaddedReentrantLock comment 567 long unused1; 568 long unused2; 569 long unused3; 570 571 PaddedSemaphore(int permits) { 572 super(permits, false); 573 } 574 } 575}