001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.collect.Collections2.FilteredCollection;
029import com.google.common.math.IntMath;
030import com.google.errorprone.annotations.CanIgnoreReturnValue;
031import java.io.Serializable;
032import java.util.AbstractSet;
033import java.util.Arrays;
034import java.util.BitSet;
035import java.util.Collection;
036import java.util.Collections;
037import java.util.Comparator;
038import java.util.EnumSet;
039import java.util.HashSet;
040import java.util.Iterator;
041import java.util.LinkedHashSet;
042import java.util.List;
043import java.util.Map;
044import java.util.NavigableSet;
045import java.util.NoSuchElementException;
046import java.util.Set;
047import java.util.SortedSet;
048import java.util.TreeSet;
049import java.util.concurrent.ConcurrentHashMap;
050import java.util.concurrent.CopyOnWriteArraySet;
051import org.checkerframework.checker.nullness.compatqual.MonotonicNonNullDecl;
052import org.checkerframework.checker.nullness.compatqual.NullableDecl;
053
054/**
055 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
056 * {@link Lists}, {@link Maps} and {@link Queues}.
057 *
058 * <p>See the Guava User Guide article on <a href=
059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>.
060 *
061 * @author Kevin Bourrillion
062 * @author Jared Levy
063 * @author Chris Povirk
064 * @since 2.0
065 */
066@GwtCompatible(emulated = true)
067public final class Sets {
068  private Sets() {}
069
070  /**
071   * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
072   * implementation.
073   */
074  abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
075    @Override
076    public boolean removeAll(Collection<?> c) {
077      return removeAllImpl(this, c);
078    }
079
080    @Override
081    public boolean retainAll(Collection<?> c) {
082      return super.retainAll(checkNotNull(c)); // GWT compatibility
083    }
084  }
085
086  /**
087   * Returns an immutable set instance containing the given enum elements. Internally, the returned
088   * set will be backed by an {@link EnumSet}.
089   *
090   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
091   * which the elements are provided to the method.
092   *
093   * @param anElement one of the elements the set should contain
094   * @param otherElements the rest of the elements the set should contain
095   * @return an immutable set containing those elements, minus duplicates
096   */
097  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
098  @GwtCompatible(serializable = true)
099  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
100      E anElement, E... otherElements) {
101    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
102  }
103
104  /**
105   * Returns an immutable set instance containing the given enum elements. Internally, the returned
106   * set will be backed by an {@link EnumSet}.
107   *
108   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
109   * which the elements appear in the given collection.
110   *
111   * @param elements the elements, all of the same {@code enum} type, that the set should contain
112   * @return an immutable set containing those elements, minus duplicates
113   */
114  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
115  @GwtCompatible(serializable = true)
116  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
117    if (elements instanceof ImmutableEnumSet) {
118      return (ImmutableEnumSet<E>) elements;
119    } else if (elements instanceof Collection) {
120      Collection<E> collection = (Collection<E>) elements;
121      if (collection.isEmpty()) {
122        return ImmutableSet.of();
123      } else {
124        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
125      }
126    } else {
127      Iterator<E> itr = elements.iterator();
128      if (itr.hasNext()) {
129        EnumSet<E> enumSet = EnumSet.of(itr.next());
130        Iterators.addAll(enumSet, itr);
131        return ImmutableEnumSet.asImmutable(enumSet);
132      } else {
133        return ImmutableSet.of();
134      }
135    }
136  }
137
138  /**
139   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
140   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
141   * accepts non-{@code Collection} iterables and empty iterables.
142   */
143  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
144      Iterable<E> iterable, Class<E> elementType) {
145    EnumSet<E> set = EnumSet.noneOf(elementType);
146    Iterables.addAll(set, iterable);
147    return set;
148  }
149
150  // HashSet
151
152  /**
153   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
154   *
155   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
156   * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
157   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
158   * deterministic iteration behavior.
159   *
160   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
161   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
162   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
163   */
164  public static <E> HashSet<E> newHashSet() {
165    return new HashSet<E>();
166  }
167
168  /**
169   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
170   *
171   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
172   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
173   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
174   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
175   * deterministic iteration behavior.
176   *
177   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
178   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
179   * This method is not actually very useful and will likely be deprecated in the future.
180   */
181  public static <E> HashSet<E> newHashSet(E... elements) {
182    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
183    Collections.addAll(set, elements);
184    return set;
185  }
186
187  /**
188   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
189   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
190   * is what most users want and expect it to do.
191   *
192   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
193   *
194   * @param expectedSize the number of elements you expect to add to the returned set
195   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
196   *     without resizing
197   * @throws IllegalArgumentException if {@code expectedSize} is negative
198   */
199  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
200    return new HashSet<E>(Maps.capacity(expectedSize));
201  }
202
203  /**
204   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
205   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
206   * Iterables#addAll}.
207   *
208   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
209   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
210   * FluentIterable} and call {@code elements.toSet()}.)
211   *
212   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
213   * instead.
214   *
215   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
216   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
217   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
218   *
219   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
220   */
221  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
222    return (elements instanceof Collection)
223        ? new HashSet<E>(Collections2.cast(elements))
224        : newHashSet(elements.iterator());
225  }
226
227  /**
228   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
229   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
230   *
231   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
232   * ImmutableSet#copyOf(Iterator)} instead.
233   *
234   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
235   * instead.
236   *
237   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
238   */
239  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
240    HashSet<E> set = newHashSet();
241    Iterators.addAll(set, elements);
242    return set;
243  }
244
245  /**
246   * Creates a thread-safe set backed by a hash map. The set is backed by a {@link
247   * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
248   *
249   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
250   * set is serializable.
251   *
252   * @return a new, empty thread-safe {@code Set}
253   * @since 15.0
254   */
255  public static <E> Set<E> newConcurrentHashSet() {
256    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
257  }
258
259  /**
260   * Creates a thread-safe set backed by a hash map and containing the given elements. The set is
261   * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
262   * guarantees.
263   *
264   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
265   * set is serializable.
266   *
267   * @param elements the elements that the set should contain
268   * @return a new thread-safe set containing those elements (minus duplicates)
269   * @throws NullPointerException if {@code elements} or any of its contents is null
270   * @since 15.0
271   */
272  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
273    Set<E> set = newConcurrentHashSet();
274    Iterables.addAll(set, elements);
275    return set;
276  }
277
278  // LinkedHashSet
279
280  /**
281   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
282   *
283   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
284   *
285   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
286   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
287   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
288   *
289   * @return a new, empty {@code LinkedHashSet}
290   */
291  public static <E> LinkedHashSet<E> newLinkedHashSet() {
292    return new LinkedHashSet<E>();
293  }
294
295  /**
296   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
297   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
298   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
299   * that the method isn't inadvertently <i>oversizing</i> the returned set.
300   *
301   * @param expectedSize the number of elements you expect to add to the returned set
302   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
303   *     elements without resizing
304   * @throws IllegalArgumentException if {@code expectedSize} is negative
305   * @since 11.0
306   */
307  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
308    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
309  }
310
311  /**
312   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
313   *
314   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
315   * ImmutableSet#copyOf(Iterable)} instead.
316   *
317   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
318   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
319   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
320   *
321   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
322   *
323   * @param elements the elements that the set should contain, in order
324   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
325   */
326  public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
327    if (elements instanceof Collection) {
328      return new LinkedHashSet<E>(Collections2.cast(elements));
329    }
330    LinkedHashSet<E> set = newLinkedHashSet();
331    Iterables.addAll(set, elements);
332    return set;
333  }
334
335  // TreeSet
336
337  /**
338   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
339   * its elements.
340   *
341   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
342   *
343   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
344   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
345   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
346   *
347   * @return a new, empty {@code TreeSet}
348   */
349  public static <E extends Comparable> TreeSet<E> newTreeSet() {
350    return new TreeSet<E>();
351  }
352
353  /**
354   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
355   * natural ordering.
356   *
357   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
358   * instead.
359   *
360   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
361   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
362   * TreeSet} with that comparator.
363   *
364   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
365   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
366   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
367   *
368   * <p>This method is just a small convenience for creating an empty set and then calling {@link
369   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
370   *
371   * @param elements the elements that the set should contain
372   * @return a new {@code TreeSet} containing those elements (minus duplicates)
373   */
374  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
375    TreeSet<E> set = newTreeSet();
376    Iterables.addAll(set, elements);
377    return set;
378  }
379
380  /**
381   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
382   *
383   * <p><b>Note:</b> if mutability is not required, use {@code
384   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
385   *
386   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
387   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
388   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
389   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
390   * factory rejects null. Clean your code accordingly.
391   *
392   * @param comparator the comparator to use to sort the set
393   * @return a new, empty {@code TreeSet}
394   * @throws NullPointerException if {@code comparator} is null
395   */
396  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
397    return new TreeSet<E>(checkNotNull(comparator));
398  }
399
400  /**
401   * Creates an empty {@code Set} that uses identity to determine equality. It compares object
402   * references, instead of calling {@code equals}, to determine whether a provided object matches
403   * an element in the set. For example, {@code contains} returns {@code false} when passed an
404   * object that equals a set member, but isn't the same instance. This behavior is similar to the
405   * way {@code IdentityHashMap} handles key lookups.
406   *
407   * @since 8.0
408   */
409  public static <E> Set<E> newIdentityHashSet() {
410    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
411  }
412
413  /**
414   * Creates an empty {@code CopyOnWriteArraySet} instance.
415   *
416   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
417   * instead.
418   *
419   * @return a new, empty {@code CopyOnWriteArraySet}
420   * @since 12.0
421   */
422  @GwtIncompatible // CopyOnWriteArraySet
423  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
424    return new CopyOnWriteArraySet<E>();
425  }
426
427  /**
428   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
429   *
430   * @param elements the elements that the set should contain, in order
431   * @return a new {@code CopyOnWriteArraySet} containing those elements
432   * @since 12.0
433   */
434  @GwtIncompatible // CopyOnWriteArraySet
435  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
436    // We copy elements to an ArrayList first, rather than incurring the
437    // quadratic cost of adding them to the COWAS directly.
438    Collection<? extends E> elementsCollection =
439        (elements instanceof Collection)
440            ? Collections2.cast(elements)
441            : Lists.newArrayList(elements);
442    return new CopyOnWriteArraySet<E>(elementsCollection);
443  }
444
445  /**
446   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
447   * collection. If the collection is an {@link EnumSet}, this method has the same behavior as
448   * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
449   * element, in order to determine the element type. If the collection could be empty, use {@link
450   * #complementOf(Collection, Class)} instead of this method.
451   *
452   * @param collection the collection whose complement should be stored in the enum set
453   * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
454   *     in the given collection
455   * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
456   *     contains no elements
457   */
458  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
459    if (collection instanceof EnumSet) {
460      return EnumSet.complementOf((EnumSet<E>) collection);
461    }
462    checkArgument(
463        !collection.isEmpty(), "collection is empty; use the other version of this method");
464    Class<E> type = collection.iterator().next().getDeclaringClass();
465    return makeComplementByHand(collection, type);
466  }
467
468  /**
469   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
470   * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
471   * collection, as long as the elements are of enum type.
472   *
473   * @param collection the collection whose complement should be stored in the {@code EnumSet}
474   * @param type the type of the elements in the set
475   * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
476   *     present in the given collection
477   */
478  public static <E extends Enum<E>> EnumSet<E> complementOf(
479      Collection<E> collection, Class<E> type) {
480    checkNotNull(collection);
481    return (collection instanceof EnumSet)
482        ? EnumSet.complementOf((EnumSet<E>) collection)
483        : makeComplementByHand(collection, type);
484  }
485
486  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
487      Collection<E> collection, Class<E> type) {
488    EnumSet<E> result = EnumSet.allOf(type);
489    result.removeAll(collection);
490    return result;
491  }
492
493  /**
494   * Returns a set backed by the specified map. The resulting set displays the same ordering,
495   * concurrency, and performance characteristics as the backing map. In essence, this factory
496   * method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
497   * There is no need to use this method on a {@link Map} implementation that already has a
498   * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
499   * java.util.TreeMap}).
500   *
501   * <p>Each method invocation on the set returned by this method results in exactly one method
502   * invocation on the backing map or its {@code keySet} view, with one exception. The {@code
503   * addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
504   *
505   * <p>The specified map must be empty at the time this method is invoked, and should not be
506   * accessed directly after this method returns. These conditions are ensured if the map is created
507   * empty, passed directly to this method, and no reference to the map is retained, as illustrated
508   * in the following code fragment:
509   *
510   * <pre>{@code
511   * Set<Object> identityHashSet = Sets.newSetFromMap(
512   *     new IdentityHashMap<Object, Boolean>());
513   * }</pre>
514   *
515   * <p>The returned set is serializable if the backing map is.
516   *
517   * @param map the backing map
518   * @return the set backed by the map
519   * @throws IllegalArgumentException if {@code map} is not empty
520   * @deprecated Use {@link Collections#newSetFromMap} instead.
521   */
522  @Deprecated
523  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
524    return Collections.newSetFromMap(map);
525  }
526
527  /**
528   * An unmodifiable view of a set which may be backed by other sets; this view will change as the
529   * backing sets do. Contains methods to copy the data into a new set which will then remain
530   * stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
531   * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
532   * {@link #copyInto} and forget the {@code SetView} itself.
533   *
534   * @since 2.0
535   */
536  public abstract static class SetView<E> extends AbstractSet<E> {
537    private SetView() {} // no subclasses but our own
538
539    /**
540     * Returns an immutable copy of the current contents of this set view. Does not support null
541     * elements.
542     *
543     * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
544     * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
545     * that is inconsistent with {@link Object#equals(Object)}.
546     */
547    public ImmutableSet<E> immutableCopy() {
548      return ImmutableSet.copyOf(this);
549    }
550
551    /**
552     * Copies the current contents of this set view into an existing set. This method has equivalent
553     * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
554     * same notion of equivalence.
555     *
556     * @return a reference to {@code set}, for convenience
557     */
558    // Note: S should logically extend Set<? super E> but can't due to either
559    // some javac bug or some weirdness in the spec, not sure which.
560    @CanIgnoreReturnValue
561    public <S extends Set<E>> S copyInto(S set) {
562      set.addAll(this);
563      return set;
564    }
565
566    /**
567     * Guaranteed to throw an exception and leave the collection unmodified.
568     *
569     * @throws UnsupportedOperationException always
570     * @deprecated Unsupported operation.
571     */
572    @CanIgnoreReturnValue
573    @Deprecated
574    @Override
575    public final boolean add(E e) {
576      throw new UnsupportedOperationException();
577    }
578
579    /**
580     * Guaranteed to throw an exception and leave the collection unmodified.
581     *
582     * @throws UnsupportedOperationException always
583     * @deprecated Unsupported operation.
584     */
585    @CanIgnoreReturnValue
586    @Deprecated
587    @Override
588    public final boolean remove(Object object) {
589      throw new UnsupportedOperationException();
590    }
591
592    /**
593     * Guaranteed to throw an exception and leave the collection unmodified.
594     *
595     * @throws UnsupportedOperationException always
596     * @deprecated Unsupported operation.
597     */
598    @CanIgnoreReturnValue
599    @Deprecated
600    @Override
601    public final boolean addAll(Collection<? extends E> newElements) {
602      throw new UnsupportedOperationException();
603    }
604
605    /**
606     * Guaranteed to throw an exception and leave the collection unmodified.
607     *
608     * @throws UnsupportedOperationException always
609     * @deprecated Unsupported operation.
610     */
611    @CanIgnoreReturnValue
612    @Deprecated
613    @Override
614    public final boolean removeAll(Collection<?> oldElements) {
615      throw new UnsupportedOperationException();
616    }
617
618    /**
619     * Guaranteed to throw an exception and leave the collection unmodified.
620     *
621     * @throws UnsupportedOperationException always
622     * @deprecated Unsupported operation.
623     */
624    @CanIgnoreReturnValue
625    @Deprecated
626    @Override
627    public final boolean retainAll(Collection<?> elementsToKeep) {
628      throw new UnsupportedOperationException();
629    }
630
631    /**
632     * Guaranteed to throw an exception and leave the collection unmodified.
633     *
634     * @throws UnsupportedOperationException always
635     * @deprecated Unsupported operation.
636     */
637    @Deprecated
638    @Override
639    public final void clear() {
640      throw new UnsupportedOperationException();
641    }
642
643    /**
644     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
645     *
646     * @since 20.0 (present with return type {@link Iterator} since 2.0)
647     */
648    @Override
649    public abstract UnmodifiableIterator<E> iterator();
650  }
651
652  /**
653   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
654   * elements that are contained in either backing set. Iterating over the returned set iterates
655   * first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
656   * that is not contained in {@code set1}.
657   *
658   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
659   * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an
660   * {@code IdentityHashMap} all are).
661   */
662  public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
663    checkNotNull(set1, "set1");
664    checkNotNull(set2, "set2");
665
666    return new SetView<E>() {
667      @Override
668      public int size() {
669        int size = set1.size();
670        for (E e : set2) {
671          if (!set1.contains(e)) {
672            size++;
673          }
674        }
675        return size;
676      }
677
678      @Override
679      public boolean isEmpty() {
680        return set1.isEmpty() && set2.isEmpty();
681      }
682
683      @Override
684      public UnmodifiableIterator<E> iterator() {
685        return new AbstractIterator<E>() {
686          final Iterator<? extends E> itr1 = set1.iterator();
687          final Iterator<? extends E> itr2 = set2.iterator();
688
689          @Override
690          protected E computeNext() {
691            if (itr1.hasNext()) {
692              return itr1.next();
693            }
694            while (itr2.hasNext()) {
695              E e = itr2.next();
696              if (!set1.contains(e)) {
697                return e;
698              }
699            }
700            return endOfData();
701          }
702        };
703      }
704
705      @Override
706      public boolean contains(Object object) {
707        return set1.contains(object) || set2.contains(object);
708      }
709
710      @Override
711      public <S extends Set<E>> S copyInto(S set) {
712        set.addAll(set1);
713        set.addAll(set2);
714        return set;
715      }
716
717      @Override
718      public ImmutableSet<E> immutableCopy() {
719        return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
720      }
721    };
722  }
723
724  /**
725   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
726   * all elements that are contained by both backing sets. The iteration order of the returned set
727   * matches that of {@code set1}.
728   *
729   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
730   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
731   * IdentityHashMap} all are).
732   *
733   * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
734   * the two sets. If you have reason to believe one of your sets will generally be smaller than the
735   * other, pass it first. Unfortunately, since this method sets the generic type of the returned
736   * set based on the type of the first set passed, this could in rare cases force you to make a
737   * cast, for example:
738   *
739   * <pre>{@code
740   * Set<Object> aFewBadObjects = ...
741   * Set<String> manyBadStrings = ...
742   *
743   * // impossible for a non-String to be in the intersection
744   * SuppressWarnings("unchecked")
745   * Set<String> badStrings = (Set) Sets.intersection(
746   *     aFewBadObjects, manyBadStrings);
747   * }</pre>
748   *
749   * <p>This is unfortunate, but should come up only very rarely.
750   */
751  public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
752    checkNotNull(set1, "set1");
753    checkNotNull(set2, "set2");
754
755    return new SetView<E>() {
756      @Override
757      public UnmodifiableIterator<E> iterator() {
758        return new AbstractIterator<E>() {
759          final Iterator<E> itr = set1.iterator();
760
761          @Override
762          protected E computeNext() {
763            while (itr.hasNext()) {
764              E e = itr.next();
765              if (set2.contains(e)) {
766                return e;
767              }
768            }
769            return endOfData();
770          }
771        };
772      }
773
774      @Override
775      public int size() {
776        int size = 0;
777        for (E e : set1) {
778          if (set2.contains(e)) {
779            size++;
780          }
781        }
782        return size;
783      }
784
785      @Override
786      public boolean isEmpty() {
787        return Collections.disjoint(set1, set2);
788      }
789
790      @Override
791      public boolean contains(Object object) {
792        return set1.contains(object) && set2.contains(object);
793      }
794
795      @Override
796      public boolean containsAll(Collection<?> collection) {
797        return set1.containsAll(collection) && set2.containsAll(collection);
798      }
799    };
800  }
801
802  /**
803   * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
804   * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
805   * may also contain elements not present in {@code set1}; these are simply ignored. The iteration
806   * order of the returned set matches that of {@code set1}.
807   *
808   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
809   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
810   * IdentityHashMap} all are).
811   */
812  public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
813    checkNotNull(set1, "set1");
814    checkNotNull(set2, "set2");
815
816    return new SetView<E>() {
817      @Override
818      public UnmodifiableIterator<E> iterator() {
819        return new AbstractIterator<E>() {
820          final Iterator<E> itr = set1.iterator();
821
822          @Override
823          protected E computeNext() {
824            while (itr.hasNext()) {
825              E e = itr.next();
826              if (!set2.contains(e)) {
827                return e;
828              }
829            }
830            return endOfData();
831          }
832        };
833      }
834
835      @Override
836      public int size() {
837        int size = 0;
838        for (E e : set1) {
839          if (!set2.contains(e)) {
840            size++;
841          }
842        }
843        return size;
844      }
845
846      @Override
847      public boolean isEmpty() {
848        return set2.containsAll(set1);
849      }
850
851      @Override
852      public boolean contains(Object element) {
853        return set1.contains(element) && !set2.contains(element);
854      }
855    };
856  }
857
858  /**
859   * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
860   * contains all elements that are contained in either {@code set1} or {@code set2} but not in
861   * both. The iteration order of the returned set is undefined.
862   *
863   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
864   * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code
865   * IdentityHashMap} all are).
866   *
867   * @since 3.0
868   */
869  public static <E> SetView<E> symmetricDifference(
870      final Set<? extends E> set1, final Set<? extends E> set2) {
871    checkNotNull(set1, "set1");
872    checkNotNull(set2, "set2");
873
874    return new SetView<E>() {
875      @Override
876      public UnmodifiableIterator<E> iterator() {
877        final Iterator<? extends E> itr1 = set1.iterator();
878        final Iterator<? extends E> itr2 = set2.iterator();
879        return new AbstractIterator<E>() {
880          @Override
881          public E computeNext() {
882            while (itr1.hasNext()) {
883              E elem1 = itr1.next();
884              if (!set2.contains(elem1)) {
885                return elem1;
886              }
887            }
888            while (itr2.hasNext()) {
889              E elem2 = itr2.next();
890              if (!set1.contains(elem2)) {
891                return elem2;
892              }
893            }
894            return endOfData();
895          }
896        };
897      }
898
899      @Override
900      public int size() {
901        int size = 0;
902        for (E e : set1) {
903          if (!set2.contains(e)) {
904            size++;
905          }
906        }
907        for (E e : set2) {
908          if (!set1.contains(e)) {
909            size++;
910          }
911        }
912        return size;
913      }
914
915      @Override
916      public boolean isEmpty() {
917        return set1.equals(set2);
918      }
919
920      @Override
921      public boolean contains(Object element) {
922        return set1.contains(element) ^ set2.contains(element);
923      }
924    };
925  }
926
927  /**
928   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
929   * view of {@code unfiltered}; changes to one affect the other.
930   *
931   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
932   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
933   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
934   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
935   * that satisfy the filter will be removed from the underlying set.
936   *
937   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
938   *
939   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
940   * the underlying set and determine which elements satisfy the filter. When a live view is
941   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
942   * use the copy.
943   *
944   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
945   * {@link Predicate#apply}. Do not provide a predicate such as {@code
946   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
947   * Iterables#filter(Iterable, Class)} for related functionality.)
948   *
949   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
950   * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
951   * you to migrate to streams.
952   */
953  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
954  public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
955    if (unfiltered instanceof SortedSet) {
956      return filter((SortedSet<E>) unfiltered, predicate);
957    }
958    if (unfiltered instanceof FilteredSet) {
959      // Support clear(), removeAll(), and retainAll() when filtering a filtered
960      // collection.
961      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
962      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
963      return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
964    }
965
966    return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
967  }
968
969  private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
970    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
971      super(unfiltered, predicate);
972    }
973
974    @Override
975    public boolean equals(@NullableDecl Object object) {
976      return equalsImpl(this, object);
977    }
978
979    @Override
980    public int hashCode() {
981      return hashCodeImpl(this);
982    }
983  }
984
985  /**
986   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
987   * returned set is a live view of {@code unfiltered}; changes to one affect the other.
988   *
989   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
990   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
991   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
992   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
993   * that satisfy the filter will be removed from the underlying set.
994   *
995   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
996   *
997   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
998   * the underlying set and determine which elements satisfy the filter. When a live view is
999   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1000   * use the copy.
1001   *
1002   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1003   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1004   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1005   * Iterables#filter(Iterable, Class)} for related functionality.)
1006   *
1007   * @since 11.0
1008   */
1009  public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1010    if (unfiltered instanceof FilteredSet) {
1011      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1012      // collection.
1013      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1014      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1015      return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1016    }
1017
1018    return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1019  }
1020
1021  private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
1022
1023    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1024      super(unfiltered, predicate);
1025    }
1026
1027    @Override
1028    public Comparator<? super E> comparator() {
1029      return ((SortedSet<E>) unfiltered).comparator();
1030    }
1031
1032    @Override
1033    public SortedSet<E> subSet(E fromElement, E toElement) {
1034      return new FilteredSortedSet<E>(
1035          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1036    }
1037
1038    @Override
1039    public SortedSet<E> headSet(E toElement) {
1040      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1041    }
1042
1043    @Override
1044    public SortedSet<E> tailSet(E fromElement) {
1045      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1046    }
1047
1048    @Override
1049    public E first() {
1050      return Iterators.find(unfiltered.iterator(), predicate);
1051    }
1052
1053    @Override
1054    public E last() {
1055      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1056      while (true) {
1057        E element = sortedUnfiltered.last();
1058        if (predicate.apply(element)) {
1059          return element;
1060        }
1061        sortedUnfiltered = sortedUnfiltered.headSet(element);
1062      }
1063    }
1064  }
1065
1066  /**
1067   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
1068   * The returned set is a live view of {@code unfiltered}; changes to one affect the other.
1069   *
1070   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1071   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1072   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1073   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1074   * that satisfy the filter will be removed from the underlying set.
1075   *
1076   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1077   *
1078   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1079   * the underlying set and determine which elements satisfy the filter. When a live view is
1080   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1081   * use the copy.
1082   *
1083   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1084   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1085   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1086   * Iterables#filter(Iterable, Class)} for related functionality.)
1087   *
1088   * @since 14.0
1089   */
1090  @GwtIncompatible // NavigableSet
1091  @SuppressWarnings("unchecked")
1092  public static <E> NavigableSet<E> filter(
1093      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1094    if (unfiltered instanceof FilteredSet) {
1095      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1096      // collection.
1097      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1098      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1099      return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1100    }
1101
1102    return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1103  }
1104
1105  @GwtIncompatible // NavigableSet
1106  private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
1107      implements NavigableSet<E> {
1108    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1109      super(unfiltered, predicate);
1110    }
1111
1112    NavigableSet<E> unfiltered() {
1113      return (NavigableSet<E>) unfiltered;
1114    }
1115
1116    @Override
1117    @NullableDecl
1118    public E lower(E e) {
1119      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1120    }
1121
1122    @Override
1123    @NullableDecl
1124    public E floor(E e) {
1125      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1126    }
1127
1128    @Override
1129    public E ceiling(E e) {
1130      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1131    }
1132
1133    @Override
1134    public E higher(E e) {
1135      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1136    }
1137
1138    @Override
1139    public E pollFirst() {
1140      return Iterables.removeFirstMatching(unfiltered(), predicate);
1141    }
1142
1143    @Override
1144    public E pollLast() {
1145      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1146    }
1147
1148    @Override
1149    public NavigableSet<E> descendingSet() {
1150      return Sets.filter(unfiltered().descendingSet(), predicate);
1151    }
1152
1153    @Override
1154    public Iterator<E> descendingIterator() {
1155      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1156    }
1157
1158    @Override
1159    public E last() {
1160      return Iterators.find(unfiltered().descendingIterator(), predicate);
1161    }
1162
1163    @Override
1164    public NavigableSet<E> subSet(
1165        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1166      return filter(
1167          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1168    }
1169
1170    @Override
1171    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1172      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1173    }
1174
1175    @Override
1176    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1177      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1178    }
1179  }
1180
1181  /**
1182   * Returns every possible list that can be formed by choosing one element from each of the given
1183   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1184   * product</a>" of the sets. For example:
1185   *
1186   * <pre>{@code
1187   * Sets.cartesianProduct(ImmutableList.of(
1188   *     ImmutableSet.of(1, 2),
1189   *     ImmutableSet.of("A", "B", "C")))
1190   * }</pre>
1191   *
1192   * <p>returns a set containing six lists:
1193   *
1194   * <ul>
1195   *   <li>{@code ImmutableList.of(1, "A")}
1196   *   <li>{@code ImmutableList.of(1, "B")}
1197   *   <li>{@code ImmutableList.of(1, "C")}
1198   *   <li>{@code ImmutableList.of(2, "A")}
1199   *   <li>{@code ImmutableList.of(2, "B")}
1200   *   <li>{@code ImmutableList.of(2, "C")}
1201   * </ul>
1202   *
1203   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1204   * products that you would get from nesting for loops:
1205   *
1206   * <pre>{@code
1207   * for (B b0 : sets.get(0)) {
1208   *   for (B b1 : sets.get(1)) {
1209   *     ...
1210   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1211   *     // operate on tuple
1212   *   }
1213   * }
1214   * }</pre>
1215   *
1216   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1217   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1218   * list (counter-intuitive, but mathematically consistent).
1219   *
1220   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1221   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1222   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1223   * iterated are the individual lists created, and these are not retained after iteration.
1224   *
1225   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1226   *     sets should appear in the resulting lists
1227   * @param <B> any common base class shared by all axes (often just {@link Object})
1228   * @return the Cartesian product, as an immutable set containing immutable lists
1229   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1230   *     provided set is null
1231   * @since 2.0
1232   */
1233  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1234    return CartesianSet.create(sets);
1235  }
1236
1237  /**
1238   * Returns every possible list that can be formed by choosing one element from each of the given
1239   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1240   * product</a>" of the sets. For example:
1241   *
1242   * <pre>{@code
1243   * Sets.cartesianProduct(
1244   *     ImmutableSet.of(1, 2),
1245   *     ImmutableSet.of("A", "B", "C"))
1246   * }</pre>
1247   *
1248   * <p>returns a set containing six lists:
1249   *
1250   * <ul>
1251   *   <li>{@code ImmutableList.of(1, "A")}
1252   *   <li>{@code ImmutableList.of(1, "B")}
1253   *   <li>{@code ImmutableList.of(1, "C")}
1254   *   <li>{@code ImmutableList.of(2, "A")}
1255   *   <li>{@code ImmutableList.of(2, "B")}
1256   *   <li>{@code ImmutableList.of(2, "C")}
1257   * </ul>
1258   *
1259   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1260   * products that you would get from nesting for loops:
1261   *
1262   * <pre>{@code
1263   * for (B b0 : sets.get(0)) {
1264   *   for (B b1 : sets.get(1)) {
1265   *     ...
1266   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1267   *     // operate on tuple
1268   *   }
1269   * }
1270   * }</pre>
1271   *
1272   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1273   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1274   * list (counter-intuitive, but mathematically consistent).
1275   *
1276   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1277   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1278   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1279   * iterated are the individual lists created, and these are not retained after iteration.
1280   *
1281   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1282   *     sets should appear in the resulting lists
1283   * @param <B> any common base class shared by all axes (often just {@link Object})
1284   * @return the Cartesian product, as an immutable set containing immutable lists
1285   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1286   *     provided set is null
1287   * @since 2.0
1288   */
1289  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1290    return cartesianProduct(Arrays.asList(sets));
1291  }
1292
1293  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1294      implements Set<List<E>> {
1295    private final transient ImmutableList<ImmutableSet<E>> axes;
1296    private final transient CartesianList<E> delegate;
1297
1298    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1299      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1300      for (Set<? extends E> set : sets) {
1301        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1302        if (copy.isEmpty()) {
1303          return ImmutableSet.of();
1304        }
1305        axesBuilder.add(copy);
1306      }
1307      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1308      ImmutableList<List<E>> listAxes =
1309          new ImmutableList<List<E>>() {
1310            @Override
1311            public int size() {
1312              return axes.size();
1313            }
1314
1315            @Override
1316            public List<E> get(int index) {
1317              return axes.get(index).asList();
1318            }
1319
1320            @Override
1321            boolean isPartialView() {
1322              return true;
1323            }
1324          };
1325      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1326    }
1327
1328    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1329      this.axes = axes;
1330      this.delegate = delegate;
1331    }
1332
1333    @Override
1334    protected Collection<List<E>> delegate() {
1335      return delegate;
1336    }
1337
1338    @Override
1339    public boolean equals(@NullableDecl Object object) {
1340      // Warning: this is broken if size() == 0, so it is critical that we
1341      // substitute an empty ImmutableSet to the user in place of this
1342      if (object instanceof CartesianSet) {
1343        CartesianSet<?> that = (CartesianSet<?>) object;
1344        return this.axes.equals(that.axes);
1345      }
1346      return super.equals(object);
1347    }
1348
1349    @Override
1350    public int hashCode() {
1351      // Warning: this is broken if size() == 0, so it is critical that we
1352      // substitute an empty ImmutableSet to the user in place of this
1353
1354      // It's a weird formula, but tests prove it works.
1355      int adjust = size() - 1;
1356      for (int i = 0; i < axes.size(); i++) {
1357        adjust *= 31;
1358        adjust = ~~adjust;
1359        // in GWT, we have to deal with integer overflow carefully
1360      }
1361      int hash = 1;
1362      for (Set<E> axis : axes) {
1363        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1364
1365        hash = ~~hash;
1366      }
1367      hash += adjust;
1368      return ~~hash;
1369    }
1370  }
1371
1372  /**
1373   * Returns the set of all possible subsets of {@code set}. For example, {@code
1374   * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
1375   *
1376   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1377   * set. The order in which these subsets appear in the outer set is undefined. Note that the power
1378   * set of the empty set is not the empty set, but a one-element set containing the empty set.
1379   *
1380   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1381   * are identical, even if the input set uses a different concept of equivalence.
1382   *
1383   * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
1384   * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
1385   * is merely copied. Only as the power set is iterated are the individual subsets created, and
1386   * these subsets themselves occupy only a small constant amount of memory.
1387   *
1388   * @param set the set of elements to construct a power set from
1389   * @return the power set, as an immutable set of immutable sets
1390   * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
1391   *     power set size to exceed the {@code int} range)
1392   * @throws NullPointerException if {@code set} is or contains {@code null}
1393   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
1394   * @since 4.0
1395   */
1396  @GwtCompatible(serializable = false)
1397  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1398    return new PowerSet<E>(set);
1399  }
1400
1401  private static final class SubSet<E> extends AbstractSet<E> {
1402    private final ImmutableMap<E, Integer> inputSet;
1403    private final int mask;
1404
1405    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1406      this.inputSet = inputSet;
1407      this.mask = mask;
1408    }
1409
1410    @Override
1411    public Iterator<E> iterator() {
1412      return new UnmodifiableIterator<E>() {
1413        final ImmutableList<E> elements = inputSet.keySet().asList();
1414        int remainingSetBits = mask;
1415
1416        @Override
1417        public boolean hasNext() {
1418          return remainingSetBits != 0;
1419        }
1420
1421        @Override
1422        public E next() {
1423          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1424          if (index == 32) {
1425            throw new NoSuchElementException();
1426          }
1427          remainingSetBits &= ~(1 << index);
1428          return elements.get(index);
1429        }
1430      };
1431    }
1432
1433    @Override
1434    public int size() {
1435      return Integer.bitCount(mask);
1436    }
1437
1438    @Override
1439    public boolean contains(@NullableDecl Object o) {
1440      Integer index = inputSet.get(o);
1441      return index != null && (mask & (1 << index)) != 0;
1442    }
1443  }
1444
1445  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1446    final ImmutableMap<E, Integer> inputSet;
1447
1448    PowerSet(Set<E> input) {
1449      this.inputSet = Maps.indexMap(input);
1450      checkArgument(
1451          inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size());
1452    }
1453
1454    @Override
1455    public int size() {
1456      return 1 << inputSet.size();
1457    }
1458
1459    @Override
1460    public boolean isEmpty() {
1461      return false;
1462    }
1463
1464    @Override
1465    public Iterator<Set<E>> iterator() {
1466      return new AbstractIndexedListIterator<Set<E>>(size()) {
1467        @Override
1468        protected Set<E> get(final int setBits) {
1469          return new SubSet<E>(inputSet, setBits);
1470        }
1471      };
1472    }
1473
1474    @Override
1475    public boolean contains(@NullableDecl Object obj) {
1476      if (obj instanceof Set) {
1477        Set<?> set = (Set<?>) obj;
1478        return inputSet.keySet().containsAll(set);
1479      }
1480      return false;
1481    }
1482
1483    @Override
1484    public boolean equals(@NullableDecl Object obj) {
1485      if (obj instanceof PowerSet) {
1486        PowerSet<?> that = (PowerSet<?>) obj;
1487        return inputSet.equals(that.inputSet);
1488      }
1489      return super.equals(obj);
1490    }
1491
1492    @Override
1493    public int hashCode() {
1494      /*
1495       * The sum of the sums of the hash codes in each subset is just the sum of
1496       * each input element's hash code times the number of sets that element
1497       * appears in. Each element appears in exactly half of the 2^n sets, so:
1498       */
1499      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1500    }
1501
1502    @Override
1503    public String toString() {
1504      return "powerSet(" + inputSet + ")";
1505    }
1506  }
1507
1508  /**
1509   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1510   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1511   *
1512   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1513   * set. The order in which these subsets appear in the outer set is undefined.
1514   *
1515   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1516   * are identical, even if the input set uses a different concept of equivalence.
1517   *
1518   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1519   * the result set is constructed, the input set is merely copied. Only as the result set is
1520   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1521   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1522   * {@code combinations} does not retain the individual subsets.
1523   *
1524   * @param set the set of elements to take combinations of
1525   * @param size the number of elements per combination
1526   * @return the set of all combinations of {@code size} elements from {@code set}
1527   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1528   *     inclusive
1529   * @throws NullPointerException if {@code set} is or contains {@code null}
1530   * @since 23.0
1531   */
1532  @Beta
1533  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1534    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1535    checkNonnegative(size, "size");
1536    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1537    if (size == 0) {
1538      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1539    } else if (size == index.size()) {
1540      return ImmutableSet.<Set<E>>of(index.keySet());
1541    }
1542    return new AbstractSet<Set<E>>() {
1543      @Override
1544      public boolean contains(@NullableDecl Object o) {
1545        if (o instanceof Set) {
1546          Set<?> s = (Set<?>) o;
1547          return s.size() == size && index.keySet().containsAll(s);
1548        }
1549        return false;
1550      }
1551
1552      @Override
1553      public Iterator<Set<E>> iterator() {
1554        return new AbstractIterator<Set<E>>() {
1555          final BitSet bits = new BitSet(index.size());
1556
1557          @Override
1558          protected Set<E> computeNext() {
1559            if (bits.isEmpty()) {
1560              bits.set(0, size);
1561            } else {
1562              int firstSetBit = bits.nextSetBit(0);
1563              int bitToFlip = bits.nextClearBit(firstSetBit);
1564
1565              if (bitToFlip == index.size()) {
1566                return endOfData();
1567              }
1568              /*
1569               * The current set in sorted order looks like
1570               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1571               * where it does *not* contain bitToFlip.
1572               *
1573               * The next combination is
1574               *
1575               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1576               *
1577               * This is lexicographically next if you look at the combinations in descending order
1578               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1579               */
1580
1581              bits.set(0, bitToFlip - firstSetBit - 1);
1582              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1583              bits.set(bitToFlip);
1584            }
1585            final BitSet copy = (BitSet) bits.clone();
1586            return new AbstractSet<E>() {
1587              @Override
1588              public boolean contains(@NullableDecl Object o) {
1589                Integer i = index.get(o);
1590                return i != null && copy.get(i);
1591              }
1592
1593              @Override
1594              public Iterator<E> iterator() {
1595                return new AbstractIterator<E>() {
1596                  int i = -1;
1597
1598                  @Override
1599                  protected E computeNext() {
1600                    i = copy.nextSetBit(i + 1);
1601                    if (i == -1) {
1602                      return endOfData();
1603                    }
1604                    return index.keySet().asList().get(i);
1605                  }
1606                };
1607              }
1608
1609              @Override
1610              public int size() {
1611                return size;
1612              }
1613            };
1614          }
1615        };
1616      }
1617
1618      @Override
1619      public int size() {
1620        return IntMath.binomial(index.size(), size);
1621      }
1622
1623      @Override
1624      public String toString() {
1625        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1626      }
1627    };
1628  }
1629
1630  /** An implementation for {@link Set#hashCode()}. */
1631  static int hashCodeImpl(Set<?> s) {
1632    int hashCode = 0;
1633    for (Object o : s) {
1634      hashCode += o != null ? o.hashCode() : 0;
1635
1636      hashCode = ~~hashCode;
1637      // Needed to deal with unusual integer overflow in GWT.
1638    }
1639    return hashCode;
1640  }
1641
1642  /** An implementation for {@link Set#equals(Object)}. */
1643  static boolean equalsImpl(Set<?> s, @NullableDecl Object object) {
1644    if (s == object) {
1645      return true;
1646    }
1647    if (object instanceof Set) {
1648      Set<?> o = (Set<?>) object;
1649
1650      try {
1651        return s.size() == o.size() && s.containsAll(o);
1652      } catch (NullPointerException | ClassCastException ignored) {
1653        return false;
1654      }
1655    }
1656    return false;
1657  }
1658
1659  /**
1660   * Returns an unmodifiable view of the specified navigable set. This method allows modules to
1661   * provide users with "read-only" access to internal navigable sets. Query operations on the
1662   * returned set "read through" to the specified set, and attempts to modify the returned set,
1663   * whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
1664   *
1665   * <p>The returned navigable set will be serializable if the specified navigable set is
1666   * serializable.
1667   *
1668   * @param set the navigable set for which an unmodifiable view is to be returned
1669   * @return an unmodifiable view of the specified navigable set
1670   * @since 12.0
1671   */
1672  public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
1673    if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
1674      return set;
1675    }
1676    return new UnmodifiableNavigableSet<E>(set);
1677  }
1678
1679  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
1680      implements NavigableSet<E>, Serializable {
1681    private final NavigableSet<E> delegate;
1682    private final SortedSet<E> unmodifiableDelegate;
1683
1684    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1685      this.delegate = checkNotNull(delegate);
1686      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1687    }
1688
1689    @Override
1690    protected SortedSet<E> delegate() {
1691      return unmodifiableDelegate;
1692    }
1693
1694    @Override
1695    public E lower(E e) {
1696      return delegate.lower(e);
1697    }
1698
1699    @Override
1700    public E floor(E e) {
1701      return delegate.floor(e);
1702    }
1703
1704    @Override
1705    public E ceiling(E e) {
1706      return delegate.ceiling(e);
1707    }
1708
1709    @Override
1710    public E higher(E e) {
1711      return delegate.higher(e);
1712    }
1713
1714    @Override
1715    public E pollFirst() {
1716      throw new UnsupportedOperationException();
1717    }
1718
1719    @Override
1720    public E pollLast() {
1721      throw new UnsupportedOperationException();
1722    }
1723
1724    @MonotonicNonNullDecl private transient UnmodifiableNavigableSet<E> descendingSet;
1725
1726    @Override
1727    public NavigableSet<E> descendingSet() {
1728      UnmodifiableNavigableSet<E> result = descendingSet;
1729      if (result == null) {
1730        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
1731        result.descendingSet = this;
1732      }
1733      return result;
1734    }
1735
1736    @Override
1737    public Iterator<E> descendingIterator() {
1738      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1739    }
1740
1741    @Override
1742    public NavigableSet<E> subSet(
1743        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1744      return unmodifiableNavigableSet(
1745          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1746    }
1747
1748    @Override
1749    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1750      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1751    }
1752
1753    @Override
1754    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1755      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1756    }
1757
1758    private static final long serialVersionUID = 0;
1759  }
1760
1761  /**
1762   * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
1763   * order to guarantee serial access, it is critical that <b>all</b> access to the backing
1764   * navigable set is accomplished through the returned navigable set (or its views).
1765   *
1766   * <p>It is imperative that the user manually synchronize on the returned sorted set when
1767   * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
1768   * {@code tailSet} views.
1769   *
1770   * <pre>{@code
1771   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1772   *  ...
1773   * synchronized (set) {
1774   *   // Must be in the synchronized block
1775   *   Iterator<E> it = set.iterator();
1776   *   while (it.hasNext()) {
1777   *     foo(it.next());
1778   *   }
1779   * }
1780   * }</pre>
1781   *
1782   * <p>or:
1783   *
1784   * <pre>{@code
1785   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1786   * NavigableSet<E> set2 = set.descendingSet().headSet(foo);
1787   *  ...
1788   * synchronized (set) { // Note: set, not set2!!!
1789   *   // Must be in the synchronized block
1790   *   Iterator<E> it = set2.descendingIterator();
1791   *   while (it.hasNext())
1792   *     foo(it.next());
1793   *   }
1794   * }
1795   * }</pre>
1796   *
1797   * <p>Failure to follow this advice may result in non-deterministic behavior.
1798   *
1799   * <p>The returned navigable set will be serializable if the specified navigable set is
1800   * serializable.
1801   *
1802   * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
1803   * @return a synchronized view of the specified navigable set.
1804   * @since 13.0
1805   */
1806  @GwtIncompatible // NavigableSet
1807  public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
1808    return Synchronized.navigableSet(navigableSet);
1809  }
1810
1811  /** Remove each element in an iterable from a set. */
1812  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
1813    boolean changed = false;
1814    while (iterator.hasNext()) {
1815      changed |= set.remove(iterator.next());
1816    }
1817    return changed;
1818  }
1819
1820  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
1821    checkNotNull(collection); // for GWT
1822    if (collection instanceof Multiset) {
1823      collection = ((Multiset<?>) collection).elementSet();
1824    }
1825    /*
1826     * AbstractSet.removeAll(List) has quadratic behavior if the list size
1827     * is just more than the set's size.  We augment the test by
1828     * assuming that sets have fast contains() performance, and other
1829     * collections don't.  See
1830     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
1831     */
1832    if (collection instanceof Set && collection.size() > set.size()) {
1833      return Iterators.removeAll(set.iterator(), collection);
1834    } else {
1835      return removeAllImpl(set, collection.iterator());
1836    }
1837  }
1838
1839  @GwtIncompatible // NavigableSet
1840  static class DescendingSet<E> extends ForwardingNavigableSet<E> {
1841    private final NavigableSet<E> forward;
1842
1843    DescendingSet(NavigableSet<E> forward) {
1844      this.forward = forward;
1845    }
1846
1847    @Override
1848    protected NavigableSet<E> delegate() {
1849      return forward;
1850    }
1851
1852    @Override
1853    public E lower(E e) {
1854      return forward.higher(e);
1855    }
1856
1857    @Override
1858    public E floor(E e) {
1859      return forward.ceiling(e);
1860    }
1861
1862    @Override
1863    public E ceiling(E e) {
1864      return forward.floor(e);
1865    }
1866
1867    @Override
1868    public E higher(E e) {
1869      return forward.lower(e);
1870    }
1871
1872    @Override
1873    public E pollFirst() {
1874      return forward.pollLast();
1875    }
1876
1877    @Override
1878    public E pollLast() {
1879      return forward.pollFirst();
1880    }
1881
1882    @Override
1883    public NavigableSet<E> descendingSet() {
1884      return forward;
1885    }
1886
1887    @Override
1888    public Iterator<E> descendingIterator() {
1889      return forward.iterator();
1890    }
1891
1892    @Override
1893    public NavigableSet<E> subSet(
1894        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1895      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
1896    }
1897
1898    @Override
1899    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1900      return forward.tailSet(toElement, inclusive).descendingSet();
1901    }
1902
1903    @Override
1904    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1905      return forward.headSet(fromElement, inclusive).descendingSet();
1906    }
1907
1908    @SuppressWarnings("unchecked")
1909    @Override
1910    public Comparator<? super E> comparator() {
1911      Comparator<? super E> forwardComparator = forward.comparator();
1912      if (forwardComparator == null) {
1913        return (Comparator) Ordering.natural().reverse();
1914      } else {
1915        return reverse(forwardComparator);
1916      }
1917    }
1918
1919    // If we inline this, we get a javac error.
1920    private static <T> Ordering<T> reverse(Comparator<T> forward) {
1921      return Ordering.from(forward).reverse();
1922    }
1923
1924    @Override
1925    public E first() {
1926      return forward.last();
1927    }
1928
1929    @Override
1930    public SortedSet<E> headSet(E toElement) {
1931      return standardHeadSet(toElement);
1932    }
1933
1934    @Override
1935    public E last() {
1936      return forward.first();
1937    }
1938
1939    @Override
1940    public SortedSet<E> subSet(E fromElement, E toElement) {
1941      return standardSubSet(fromElement, toElement);
1942    }
1943
1944    @Override
1945    public SortedSet<E> tailSet(E fromElement) {
1946      return standardTailSet(fromElement);
1947    }
1948
1949    @Override
1950    public Iterator<E> iterator() {
1951      return forward.descendingIterator();
1952    }
1953
1954    @Override
1955    public Object[] toArray() {
1956      return standardToArray();
1957    }
1958
1959    @Override
1960    public <T> T[] toArray(T[] array) {
1961      return standardToArray(array);
1962    }
1963
1964    @Override
1965    public String toString() {
1966      return standardToString();
1967    }
1968  }
1969
1970  /**
1971   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
1972   *
1973   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
1974   * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
1975   * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
1976   * boolean) headSet()}) to actually construct the view. Consult these methods for a full
1977   * description of the returned view's behavior.
1978   *
1979   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
1980   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
1981   * Comparator}, which can violate the natural ordering. Using this method (or in general using
1982   * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
1983   *
1984   * @since 20.0
1985   */
1986  @Beta
1987  @GwtIncompatible // NavigableSet
1988  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
1989      NavigableSet<K> set, Range<K> range) {
1990    if (set.comparator() != null
1991        && set.comparator() != Ordering.natural()
1992        && range.hasLowerBound()
1993        && range.hasUpperBound()) {
1994      checkArgument(
1995          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
1996          "set is using a custom comparator which is inconsistent with the natural ordering.");
1997    }
1998    if (range.hasLowerBound() && range.hasUpperBound()) {
1999      return set.subSet(
2000          range.lowerEndpoint(),
2001          range.lowerBoundType() == BoundType.CLOSED,
2002          range.upperEndpoint(),
2003          range.upperBoundType() == BoundType.CLOSED);
2004    } else if (range.hasLowerBound()) {
2005      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2006    } else if (range.hasUpperBound()) {
2007      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2008    }
2009    return checkNotNull(set);
2010  }
2011}