001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.Beta; 024import com.google.common.annotations.GwtCompatible; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.collect.Collections2.FilteredCollection; 029import com.google.common.math.IntMath; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import java.io.Serializable; 032import java.util.AbstractSet; 033import java.util.Arrays; 034import java.util.BitSet; 035import java.util.Collection; 036import java.util.Collections; 037import java.util.Comparator; 038import java.util.EnumSet; 039import java.util.HashSet; 040import java.util.Iterator; 041import java.util.LinkedHashSet; 042import java.util.List; 043import java.util.Map; 044import java.util.NavigableSet; 045import java.util.NoSuchElementException; 046import java.util.Set; 047import java.util.SortedSet; 048import java.util.TreeSet; 049import java.util.concurrent.ConcurrentHashMap; 050import java.util.concurrent.CopyOnWriteArraySet; 051import org.checkerframework.checker.nullness.compatqual.MonotonicNonNullDecl; 052import org.checkerframework.checker.nullness.compatqual.NullableDecl; 053 054/** 055 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts 056 * {@link Lists}, {@link Maps} and {@link Queues}. 057 * 058 * <p>See the Guava User Guide article on <a href= 059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> {@code Sets}</a>. 060 * 061 * @author Kevin Bourrillion 062 * @author Jared Levy 063 * @author Chris Povirk 064 * @since 2.0 065 */ 066@GwtCompatible(emulated = true) 067public final class Sets { 068 private Sets() {} 069 070 /** 071 * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll} 072 * implementation. 073 */ 074 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 075 @Override 076 public boolean removeAll(Collection<?> c) { 077 return removeAllImpl(this, c); 078 } 079 080 @Override 081 public boolean retainAll(Collection<?> c) { 082 return super.retainAll(checkNotNull(c)); // GWT compatibility 083 } 084 } 085 086 /** 087 * Returns an immutable set instance containing the given enum elements. Internally, the returned 088 * set will be backed by an {@link EnumSet}. 089 * 090 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 091 * which the elements are provided to the method. 092 * 093 * @param anElement one of the elements the set should contain 094 * @param otherElements the rest of the elements the set should contain 095 * @return an immutable set containing those elements, minus duplicates 096 */ 097 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 098 @GwtCompatible(serializable = true) 099 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 100 E anElement, E... otherElements) { 101 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 102 } 103 104 /** 105 * Returns an immutable set instance containing the given enum elements. Internally, the returned 106 * set will be backed by an {@link EnumSet}. 107 * 108 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 109 * which the elements appear in the given collection. 110 * 111 * @param elements the elements, all of the same {@code enum} type, that the set should contain 112 * @return an immutable set containing those elements, minus duplicates 113 */ 114 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 115 @GwtCompatible(serializable = true) 116 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 117 if (elements instanceof ImmutableEnumSet) { 118 return (ImmutableEnumSet<E>) elements; 119 } else if (elements instanceof Collection) { 120 Collection<E> collection = (Collection<E>) elements; 121 if (collection.isEmpty()) { 122 return ImmutableSet.of(); 123 } else { 124 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 125 } 126 } else { 127 Iterator<E> itr = elements.iterator(); 128 if (itr.hasNext()) { 129 EnumSet<E> enumSet = EnumSet.of(itr.next()); 130 Iterators.addAll(enumSet, itr); 131 return ImmutableEnumSet.asImmutable(enumSet); 132 } else { 133 return ImmutableSet.of(); 134 } 135 } 136 } 137 138 /** 139 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 140 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 141 * accepts non-{@code Collection} iterables and empty iterables. 142 */ 143 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 144 Iterable<E> iterable, Class<E> elementType) { 145 EnumSet<E> set = EnumSet.noneOf(elementType); 146 Iterables.addAll(set, iterable); 147 return set; 148 } 149 150 // HashSet 151 152 /** 153 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 154 * 155 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code 156 * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider 157 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 158 * deterministic iteration behavior. 159 * 160 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 161 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 162 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 163 */ 164 public static <E> HashSet<E> newHashSet() { 165 return new HashSet<E>(); 166 } 167 168 /** 169 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 170 * 171 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 172 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 173 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 174 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 175 * deterministic iteration behavior. 176 * 177 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 178 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 179 * This method is not actually very useful and will likely be deprecated in the future. 180 */ 181 public static <E> HashSet<E> newHashSet(E... elements) { 182 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 183 Collections.addAll(set, elements); 184 return set; 185 } 186 187 /** 188 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 189 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 190 * is what most users want and expect it to do. 191 * 192 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 193 * 194 * @param expectedSize the number of elements you expect to add to the returned set 195 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 196 * without resizing 197 * @throws IllegalArgumentException if {@code expectedSize} is negative 198 */ 199 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 200 return new HashSet<E>(Maps.capacity(expectedSize)); 201 } 202 203 /** 204 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 205 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 206 * Iterables#addAll}. 207 * 208 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 209 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 210 * FluentIterable} and call {@code elements.toSet()}.) 211 * 212 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 213 * instead. 214 * 215 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 216 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 217 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 218 * 219 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 220 */ 221 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 222 return (elements instanceof Collection) 223 ? new HashSet<E>(Collections2.cast(elements)) 224 : newHashSet(elements.iterator()); 225 } 226 227 /** 228 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 229 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 230 * 231 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 232 * ImmutableSet#copyOf(Iterator)} instead. 233 * 234 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 235 * instead. 236 * 237 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 238 */ 239 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 240 HashSet<E> set = newHashSet(); 241 Iterators.addAll(set, elements); 242 return set; 243 } 244 245 /** 246 * Creates a thread-safe set backed by a hash map. The set is backed by a {@link 247 * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees. 248 * 249 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 250 * set is serializable. 251 * 252 * @return a new, empty thread-safe {@code Set} 253 * @since 15.0 254 */ 255 public static <E> Set<E> newConcurrentHashSet() { 256 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 257 } 258 259 /** 260 * Creates a thread-safe set backed by a hash map and containing the given elements. The set is 261 * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency 262 * guarantees. 263 * 264 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 265 * set is serializable. 266 * 267 * @param elements the elements that the set should contain 268 * @return a new thread-safe set containing those elements (minus duplicates) 269 * @throws NullPointerException if {@code elements} or any of its contents is null 270 * @since 15.0 271 */ 272 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 273 Set<E> set = newConcurrentHashSet(); 274 Iterables.addAll(set, elements); 275 return set; 276 } 277 278 // LinkedHashSet 279 280 /** 281 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 282 * 283 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 284 * 285 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 286 * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of 287 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 288 * 289 * @return a new, empty {@code LinkedHashSet} 290 */ 291 public static <E> LinkedHashSet<E> newLinkedHashSet() { 292 return new LinkedHashSet<E>(); 293 } 294 295 /** 296 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 297 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 298 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 299 * that the method isn't inadvertently <i>oversizing</i> the returned set. 300 * 301 * @param expectedSize the number of elements you expect to add to the returned set 302 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 303 * elements without resizing 304 * @throws IllegalArgumentException if {@code expectedSize} is negative 305 * @since 11.0 306 */ 307 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) { 308 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 309 } 310 311 /** 312 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 313 * 314 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 315 * ImmutableSet#copyOf(Iterable)} instead. 316 * 317 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 318 * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage 319 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 320 * 321 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 322 * 323 * @param elements the elements that the set should contain, in order 324 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 325 */ 326 public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) { 327 if (elements instanceof Collection) { 328 return new LinkedHashSet<E>(Collections2.cast(elements)); 329 } 330 LinkedHashSet<E> set = newLinkedHashSet(); 331 Iterables.addAll(set, elements); 332 return set; 333 } 334 335 // TreeSet 336 337 /** 338 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 339 * its elements. 340 * 341 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 342 * 343 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 344 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 345 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 346 * 347 * @return a new, empty {@code TreeSet} 348 */ 349 public static <E extends Comparable> TreeSet<E> newTreeSet() { 350 return new TreeSet<E>(); 351 } 352 353 /** 354 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 355 * natural ordering. 356 * 357 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 358 * instead. 359 * 360 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 361 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 362 * TreeSet} with that comparator. 363 * 364 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 365 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 366 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 367 * 368 * <p>This method is just a small convenience for creating an empty set and then calling {@link 369 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 370 * 371 * @param elements the elements that the set should contain 372 * @return a new {@code TreeSet} containing those elements (minus duplicates) 373 */ 374 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 375 TreeSet<E> set = newTreeSet(); 376 Iterables.addAll(set, elements); 377 return set; 378 } 379 380 /** 381 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 382 * 383 * <p><b>Note:</b> if mutability is not required, use {@code 384 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 385 * 386 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 387 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 388 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code 389 * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this 390 * factory rejects null. Clean your code accordingly. 391 * 392 * @param comparator the comparator to use to sort the set 393 * @return a new, empty {@code TreeSet} 394 * @throws NullPointerException if {@code comparator} is null 395 */ 396 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 397 return new TreeSet<E>(checkNotNull(comparator)); 398 } 399 400 /** 401 * Creates an empty {@code Set} that uses identity to determine equality. It compares object 402 * references, instead of calling {@code equals}, to determine whether a provided object matches 403 * an element in the set. For example, {@code contains} returns {@code false} when passed an 404 * object that equals a set member, but isn't the same instance. This behavior is similar to the 405 * way {@code IdentityHashMap} handles key lookups. 406 * 407 * @since 8.0 408 */ 409 public static <E> Set<E> newIdentityHashSet() { 410 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 411 } 412 413 /** 414 * Creates an empty {@code CopyOnWriteArraySet} instance. 415 * 416 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet} 417 * instead. 418 * 419 * @return a new, empty {@code CopyOnWriteArraySet} 420 * @since 12.0 421 */ 422 @GwtIncompatible // CopyOnWriteArraySet 423 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 424 return new CopyOnWriteArraySet<E>(); 425 } 426 427 /** 428 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 429 * 430 * @param elements the elements that the set should contain, in order 431 * @return a new {@code CopyOnWriteArraySet} containing those elements 432 * @since 12.0 433 */ 434 @GwtIncompatible // CopyOnWriteArraySet 435 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) { 436 // We copy elements to an ArrayList first, rather than incurring the 437 // quadratic cost of adding them to the COWAS directly. 438 Collection<? extends E> elementsCollection = 439 (elements instanceof Collection) 440 ? Collections2.cast(elements) 441 : Lists.newArrayList(elements); 442 return new CopyOnWriteArraySet<E>(elementsCollection); 443 } 444 445 /** 446 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 447 * collection. If the collection is an {@link EnumSet}, this method has the same behavior as 448 * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one 449 * element, in order to determine the element type. If the collection could be empty, use {@link 450 * #complementOf(Collection, Class)} instead of this method. 451 * 452 * @param collection the collection whose complement should be stored in the enum set 453 * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present 454 * in the given collection 455 * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and 456 * contains no elements 457 */ 458 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 459 if (collection instanceof EnumSet) { 460 return EnumSet.complementOf((EnumSet<E>) collection); 461 } 462 checkArgument( 463 !collection.isEmpty(), "collection is empty; use the other version of this method"); 464 Class<E> type = collection.iterator().next().getDeclaringClass(); 465 return makeComplementByHand(collection, type); 466 } 467 468 /** 469 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 470 * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input 471 * collection, as long as the elements are of enum type. 472 * 473 * @param collection the collection whose complement should be stored in the {@code EnumSet} 474 * @param type the type of the elements in the set 475 * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not 476 * present in the given collection 477 */ 478 public static <E extends Enum<E>> EnumSet<E> complementOf( 479 Collection<E> collection, Class<E> type) { 480 checkNotNull(collection); 481 return (collection instanceof EnumSet) 482 ? EnumSet.complementOf((EnumSet<E>) collection) 483 : makeComplementByHand(collection, type); 484 } 485 486 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 487 Collection<E> collection, Class<E> type) { 488 EnumSet<E> result = EnumSet.allOf(type); 489 result.removeAll(collection); 490 return result; 491 } 492 493 /** 494 * Returns a set backed by the specified map. The resulting set displays the same ordering, 495 * concurrency, and performance characteristics as the backing map. In essence, this factory 496 * method provides a {@link Set} implementation corresponding to any {@link Map} implementation. 497 * There is no need to use this method on a {@link Map} implementation that already has a 498 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link 499 * java.util.TreeMap}). 500 * 501 * <p>Each method invocation on the set returned by this method results in exactly one method 502 * invocation on the backing map or its {@code keySet} view, with one exception. The {@code 503 * addAll} method is implemented as a sequence of {@code put} invocations on the backing map. 504 * 505 * <p>The specified map must be empty at the time this method is invoked, and should not be 506 * accessed directly after this method returns. These conditions are ensured if the map is created 507 * empty, passed directly to this method, and no reference to the map is retained, as illustrated 508 * in the following code fragment: 509 * 510 * <pre>{@code 511 * Set<Object> identityHashSet = Sets.newSetFromMap( 512 * new IdentityHashMap<Object, Boolean>()); 513 * }</pre> 514 * 515 * <p>The returned set is serializable if the backing map is. 516 * 517 * @param map the backing map 518 * @return the set backed by the map 519 * @throws IllegalArgumentException if {@code map} is not empty 520 * @deprecated Use {@link Collections#newSetFromMap} instead. 521 */ 522 @Deprecated 523 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 524 return Collections.newSetFromMap(map); 525 } 526 527 /** 528 * An unmodifiable view of a set which may be backed by other sets; this view will change as the 529 * backing sets do. Contains methods to copy the data into a new set which will then remain 530 * stable. There is usually no reason to retain a reference of type {@code SetView}; typically, 531 * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 532 * {@link #copyInto} and forget the {@code SetView} itself. 533 * 534 * @since 2.0 535 */ 536 public abstract static class SetView<E> extends AbstractSet<E> { 537 private SetView() {} // no subclasses but our own 538 539 /** 540 * Returns an immutable copy of the current contents of this set view. Does not support null 541 * elements. 542 * 543 * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a 544 * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator 545 * that is inconsistent with {@link Object#equals(Object)}. 546 */ 547 public ImmutableSet<E> immutableCopy() { 548 return ImmutableSet.copyOf(this); 549 } 550 551 /** 552 * Copies the current contents of this set view into an existing set. This method has equivalent 553 * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the 554 * same notion of equivalence. 555 * 556 * @return a reference to {@code set}, for convenience 557 */ 558 // Note: S should logically extend Set<? super E> but can't due to either 559 // some javac bug or some weirdness in the spec, not sure which. 560 @CanIgnoreReturnValue 561 public <S extends Set<E>> S copyInto(S set) { 562 set.addAll(this); 563 return set; 564 } 565 566 /** 567 * Guaranteed to throw an exception and leave the collection unmodified. 568 * 569 * @throws UnsupportedOperationException always 570 * @deprecated Unsupported operation. 571 */ 572 @CanIgnoreReturnValue 573 @Deprecated 574 @Override 575 public final boolean add(E e) { 576 throw new UnsupportedOperationException(); 577 } 578 579 /** 580 * Guaranteed to throw an exception and leave the collection unmodified. 581 * 582 * @throws UnsupportedOperationException always 583 * @deprecated Unsupported operation. 584 */ 585 @CanIgnoreReturnValue 586 @Deprecated 587 @Override 588 public final boolean remove(Object object) { 589 throw new UnsupportedOperationException(); 590 } 591 592 /** 593 * Guaranteed to throw an exception and leave the collection unmodified. 594 * 595 * @throws UnsupportedOperationException always 596 * @deprecated Unsupported operation. 597 */ 598 @CanIgnoreReturnValue 599 @Deprecated 600 @Override 601 public final boolean addAll(Collection<? extends E> newElements) { 602 throw new UnsupportedOperationException(); 603 } 604 605 /** 606 * Guaranteed to throw an exception and leave the collection unmodified. 607 * 608 * @throws UnsupportedOperationException always 609 * @deprecated Unsupported operation. 610 */ 611 @CanIgnoreReturnValue 612 @Deprecated 613 @Override 614 public final boolean removeAll(Collection<?> oldElements) { 615 throw new UnsupportedOperationException(); 616 } 617 618 /** 619 * Guaranteed to throw an exception and leave the collection unmodified. 620 * 621 * @throws UnsupportedOperationException always 622 * @deprecated Unsupported operation. 623 */ 624 @CanIgnoreReturnValue 625 @Deprecated 626 @Override 627 public final boolean retainAll(Collection<?> elementsToKeep) { 628 throw new UnsupportedOperationException(); 629 } 630 631 /** 632 * Guaranteed to throw an exception and leave the collection unmodified. 633 * 634 * @throws UnsupportedOperationException always 635 * @deprecated Unsupported operation. 636 */ 637 @Deprecated 638 @Override 639 public final void clear() { 640 throw new UnsupportedOperationException(); 641 } 642 643 /** 644 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 645 * 646 * @since 20.0 (present with return type {@link Iterator} since 2.0) 647 */ 648 @Override 649 public abstract UnmodifiableIterator<E> iterator(); 650 } 651 652 /** 653 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all 654 * elements that are contained in either backing set. Iterating over the returned set iterates 655 * first over all the elements of {@code set1}, then over each element of {@code set2}, in order, 656 * that is not contained in {@code set1}. 657 * 658 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 659 * equivalence relations (as {@link HashSet}, {@link TreeSet}, and the {@link Map#keySet} of an 660 * {@code IdentityHashMap} all are). 661 */ 662 public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) { 663 checkNotNull(set1, "set1"); 664 checkNotNull(set2, "set2"); 665 666 return new SetView<E>() { 667 @Override 668 public int size() { 669 int size = set1.size(); 670 for (E e : set2) { 671 if (!set1.contains(e)) { 672 size++; 673 } 674 } 675 return size; 676 } 677 678 @Override 679 public boolean isEmpty() { 680 return set1.isEmpty() && set2.isEmpty(); 681 } 682 683 @Override 684 public UnmodifiableIterator<E> iterator() { 685 return new AbstractIterator<E>() { 686 final Iterator<? extends E> itr1 = set1.iterator(); 687 final Iterator<? extends E> itr2 = set2.iterator(); 688 689 @Override 690 protected E computeNext() { 691 if (itr1.hasNext()) { 692 return itr1.next(); 693 } 694 while (itr2.hasNext()) { 695 E e = itr2.next(); 696 if (!set1.contains(e)) { 697 return e; 698 } 699 } 700 return endOfData(); 701 } 702 }; 703 } 704 705 @Override 706 public boolean contains(Object object) { 707 return set1.contains(object) || set2.contains(object); 708 } 709 710 @Override 711 public <S extends Set<E>> S copyInto(S set) { 712 set.addAll(set1); 713 set.addAll(set2); 714 return set; 715 } 716 717 @Override 718 public ImmutableSet<E> immutableCopy() { 719 return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); 720 } 721 }; 722 } 723 724 /** 725 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains 726 * all elements that are contained by both backing sets. The iteration order of the returned set 727 * matches that of {@code set1}. 728 * 729 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 730 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 731 * IdentityHashMap} all are). 732 * 733 * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of 734 * the two sets. If you have reason to believe one of your sets will generally be smaller than the 735 * other, pass it first. Unfortunately, since this method sets the generic type of the returned 736 * set based on the type of the first set passed, this could in rare cases force you to make a 737 * cast, for example: 738 * 739 * <pre>{@code 740 * Set<Object> aFewBadObjects = ... 741 * Set<String> manyBadStrings = ... 742 * 743 * // impossible for a non-String to be in the intersection 744 * SuppressWarnings("unchecked") 745 * Set<String> badStrings = (Set) Sets.intersection( 746 * aFewBadObjects, manyBadStrings); 747 * }</pre> 748 * 749 * <p>This is unfortunate, but should come up only very rarely. 750 */ 751 public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) { 752 checkNotNull(set1, "set1"); 753 checkNotNull(set2, "set2"); 754 755 return new SetView<E>() { 756 @Override 757 public UnmodifiableIterator<E> iterator() { 758 return new AbstractIterator<E>() { 759 final Iterator<E> itr = set1.iterator(); 760 761 @Override 762 protected E computeNext() { 763 while (itr.hasNext()) { 764 E e = itr.next(); 765 if (set2.contains(e)) { 766 return e; 767 } 768 } 769 return endOfData(); 770 } 771 }; 772 } 773 774 @Override 775 public int size() { 776 int size = 0; 777 for (E e : set1) { 778 if (set2.contains(e)) { 779 size++; 780 } 781 } 782 return size; 783 } 784 785 @Override 786 public boolean isEmpty() { 787 return Collections.disjoint(set1, set2); 788 } 789 790 @Override 791 public boolean contains(Object object) { 792 return set1.contains(object) && set2.contains(object); 793 } 794 795 @Override 796 public boolean containsAll(Collection<?> collection) { 797 return set1.containsAll(collection) && set2.containsAll(collection); 798 } 799 }; 800 } 801 802 /** 803 * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains 804 * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2} 805 * may also contain elements not present in {@code set1}; these are simply ignored. The iteration 806 * order of the returned set matches that of {@code set1}. 807 * 808 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 809 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 810 * IdentityHashMap} all are). 811 */ 812 public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) { 813 checkNotNull(set1, "set1"); 814 checkNotNull(set2, "set2"); 815 816 return new SetView<E>() { 817 @Override 818 public UnmodifiableIterator<E> iterator() { 819 return new AbstractIterator<E>() { 820 final Iterator<E> itr = set1.iterator(); 821 822 @Override 823 protected E computeNext() { 824 while (itr.hasNext()) { 825 E e = itr.next(); 826 if (!set2.contains(e)) { 827 return e; 828 } 829 } 830 return endOfData(); 831 } 832 }; 833 } 834 835 @Override 836 public int size() { 837 int size = 0; 838 for (E e : set1) { 839 if (!set2.contains(e)) { 840 size++; 841 } 842 } 843 return size; 844 } 845 846 @Override 847 public boolean isEmpty() { 848 return set2.containsAll(set1); 849 } 850 851 @Override 852 public boolean contains(Object element) { 853 return set1.contains(element) && !set2.contains(element); 854 } 855 }; 856 } 857 858 /** 859 * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set 860 * contains all elements that are contained in either {@code set1} or {@code set2} but not in 861 * both. The iteration order of the returned set is undefined. 862 * 863 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 864 * equivalence relations (as {@code HashSet}, {@code TreeSet}, and the keySet of an {@code 865 * IdentityHashMap} all are). 866 * 867 * @since 3.0 868 */ 869 public static <E> SetView<E> symmetricDifference( 870 final Set<? extends E> set1, final Set<? extends E> set2) { 871 checkNotNull(set1, "set1"); 872 checkNotNull(set2, "set2"); 873 874 return new SetView<E>() { 875 @Override 876 public UnmodifiableIterator<E> iterator() { 877 final Iterator<? extends E> itr1 = set1.iterator(); 878 final Iterator<? extends E> itr2 = set2.iterator(); 879 return new AbstractIterator<E>() { 880 @Override 881 public E computeNext() { 882 while (itr1.hasNext()) { 883 E elem1 = itr1.next(); 884 if (!set2.contains(elem1)) { 885 return elem1; 886 } 887 } 888 while (itr2.hasNext()) { 889 E elem2 = itr2.next(); 890 if (!set1.contains(elem2)) { 891 return elem2; 892 } 893 } 894 return endOfData(); 895 } 896 }; 897 } 898 899 @Override 900 public int size() { 901 int size = 0; 902 for (E e : set1) { 903 if (!set2.contains(e)) { 904 size++; 905 } 906 } 907 for (E e : set2) { 908 if (!set1.contains(e)) { 909 size++; 910 } 911 } 912 return size; 913 } 914 915 @Override 916 public boolean isEmpty() { 917 return set1.equals(set2); 918 } 919 920 @Override 921 public boolean contains(Object element) { 922 return set1.contains(element) ^ set2.contains(element); 923 } 924 }; 925 } 926 927 /** 928 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live 929 * view of {@code unfiltered}; changes to one affect the other. 930 * 931 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 932 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 933 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 934 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 935 * that satisfy the filter will be removed from the underlying set. 936 * 937 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 938 * 939 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 940 * the underlying set and determine which elements satisfy the filter. When a live view is 941 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 942 * use the copy. 943 * 944 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 945 * {@link Predicate#apply}. Do not provide a predicate such as {@code 946 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 947 * Iterables#filter(Iterable, Class)} for related functionality.) 948 * 949 * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link 950 * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage 951 * you to migrate to streams. 952 */ 953 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 954 public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) { 955 if (unfiltered instanceof SortedSet) { 956 return filter((SortedSet<E>) unfiltered, predicate); 957 } 958 if (unfiltered instanceof FilteredSet) { 959 // Support clear(), removeAll(), and retainAll() when filtering a filtered 960 // collection. 961 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 962 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 963 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 964 } 965 966 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 967 } 968 969 private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> { 970 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 971 super(unfiltered, predicate); 972 } 973 974 @Override 975 public boolean equals(@NullableDecl Object object) { 976 return equalsImpl(this, object); 977 } 978 979 @Override 980 public int hashCode() { 981 return hashCodeImpl(this); 982 } 983 } 984 985 /** 986 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The 987 * returned set is a live view of {@code unfiltered}; changes to one affect the other. 988 * 989 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 990 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 991 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 992 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 993 * that satisfy the filter will be removed from the underlying set. 994 * 995 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 996 * 997 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 998 * the underlying set and determine which elements satisfy the filter. When a live view is 999 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1000 * use the copy. 1001 * 1002 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1003 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1004 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1005 * Iterables#filter(Iterable, Class)} for related functionality.) 1006 * 1007 * @since 11.0 1008 */ 1009 public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1010 if (unfiltered instanceof FilteredSet) { 1011 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1012 // collection. 1013 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1014 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1015 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1016 } 1017 1018 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1019 } 1020 1021 private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> { 1022 1023 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1024 super(unfiltered, predicate); 1025 } 1026 1027 @Override 1028 public Comparator<? super E> comparator() { 1029 return ((SortedSet<E>) unfiltered).comparator(); 1030 } 1031 1032 @Override 1033 public SortedSet<E> subSet(E fromElement, E toElement) { 1034 return new FilteredSortedSet<E>( 1035 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1036 } 1037 1038 @Override 1039 public SortedSet<E> headSet(E toElement) { 1040 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1041 } 1042 1043 @Override 1044 public SortedSet<E> tailSet(E fromElement) { 1045 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1046 } 1047 1048 @Override 1049 public E first() { 1050 return Iterators.find(unfiltered.iterator(), predicate); 1051 } 1052 1053 @Override 1054 public E last() { 1055 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1056 while (true) { 1057 E element = sortedUnfiltered.last(); 1058 if (predicate.apply(element)) { 1059 return element; 1060 } 1061 sortedUnfiltered = sortedUnfiltered.headSet(element); 1062 } 1063 } 1064 } 1065 1066 /** 1067 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate. 1068 * The returned set is a live view of {@code unfiltered}; changes to one affect the other. 1069 * 1070 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1071 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1072 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1073 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1074 * that satisfy the filter will be removed from the underlying set. 1075 * 1076 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1077 * 1078 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1079 * the underlying set and determine which elements satisfy the filter. When a live view is 1080 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1081 * use the copy. 1082 * 1083 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1084 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1085 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1086 * Iterables#filter(Iterable, Class)} for related functionality.) 1087 * 1088 * @since 14.0 1089 */ 1090 @GwtIncompatible // NavigableSet 1091 @SuppressWarnings("unchecked") 1092 public static <E> NavigableSet<E> filter( 1093 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1094 if (unfiltered instanceof FilteredSet) { 1095 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1096 // collection. 1097 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1098 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1099 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1100 } 1101 1102 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1103 } 1104 1105 @GwtIncompatible // NavigableSet 1106 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 1107 implements NavigableSet<E> { 1108 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1109 super(unfiltered, predicate); 1110 } 1111 1112 NavigableSet<E> unfiltered() { 1113 return (NavigableSet<E>) unfiltered; 1114 } 1115 1116 @Override 1117 @NullableDecl 1118 public E lower(E e) { 1119 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1120 } 1121 1122 @Override 1123 @NullableDecl 1124 public E floor(E e) { 1125 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1126 } 1127 1128 @Override 1129 public E ceiling(E e) { 1130 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1131 } 1132 1133 @Override 1134 public E higher(E e) { 1135 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1136 } 1137 1138 @Override 1139 public E pollFirst() { 1140 return Iterables.removeFirstMatching(unfiltered(), predicate); 1141 } 1142 1143 @Override 1144 public E pollLast() { 1145 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1146 } 1147 1148 @Override 1149 public NavigableSet<E> descendingSet() { 1150 return Sets.filter(unfiltered().descendingSet(), predicate); 1151 } 1152 1153 @Override 1154 public Iterator<E> descendingIterator() { 1155 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1156 } 1157 1158 @Override 1159 public E last() { 1160 return Iterators.find(unfiltered().descendingIterator(), predicate); 1161 } 1162 1163 @Override 1164 public NavigableSet<E> subSet( 1165 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1166 return filter( 1167 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1168 } 1169 1170 @Override 1171 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1172 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1173 } 1174 1175 @Override 1176 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1177 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1178 } 1179 } 1180 1181 /** 1182 * Returns every possible list that can be formed by choosing one element from each of the given 1183 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1184 * product</a>" of the sets. For example: 1185 * 1186 * <pre>{@code 1187 * Sets.cartesianProduct(ImmutableList.of( 1188 * ImmutableSet.of(1, 2), 1189 * ImmutableSet.of("A", "B", "C"))) 1190 * }</pre> 1191 * 1192 * <p>returns a set containing six lists: 1193 * 1194 * <ul> 1195 * <li>{@code ImmutableList.of(1, "A")} 1196 * <li>{@code ImmutableList.of(1, "B")} 1197 * <li>{@code ImmutableList.of(1, "C")} 1198 * <li>{@code ImmutableList.of(2, "A")} 1199 * <li>{@code ImmutableList.of(2, "B")} 1200 * <li>{@code ImmutableList.of(2, "C")} 1201 * </ul> 1202 * 1203 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1204 * products that you would get from nesting for loops: 1205 * 1206 * <pre>{@code 1207 * for (B b0 : sets.get(0)) { 1208 * for (B b1 : sets.get(1)) { 1209 * ... 1210 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1211 * // operate on tuple 1212 * } 1213 * } 1214 * }</pre> 1215 * 1216 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1217 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1218 * list (counter-intuitive, but mathematically consistent). 1219 * 1220 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1221 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1222 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1223 * iterated are the individual lists created, and these are not retained after iteration. 1224 * 1225 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1226 * sets should appear in the resulting lists 1227 * @param <B> any common base class shared by all axes (often just {@link Object}) 1228 * @return the Cartesian product, as an immutable set containing immutable lists 1229 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1230 * provided set is null 1231 * @since 2.0 1232 */ 1233 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1234 return CartesianSet.create(sets); 1235 } 1236 1237 /** 1238 * Returns every possible list that can be formed by choosing one element from each of the given 1239 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1240 * product</a>" of the sets. For example: 1241 * 1242 * <pre>{@code 1243 * Sets.cartesianProduct( 1244 * ImmutableSet.of(1, 2), 1245 * ImmutableSet.of("A", "B", "C")) 1246 * }</pre> 1247 * 1248 * <p>returns a set containing six lists: 1249 * 1250 * <ul> 1251 * <li>{@code ImmutableList.of(1, "A")} 1252 * <li>{@code ImmutableList.of(1, "B")} 1253 * <li>{@code ImmutableList.of(1, "C")} 1254 * <li>{@code ImmutableList.of(2, "A")} 1255 * <li>{@code ImmutableList.of(2, "B")} 1256 * <li>{@code ImmutableList.of(2, "C")} 1257 * </ul> 1258 * 1259 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1260 * products that you would get from nesting for loops: 1261 * 1262 * <pre>{@code 1263 * for (B b0 : sets.get(0)) { 1264 * for (B b1 : sets.get(1)) { 1265 * ... 1266 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1267 * // operate on tuple 1268 * } 1269 * } 1270 * }</pre> 1271 * 1272 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1273 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1274 * list (counter-intuitive, but mathematically consistent). 1275 * 1276 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1277 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1278 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1279 * iterated are the individual lists created, and these are not retained after iteration. 1280 * 1281 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1282 * sets should appear in the resulting lists 1283 * @param <B> any common base class shared by all axes (often just {@link Object}) 1284 * @return the Cartesian product, as an immutable set containing immutable lists 1285 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1286 * provided set is null 1287 * @since 2.0 1288 */ 1289 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1290 return cartesianProduct(Arrays.asList(sets)); 1291 } 1292 1293 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1294 implements Set<List<E>> { 1295 private final transient ImmutableList<ImmutableSet<E>> axes; 1296 private final transient CartesianList<E> delegate; 1297 1298 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1299 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1300 for (Set<? extends E> set : sets) { 1301 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1302 if (copy.isEmpty()) { 1303 return ImmutableSet.of(); 1304 } 1305 axesBuilder.add(copy); 1306 } 1307 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1308 ImmutableList<List<E>> listAxes = 1309 new ImmutableList<List<E>>() { 1310 @Override 1311 public int size() { 1312 return axes.size(); 1313 } 1314 1315 @Override 1316 public List<E> get(int index) { 1317 return axes.get(index).asList(); 1318 } 1319 1320 @Override 1321 boolean isPartialView() { 1322 return true; 1323 } 1324 }; 1325 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1326 } 1327 1328 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1329 this.axes = axes; 1330 this.delegate = delegate; 1331 } 1332 1333 @Override 1334 protected Collection<List<E>> delegate() { 1335 return delegate; 1336 } 1337 1338 @Override 1339 public boolean equals(@NullableDecl Object object) { 1340 // Warning: this is broken if size() == 0, so it is critical that we 1341 // substitute an empty ImmutableSet to the user in place of this 1342 if (object instanceof CartesianSet) { 1343 CartesianSet<?> that = (CartesianSet<?>) object; 1344 return this.axes.equals(that.axes); 1345 } 1346 return super.equals(object); 1347 } 1348 1349 @Override 1350 public int hashCode() { 1351 // Warning: this is broken if size() == 0, so it is critical that we 1352 // substitute an empty ImmutableSet to the user in place of this 1353 1354 // It's a weird formula, but tests prove it works. 1355 int adjust = size() - 1; 1356 for (int i = 0; i < axes.size(); i++) { 1357 adjust *= 31; 1358 adjust = ~~adjust; 1359 // in GWT, we have to deal with integer overflow carefully 1360 } 1361 int hash = 1; 1362 for (Set<E> axis : axes) { 1363 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1364 1365 hash = ~~hash; 1366 } 1367 hash += adjust; 1368 return ~~hash; 1369 } 1370 } 1371 1372 /** 1373 * Returns the set of all possible subsets of {@code set}. For example, {@code 1374 * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}. 1375 * 1376 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1377 * set. The order in which these subsets appear in the outer set is undefined. Note that the power 1378 * set of the empty set is not the empty set, but a one-element set containing the empty set. 1379 * 1380 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1381 * are identical, even if the input set uses a different concept of equivalence. 1382 * 1383 * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code 1384 * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set 1385 * is merely copied. Only as the power set is iterated are the individual subsets created, and 1386 * these subsets themselves occupy only a small constant amount of memory. 1387 * 1388 * @param set the set of elements to construct a power set from 1389 * @return the power set, as an immutable set of immutable sets 1390 * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the 1391 * power set size to exceed the {@code int} range) 1392 * @throws NullPointerException if {@code set} is or contains {@code null} 1393 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a> 1394 * @since 4.0 1395 */ 1396 @GwtCompatible(serializable = false) 1397 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1398 return new PowerSet<E>(set); 1399 } 1400 1401 private static final class SubSet<E> extends AbstractSet<E> { 1402 private final ImmutableMap<E, Integer> inputSet; 1403 private final int mask; 1404 1405 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1406 this.inputSet = inputSet; 1407 this.mask = mask; 1408 } 1409 1410 @Override 1411 public Iterator<E> iterator() { 1412 return new UnmodifiableIterator<E>() { 1413 final ImmutableList<E> elements = inputSet.keySet().asList(); 1414 int remainingSetBits = mask; 1415 1416 @Override 1417 public boolean hasNext() { 1418 return remainingSetBits != 0; 1419 } 1420 1421 @Override 1422 public E next() { 1423 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1424 if (index == 32) { 1425 throw new NoSuchElementException(); 1426 } 1427 remainingSetBits &= ~(1 << index); 1428 return elements.get(index); 1429 } 1430 }; 1431 } 1432 1433 @Override 1434 public int size() { 1435 return Integer.bitCount(mask); 1436 } 1437 1438 @Override 1439 public boolean contains(@NullableDecl Object o) { 1440 Integer index = inputSet.get(o); 1441 return index != null && (mask & (1 << index)) != 0; 1442 } 1443 } 1444 1445 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1446 final ImmutableMap<E, Integer> inputSet; 1447 1448 PowerSet(Set<E> input) { 1449 this.inputSet = Maps.indexMap(input); 1450 checkArgument( 1451 inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size()); 1452 } 1453 1454 @Override 1455 public int size() { 1456 return 1 << inputSet.size(); 1457 } 1458 1459 @Override 1460 public boolean isEmpty() { 1461 return false; 1462 } 1463 1464 @Override 1465 public Iterator<Set<E>> iterator() { 1466 return new AbstractIndexedListIterator<Set<E>>(size()) { 1467 @Override 1468 protected Set<E> get(final int setBits) { 1469 return new SubSet<E>(inputSet, setBits); 1470 } 1471 }; 1472 } 1473 1474 @Override 1475 public boolean contains(@NullableDecl Object obj) { 1476 if (obj instanceof Set) { 1477 Set<?> set = (Set<?>) obj; 1478 return inputSet.keySet().containsAll(set); 1479 } 1480 return false; 1481 } 1482 1483 @Override 1484 public boolean equals(@NullableDecl Object obj) { 1485 if (obj instanceof PowerSet) { 1486 PowerSet<?> that = (PowerSet<?>) obj; 1487 return inputSet.equals(that.inputSet); 1488 } 1489 return super.equals(obj); 1490 } 1491 1492 @Override 1493 public int hashCode() { 1494 /* 1495 * The sum of the sums of the hash codes in each subset is just the sum of 1496 * each input element's hash code times the number of sets that element 1497 * appears in. Each element appears in exactly half of the 2^n sets, so: 1498 */ 1499 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1500 } 1501 1502 @Override 1503 public String toString() { 1504 return "powerSet(" + inputSet + ")"; 1505 } 1506 } 1507 1508 /** 1509 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1510 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1511 * 1512 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1513 * set. The order in which these subsets appear in the outer set is undefined. 1514 * 1515 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1516 * are identical, even if the input set uses a different concept of equivalence. 1517 * 1518 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1519 * the result set is constructed, the input set is merely copied. Only as the result set is 1520 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1521 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1522 * {@code combinations} does not retain the individual subsets. 1523 * 1524 * @param set the set of elements to take combinations of 1525 * @param size the number of elements per combination 1526 * @return the set of all combinations of {@code size} elements from {@code set} 1527 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1528 * inclusive 1529 * @throws NullPointerException if {@code set} is or contains {@code null} 1530 * @since 23.0 1531 */ 1532 @Beta 1533 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1534 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1535 checkNonnegative(size, "size"); 1536 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1537 if (size == 0) { 1538 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1539 } else if (size == index.size()) { 1540 return ImmutableSet.<Set<E>>of(index.keySet()); 1541 } 1542 return new AbstractSet<Set<E>>() { 1543 @Override 1544 public boolean contains(@NullableDecl Object o) { 1545 if (o instanceof Set) { 1546 Set<?> s = (Set<?>) o; 1547 return s.size() == size && index.keySet().containsAll(s); 1548 } 1549 return false; 1550 } 1551 1552 @Override 1553 public Iterator<Set<E>> iterator() { 1554 return new AbstractIterator<Set<E>>() { 1555 final BitSet bits = new BitSet(index.size()); 1556 1557 @Override 1558 protected Set<E> computeNext() { 1559 if (bits.isEmpty()) { 1560 bits.set(0, size); 1561 } else { 1562 int firstSetBit = bits.nextSetBit(0); 1563 int bitToFlip = bits.nextClearBit(firstSetBit); 1564 1565 if (bitToFlip == index.size()) { 1566 return endOfData(); 1567 } 1568 /* 1569 * The current set in sorted order looks like 1570 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1571 * where it does *not* contain bitToFlip. 1572 * 1573 * The next combination is 1574 * 1575 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1576 * 1577 * This is lexicographically next if you look at the combinations in descending order 1578 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1579 */ 1580 1581 bits.set(0, bitToFlip - firstSetBit - 1); 1582 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1583 bits.set(bitToFlip); 1584 } 1585 final BitSet copy = (BitSet) bits.clone(); 1586 return new AbstractSet<E>() { 1587 @Override 1588 public boolean contains(@NullableDecl Object o) { 1589 Integer i = index.get(o); 1590 return i != null && copy.get(i); 1591 } 1592 1593 @Override 1594 public Iterator<E> iterator() { 1595 return new AbstractIterator<E>() { 1596 int i = -1; 1597 1598 @Override 1599 protected E computeNext() { 1600 i = copy.nextSetBit(i + 1); 1601 if (i == -1) { 1602 return endOfData(); 1603 } 1604 return index.keySet().asList().get(i); 1605 } 1606 }; 1607 } 1608 1609 @Override 1610 public int size() { 1611 return size; 1612 } 1613 }; 1614 } 1615 }; 1616 } 1617 1618 @Override 1619 public int size() { 1620 return IntMath.binomial(index.size(), size); 1621 } 1622 1623 @Override 1624 public String toString() { 1625 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1626 } 1627 }; 1628 } 1629 1630 /** An implementation for {@link Set#hashCode()}. */ 1631 static int hashCodeImpl(Set<?> s) { 1632 int hashCode = 0; 1633 for (Object o : s) { 1634 hashCode += o != null ? o.hashCode() : 0; 1635 1636 hashCode = ~~hashCode; 1637 // Needed to deal with unusual integer overflow in GWT. 1638 } 1639 return hashCode; 1640 } 1641 1642 /** An implementation for {@link Set#equals(Object)}. */ 1643 static boolean equalsImpl(Set<?> s, @NullableDecl Object object) { 1644 if (s == object) { 1645 return true; 1646 } 1647 if (object instanceof Set) { 1648 Set<?> o = (Set<?>) object; 1649 1650 try { 1651 return s.size() == o.size() && s.containsAll(o); 1652 } catch (NullPointerException | ClassCastException ignored) { 1653 return false; 1654 } 1655 } 1656 return false; 1657 } 1658 1659 /** 1660 * Returns an unmodifiable view of the specified navigable set. This method allows modules to 1661 * provide users with "read-only" access to internal navigable sets. Query operations on the 1662 * returned set "read through" to the specified set, and attempts to modify the returned set, 1663 * whether direct or via its collection views, result in an {@code UnsupportedOperationException}. 1664 * 1665 * <p>The returned navigable set will be serializable if the specified navigable set is 1666 * serializable. 1667 * 1668 * @param set the navigable set for which an unmodifiable view is to be returned 1669 * @return an unmodifiable view of the specified navigable set 1670 * @since 12.0 1671 */ 1672 public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) { 1673 if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) { 1674 return set; 1675 } 1676 return new UnmodifiableNavigableSet<E>(set); 1677 } 1678 1679 static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E> 1680 implements NavigableSet<E>, Serializable { 1681 private final NavigableSet<E> delegate; 1682 private final SortedSet<E> unmodifiableDelegate; 1683 1684 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1685 this.delegate = checkNotNull(delegate); 1686 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1687 } 1688 1689 @Override 1690 protected SortedSet<E> delegate() { 1691 return unmodifiableDelegate; 1692 } 1693 1694 @Override 1695 public E lower(E e) { 1696 return delegate.lower(e); 1697 } 1698 1699 @Override 1700 public E floor(E e) { 1701 return delegate.floor(e); 1702 } 1703 1704 @Override 1705 public E ceiling(E e) { 1706 return delegate.ceiling(e); 1707 } 1708 1709 @Override 1710 public E higher(E e) { 1711 return delegate.higher(e); 1712 } 1713 1714 @Override 1715 public E pollFirst() { 1716 throw new UnsupportedOperationException(); 1717 } 1718 1719 @Override 1720 public E pollLast() { 1721 throw new UnsupportedOperationException(); 1722 } 1723 1724 @MonotonicNonNullDecl private transient UnmodifiableNavigableSet<E> descendingSet; 1725 1726 @Override 1727 public NavigableSet<E> descendingSet() { 1728 UnmodifiableNavigableSet<E> result = descendingSet; 1729 if (result == null) { 1730 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1731 result.descendingSet = this; 1732 } 1733 return result; 1734 } 1735 1736 @Override 1737 public Iterator<E> descendingIterator() { 1738 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1739 } 1740 1741 @Override 1742 public NavigableSet<E> subSet( 1743 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1744 return unmodifiableNavigableSet( 1745 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1746 } 1747 1748 @Override 1749 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1750 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1751 } 1752 1753 @Override 1754 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1755 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1756 } 1757 1758 private static final long serialVersionUID = 0; 1759 } 1760 1761 /** 1762 * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In 1763 * order to guarantee serial access, it is critical that <b>all</b> access to the backing 1764 * navigable set is accomplished through the returned navigable set (or its views). 1765 * 1766 * <p>It is imperative that the user manually synchronize on the returned sorted set when 1767 * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or 1768 * {@code tailSet} views. 1769 * 1770 * <pre>{@code 1771 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1772 * ... 1773 * synchronized (set) { 1774 * // Must be in the synchronized block 1775 * Iterator<E> it = set.iterator(); 1776 * while (it.hasNext()) { 1777 * foo(it.next()); 1778 * } 1779 * } 1780 * }</pre> 1781 * 1782 * <p>or: 1783 * 1784 * <pre>{@code 1785 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1786 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1787 * ... 1788 * synchronized (set) { // Note: set, not set2!!! 1789 * // Must be in the synchronized block 1790 * Iterator<E> it = set2.descendingIterator(); 1791 * while (it.hasNext()) 1792 * foo(it.next()); 1793 * } 1794 * } 1795 * }</pre> 1796 * 1797 * <p>Failure to follow this advice may result in non-deterministic behavior. 1798 * 1799 * <p>The returned navigable set will be serializable if the specified navigable set is 1800 * serializable. 1801 * 1802 * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set. 1803 * @return a synchronized view of the specified navigable set. 1804 * @since 13.0 1805 */ 1806 @GwtIncompatible // NavigableSet 1807 public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) { 1808 return Synchronized.navigableSet(navigableSet); 1809 } 1810 1811 /** Remove each element in an iterable from a set. */ 1812 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1813 boolean changed = false; 1814 while (iterator.hasNext()) { 1815 changed |= set.remove(iterator.next()); 1816 } 1817 return changed; 1818 } 1819 1820 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1821 checkNotNull(collection); // for GWT 1822 if (collection instanceof Multiset) { 1823 collection = ((Multiset<?>) collection).elementSet(); 1824 } 1825 /* 1826 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1827 * is just more than the set's size. We augment the test by 1828 * assuming that sets have fast contains() performance, and other 1829 * collections don't. See 1830 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1831 */ 1832 if (collection instanceof Set && collection.size() > set.size()) { 1833 return Iterators.removeAll(set.iterator(), collection); 1834 } else { 1835 return removeAllImpl(set, collection.iterator()); 1836 } 1837 } 1838 1839 @GwtIncompatible // NavigableSet 1840 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 1841 private final NavigableSet<E> forward; 1842 1843 DescendingSet(NavigableSet<E> forward) { 1844 this.forward = forward; 1845 } 1846 1847 @Override 1848 protected NavigableSet<E> delegate() { 1849 return forward; 1850 } 1851 1852 @Override 1853 public E lower(E e) { 1854 return forward.higher(e); 1855 } 1856 1857 @Override 1858 public E floor(E e) { 1859 return forward.ceiling(e); 1860 } 1861 1862 @Override 1863 public E ceiling(E e) { 1864 return forward.floor(e); 1865 } 1866 1867 @Override 1868 public E higher(E e) { 1869 return forward.lower(e); 1870 } 1871 1872 @Override 1873 public E pollFirst() { 1874 return forward.pollLast(); 1875 } 1876 1877 @Override 1878 public E pollLast() { 1879 return forward.pollFirst(); 1880 } 1881 1882 @Override 1883 public NavigableSet<E> descendingSet() { 1884 return forward; 1885 } 1886 1887 @Override 1888 public Iterator<E> descendingIterator() { 1889 return forward.iterator(); 1890 } 1891 1892 @Override 1893 public NavigableSet<E> subSet( 1894 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1895 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 1896 } 1897 1898 @Override 1899 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1900 return forward.tailSet(toElement, inclusive).descendingSet(); 1901 } 1902 1903 @Override 1904 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1905 return forward.headSet(fromElement, inclusive).descendingSet(); 1906 } 1907 1908 @SuppressWarnings("unchecked") 1909 @Override 1910 public Comparator<? super E> comparator() { 1911 Comparator<? super E> forwardComparator = forward.comparator(); 1912 if (forwardComparator == null) { 1913 return (Comparator) Ordering.natural().reverse(); 1914 } else { 1915 return reverse(forwardComparator); 1916 } 1917 } 1918 1919 // If we inline this, we get a javac error. 1920 private static <T> Ordering<T> reverse(Comparator<T> forward) { 1921 return Ordering.from(forward).reverse(); 1922 } 1923 1924 @Override 1925 public E first() { 1926 return forward.last(); 1927 } 1928 1929 @Override 1930 public SortedSet<E> headSet(E toElement) { 1931 return standardHeadSet(toElement); 1932 } 1933 1934 @Override 1935 public E last() { 1936 return forward.first(); 1937 } 1938 1939 @Override 1940 public SortedSet<E> subSet(E fromElement, E toElement) { 1941 return standardSubSet(fromElement, toElement); 1942 } 1943 1944 @Override 1945 public SortedSet<E> tailSet(E fromElement) { 1946 return standardTailSet(fromElement); 1947 } 1948 1949 @Override 1950 public Iterator<E> iterator() { 1951 return forward.descendingIterator(); 1952 } 1953 1954 @Override 1955 public Object[] toArray() { 1956 return standardToArray(); 1957 } 1958 1959 @Override 1960 public <T> T[] toArray(T[] array) { 1961 return standardToArray(array); 1962 } 1963 1964 @Override 1965 public String toString() { 1966 return standardToString(); 1967 } 1968 } 1969 1970 /** 1971 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 1972 * 1973 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link 1974 * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link 1975 * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object, 1976 * boolean) headSet()}) to actually construct the view. Consult these methods for a full 1977 * description of the returned view's behavior. 1978 * 1979 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 1980 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link 1981 * Comparator}, which can violate the natural ordering. Using this method (or in general using 1982 * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior. 1983 * 1984 * @since 20.0 1985 */ 1986 @Beta 1987 @GwtIncompatible // NavigableSet 1988 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 1989 NavigableSet<K> set, Range<K> range) { 1990 if (set.comparator() != null 1991 && set.comparator() != Ordering.natural() 1992 && range.hasLowerBound() 1993 && range.hasUpperBound()) { 1994 checkArgument( 1995 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 1996 "set is using a custom comparator which is inconsistent with the natural ordering."); 1997 } 1998 if (range.hasLowerBound() && range.hasUpperBound()) { 1999 return set.subSet( 2000 range.lowerEndpoint(), 2001 range.lowerBoundType() == BoundType.CLOSED, 2002 range.upperEndpoint(), 2003 range.upperBoundType() == BoundType.CLOSED); 2004 } else if (range.hasLowerBound()) { 2005 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2006 } else if (range.hasUpperBound()) { 2007 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2008 } 2009 return checkNotNull(set); 2010 } 2011}