001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkElementIndex;
021import static com.google.common.base.Preconditions.checkNotNull;
022import static com.google.common.base.Preconditions.checkPositionIndex;
023import static com.google.common.base.Preconditions.checkPositionIndexes;
024import static com.google.common.base.Preconditions.checkState;
025import static com.google.common.collect.CollectPreconditions.checkNonnegative;
026import static com.google.common.collect.CollectPreconditions.checkRemove;
027
028import com.google.common.annotations.Beta;
029import com.google.common.annotations.GwtCompatible;
030import com.google.common.annotations.GwtIncompatible;
031import com.google.common.annotations.VisibleForTesting;
032import com.google.common.base.Function;
033import com.google.common.base.Objects;
034import com.google.common.math.IntMath;
035import com.google.common.primitives.Ints;
036import com.google.errorprone.annotations.CanIgnoreReturnValue;
037import java.io.Serializable;
038import java.math.RoundingMode;
039import java.util.AbstractList;
040import java.util.AbstractSequentialList;
041import java.util.ArrayList;
042import java.util.Arrays;
043import java.util.Collection;
044import java.util.Collections;
045import java.util.Iterator;
046import java.util.LinkedList;
047import java.util.List;
048import java.util.ListIterator;
049import java.util.NoSuchElementException;
050import java.util.RandomAccess;
051import java.util.concurrent.CopyOnWriteArrayList;
052import org.checkerframework.checker.nullness.compatqual.NullableDecl;
053
054/**
055 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
056 * {@link Sets}, {@link Maps} and {@link Queues}.
057 *
058 * <p>See the Guava User Guide article on <a href=
059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> {@code Lists}</a>.
060 *
061 * @author Kevin Bourrillion
062 * @author Mike Bostock
063 * @author Louis Wasserman
064 * @since 2.0
065 */
066@GwtCompatible(emulated = true)
067public final class Lists {
068  private Lists() {}
069
070  // ArrayList
071
072  /**
073   * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier).
074   *
075   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead.
076   *
077   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
078   * deprecated. Instead, use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor}
079   * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
080   */
081  @GwtCompatible(serializable = true)
082  public static <E> ArrayList<E> newArrayList() {
083    return new ArrayList<>();
084  }
085
086  /**
087   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements.
088   *
089   * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or
090   * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
091   * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
092   * might be null, or you need support for {@link List#set(int, Object)}, use {@link
093   * Arrays#asList}.
094   *
095   * <p>Note that even when you do need the ability to add or remove, this method provides only a
096   * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
097   * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
098   * not actually very useful and will likely be deprecated in the future.
099   */
100  @SafeVarargs
101  @CanIgnoreReturnValue // TODO(kak): Remove this
102  @GwtCompatible(serializable = true)
103  public static <E> ArrayList<E> newArrayList(E... elements) {
104    checkNotNull(elements); // for GWT
105    // Avoid integer overflow when a large array is passed in
106    int capacity = computeArrayListCapacity(elements.length);
107    ArrayList<E> list = new ArrayList<>(capacity);
108    Collections.addAll(list, elements);
109    return list;
110  }
111
112  @VisibleForTesting
113  static int computeArrayListCapacity(int arraySize) {
114    checkNonnegative(arraySize, "arraySize");
115
116    // TODO(kevinb): Figure out the right behavior, and document it
117    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
118  }
119
120  /**
121   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
122   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
123   *
124   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
125   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
126   * FluentIterable} and call {@code elements.toList()}.)
127   *
128   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
129   * need this method. Use the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection)
130   * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
131   * syntax</a>.
132   */
133  @CanIgnoreReturnValue // TODO(kak): Remove this
134  @GwtCompatible(serializable = true)
135  public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) {
136    checkNotNull(elements); // for GWT
137    // Let ArrayList's sizing logic work, if possible
138    return (elements instanceof Collection)
139        ? new ArrayList<>(Collections2.cast(elements))
140        : newArrayList(elements.iterator());
141  }
142
143  /**
144   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
145   * shortcut for creating an empty list and then calling {@link Iterators#addAll}.
146   *
147   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
148   * ImmutableList#copyOf(Iterator)} instead.
149   */
150  @CanIgnoreReturnValue // TODO(kak): Remove this
151  @GwtCompatible(serializable = true)
152  public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) {
153    ArrayList<E> list = newArrayList();
154    Iterators.addAll(list, elements);
155    return list;
156  }
157
158  /**
159   * Creates an {@code ArrayList} instance backed by an array with the specified initial size;
160   * simply delegates to {@link ArrayList#ArrayList(int)}.
161   *
162   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
163   * deprecated. Instead, use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)}
164   * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
165   * (Unlike here, there is no risk of overload ambiguity, since the {@code ArrayList} constructors
166   * very wisely did not accept varargs.)
167   *
168   * @param initialArraySize the exact size of the initial backing array for the returned array list
169   *     ({@code ArrayList} documentation calls this value the "capacity")
170   * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
171   *     reaches {@code initialArraySize + 1}
172   * @throws IllegalArgumentException if {@code initialArraySize} is negative
173   */
174  @GwtCompatible(serializable = true)
175  public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) {
176    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
177    return new ArrayList<>(initialArraySize);
178  }
179
180  /**
181   * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an
182   * unspecified amount of padding; you almost certainly mean to call {@link
183   * #newArrayListWithCapacity} (see that method for further advice on usage).
184   *
185   * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want
186   * some amount of padding, it's best if you choose your desired amount explicitly.
187   *
188   * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
189   * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
190   *     elements
191   * @throws IllegalArgumentException if {@code estimatedSize} is negative
192   */
193  @GwtCompatible(serializable = true)
194  public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) {
195    return new ArrayList<>(computeArrayListCapacity(estimatedSize));
196  }
197
198  // LinkedList
199
200  /**
201   * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier).
202   *
203   * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()}
204   * instead.
205   *
206   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
207   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
208   * spent a lot of time benchmarking your specific needs, use one of those instead.
209   *
210   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
211   * deprecated. Instead, use the {@code LinkedList} {@linkplain LinkedList#LinkedList()
212   * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
213   * syntax</a>.
214   */
215  @GwtCompatible(serializable = true)
216  public static <E> LinkedList<E> newLinkedList() {
217    return new LinkedList<>();
218  }
219
220  /**
221   * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin
222   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
223   *
224   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
225   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
226   * FluentIterable} and call {@code elements.toList()}.)
227   *
228   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
229   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
230   * spent a lot of time benchmarking your specific needs, use one of those instead.
231   *
232   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
233   * need this method. Use the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection)
234   * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond"
235   * syntax</a>.
236   */
237  @GwtCompatible(serializable = true)
238  public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) {
239    LinkedList<E> list = newLinkedList();
240    Iterables.addAll(list, elements);
241    return list;
242  }
243
244  /**
245   * Creates an empty {@code CopyOnWriteArrayList} instance.
246   *
247   * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList}
248   * instead.
249   *
250   * @return a new, empty {@code CopyOnWriteArrayList}
251   * @since 12.0
252   */
253  @GwtIncompatible // CopyOnWriteArrayList
254  public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
255    return new CopyOnWriteArrayList<>();
256  }
257
258  /**
259   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
260   *
261   * @param elements the elements that the list should contain, in order
262   * @return a new {@code CopyOnWriteArrayList} containing those elements
263   * @since 12.0
264   */
265  @GwtIncompatible // CopyOnWriteArrayList
266  public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
267      Iterable<? extends E> elements) {
268    // We copy elements to an ArrayList first, rather than incurring the
269    // quadratic cost of adding them to the COWAL directly.
270    Collection<? extends E> elementsCollection =
271        (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements);
272    return new CopyOnWriteArrayList<>(elementsCollection);
273  }
274
275  /**
276   * Returns an unmodifiable list containing the specified first element and backed by the specified
277   * array of additional elements. Changes to the {@code rest} array will be reflected in the
278   * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
279   *
280   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
281   * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
282   *
283   * <p>The returned list is serializable and implements {@link RandomAccess}.
284   *
285   * @param first the first element
286   * @param rest an array of additional elements, possibly empty
287   * @return an unmodifiable list containing the specified elements
288   */
289  public static <E> List<E> asList(@NullableDecl E first, E[] rest) {
290    return new OnePlusArrayList<>(first, rest);
291  }
292
293  /** @see Lists#asList(Object, Object[]) */
294  private static class OnePlusArrayList<E> extends AbstractList<E>
295      implements Serializable, RandomAccess {
296    final E first;
297    final E[] rest;
298
299    OnePlusArrayList(@NullableDecl E first, E[] rest) {
300      this.first = first;
301      this.rest = checkNotNull(rest);
302    }
303
304    @Override
305    public int size() {
306      return IntMath.saturatedAdd(rest.length, 1);
307    }
308
309    @Override
310    public E get(int index) {
311      // check explicitly so the IOOBE will have the right message
312      checkElementIndex(index, size());
313      return (index == 0) ? first : rest[index - 1];
314    }
315
316    private static final long serialVersionUID = 0;
317  }
318
319  /**
320   * Returns an unmodifiable list containing the specified first and second element, and backed by
321   * the specified array of additional elements. Changes to the {@code rest} array will be reflected
322   * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
323   *
324   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
325   * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
326   * argument count.
327   *
328   * <p>The returned list is serializable and implements {@link RandomAccess}.
329   *
330   * @param first the first element
331   * @param second the second element
332   * @param rest an array of additional elements, possibly empty
333   * @return an unmodifiable list containing the specified elements
334   */
335  public static <E> List<E> asList(@NullableDecl E first, @NullableDecl E second, E[] rest) {
336    return new TwoPlusArrayList<>(first, second, rest);
337  }
338
339  /** @see Lists#asList(Object, Object, Object[]) */
340  private static class TwoPlusArrayList<E> extends AbstractList<E>
341      implements Serializable, RandomAccess {
342    final E first;
343    final E second;
344    final E[] rest;
345
346    TwoPlusArrayList(@NullableDecl E first, @NullableDecl E second, E[] rest) {
347      this.first = first;
348      this.second = second;
349      this.rest = checkNotNull(rest);
350    }
351
352    @Override
353    public int size() {
354      return IntMath.saturatedAdd(rest.length, 2);
355    }
356
357    @Override
358    public E get(int index) {
359      switch (index) {
360        case 0:
361          return first;
362        case 1:
363          return second;
364        default:
365          // check explicitly so the IOOBE will have the right message
366          checkElementIndex(index, size());
367          return rest[index - 2];
368      }
369    }
370
371    private static final long serialVersionUID = 0;
372  }
373
374  /**
375   * Returns every possible list that can be formed by choosing one element from each of the given
376   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
377   * product</a>" of the lists. For example:
378   *
379   * <pre>{@code
380   * Lists.cartesianProduct(ImmutableList.of(
381   *     ImmutableList.of(1, 2),
382   *     ImmutableList.of("A", "B", "C")))
383   * }</pre>
384   *
385   * <p>returns a list containing six lists in the following order:
386   *
387   * <ul>
388   *   <li>{@code ImmutableList.of(1, "A")}
389   *   <li>{@code ImmutableList.of(1, "B")}
390   *   <li>{@code ImmutableList.of(1, "C")}
391   *   <li>{@code ImmutableList.of(2, "A")}
392   *   <li>{@code ImmutableList.of(2, "B")}
393   *   <li>{@code ImmutableList.of(2, "C")}
394   * </ul>
395   *
396   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
397   * products that you would get from nesting for loops:
398   *
399   * <pre>{@code
400   * for (B b0 : lists.get(0)) {
401   *   for (B b1 : lists.get(1)) {
402   *     ...
403   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
404   *     // operate on tuple
405   *   }
406   * }
407   * }</pre>
408   *
409   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
410   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
411   * list (counter-intuitive, but mathematically consistent).
412   *
413   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
414   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
415   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
416   * is iterated are the individual lists created, and these are not retained after iteration.
417   *
418   * @param lists the lists to choose elements from, in the order that the elements chosen from
419   *     those lists should appear in the resulting lists
420   * @param <B> any common base class shared by all axes (often just {@link Object})
421   * @return the Cartesian product, as an immutable list containing immutable lists
422   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
423   *     {@link Integer#MAX_VALUE}
424   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
425   *     a provided list is null
426   * @since 19.0
427   */
428  public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) {
429    return CartesianList.create(lists);
430  }
431
432  /**
433   * Returns every possible list that can be formed by choosing one element from each of the given
434   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
435   * product</a>" of the lists. For example:
436   *
437   * <pre>{@code
438   * Lists.cartesianProduct(ImmutableList.of(
439   *     ImmutableList.of(1, 2),
440   *     ImmutableList.of("A", "B", "C")))
441   * }</pre>
442   *
443   * <p>returns a list containing six lists in the following order:
444   *
445   * <ul>
446   *   <li>{@code ImmutableList.of(1, "A")}
447   *   <li>{@code ImmutableList.of(1, "B")}
448   *   <li>{@code ImmutableList.of(1, "C")}
449   *   <li>{@code ImmutableList.of(2, "A")}
450   *   <li>{@code ImmutableList.of(2, "B")}
451   *   <li>{@code ImmutableList.of(2, "C")}
452   * </ul>
453   *
454   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
455   * products that you would get from nesting for loops:
456   *
457   * <pre>{@code
458   * for (B b0 : lists.get(0)) {
459   *   for (B b1 : lists.get(1)) {
460   *     ...
461   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
462   *     // operate on tuple
463   *   }
464   * }
465   * }</pre>
466   *
467   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
468   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
469   * list (counter-intuitive, but mathematically consistent).
470   *
471   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
472   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
473   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
474   * is iterated are the individual lists created, and these are not retained after iteration.
475   *
476   * @param lists the lists to choose elements from, in the order that the elements chosen from
477   *     those lists should appear in the resulting lists
478   * @param <B> any common base class shared by all axes (often just {@link Object})
479   * @return the Cartesian product, as an immutable list containing immutable lists
480   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
481   *     {@link Integer#MAX_VALUE}
482   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
483   *     a provided list is null
484   * @since 19.0
485   */
486  @SafeVarargs
487  public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) {
488    return cartesianProduct(Arrays.asList(lists));
489  }
490
491  /**
492   * Returns a list that applies {@code function} to each element of {@code fromList}. The returned
493   * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
494   * in the returned list and vice versa.
495   *
496   * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored
497   * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
498   * in the returned list.
499   *
500   * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list
501   * to be a view, but it means that the function will be applied many times for bulk operations
502   * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
503   * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
504   * view, copy the returned list into a new list of your choosing.
505   *
506   * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
507   * list is threadsafe if the supplied list and function are.
508   *
509   * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link
510   * Collections2#transform} or {@link Iterables#transform}.
511   *
512   * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList},
513   * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This
514   * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>.
515   * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
516   * serialize the copy. Other methods similar to this do not implement serialization at all for
517   * this reason.
518   *
519   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
520   * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
521   * to migrate to streams.
522   */
523  public static <F, T> List<T> transform(
524      List<F> fromList, Function<? super F, ? extends T> function) {
525    return (fromList instanceof RandomAccess)
526        ? new TransformingRandomAccessList<>(fromList, function)
527        : new TransformingSequentialList<>(fromList, function);
528  }
529
530  /**
531   * Implementation of a sequential transforming list.
532   *
533   * @see Lists#transform
534   */
535  private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T>
536      implements Serializable {
537    final List<F> fromList;
538    final Function<? super F, ? extends T> function;
539
540    TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) {
541      this.fromList = checkNotNull(fromList);
542      this.function = checkNotNull(function);
543    }
544
545    /**
546     * The default implementation inherited is based on iteration and removal of each element which
547     * can be overkill. That's why we forward this call directly to the backing list.
548     */
549    @Override
550    public void clear() {
551      fromList.clear();
552    }
553
554    @Override
555    public int size() {
556      return fromList.size();
557    }
558
559    @Override
560    public ListIterator<T> listIterator(final int index) {
561      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
562        @Override
563        T transform(F from) {
564          return function.apply(from);
565        }
566      };
567    }
568
569    private static final long serialVersionUID = 0;
570  }
571
572  /**
573   * Implementation of a transforming random access list. We try to make as many of these methods
574   * pass-through to the source list as possible so that the performance characteristics of the
575   * source list and transformed list are similar.
576   *
577   * @see Lists#transform
578   */
579  private static class TransformingRandomAccessList<F, T> extends AbstractList<T>
580      implements RandomAccess, Serializable {
581    final List<F> fromList;
582    final Function<? super F, ? extends T> function;
583
584    TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) {
585      this.fromList = checkNotNull(fromList);
586      this.function = checkNotNull(function);
587    }
588
589    @Override
590    public void clear() {
591      fromList.clear();
592    }
593
594    @Override
595    public T get(int index) {
596      return function.apply(fromList.get(index));
597    }
598
599    @Override
600    public Iterator<T> iterator() {
601      return listIterator();
602    }
603
604    @Override
605    public ListIterator<T> listIterator(int index) {
606      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
607        @Override
608        T transform(F from) {
609          return function.apply(from);
610        }
611      };
612    }
613
614    @Override
615    public boolean isEmpty() {
616      return fromList.isEmpty();
617    }
618
619    @Override
620    public T remove(int index) {
621      return function.apply(fromList.remove(index));
622    }
623
624    @Override
625    public int size() {
626      return fromList.size();
627    }
628
629    private static final long serialVersionUID = 0;
630  }
631
632  /**
633   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
634   * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
635   * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
636   * containing two inner lists of three and two elements, all in the original order.
637   *
638   * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner
639   * lists are sublist views of the original list, produced on demand using {@link List#subList(int,
640   * int)}, and are subject to all the usual caveats about modification as explained in that API.
641   *
642   * @param list the list to return consecutive sublists of
643   * @param size the desired size of each sublist (the last may be smaller)
644   * @return a list of consecutive sublists
645   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
646   */
647  public static <T> List<List<T>> partition(List<T> list, int size) {
648    checkNotNull(list);
649    checkArgument(size > 0);
650    return (list instanceof RandomAccess)
651        ? new RandomAccessPartition<>(list, size)
652        : new Partition<>(list, size);
653  }
654
655  private static class Partition<T> extends AbstractList<List<T>> {
656    final List<T> list;
657    final int size;
658
659    Partition(List<T> list, int size) {
660      this.list = list;
661      this.size = size;
662    }
663
664    @Override
665    public List<T> get(int index) {
666      checkElementIndex(index, size());
667      int start = index * size;
668      int end = Math.min(start + size, list.size());
669      return list.subList(start, end);
670    }
671
672    @Override
673    public int size() {
674      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
675    }
676
677    @Override
678    public boolean isEmpty() {
679      return list.isEmpty();
680    }
681  }
682
683  private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess {
684    RandomAccessPartition(List<T> list, int size) {
685      super(list, size);
686    }
687  }
688
689  /**
690   * Returns a view of the specified string as an immutable list of {@code Character} values.
691   *
692   * @since 7.0
693   */
694  public static ImmutableList<Character> charactersOf(String string) {
695    return new StringAsImmutableList(checkNotNull(string));
696  }
697
698  @SuppressWarnings("serial") // serialized using ImmutableList serialization
699  private static final class StringAsImmutableList extends ImmutableList<Character> {
700
701    private final String string;
702
703    StringAsImmutableList(String string) {
704      this.string = string;
705    }
706
707    @Override
708    public int indexOf(@NullableDecl Object object) {
709      return (object instanceof Character) ? string.indexOf((Character) object) : -1;
710    }
711
712    @Override
713    public int lastIndexOf(@NullableDecl Object object) {
714      return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
715    }
716
717    @Override
718    public ImmutableList<Character> subList(int fromIndex, int toIndex) {
719      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
720      return charactersOf(string.substring(fromIndex, toIndex));
721    }
722
723    @Override
724    boolean isPartialView() {
725      return false;
726    }
727
728    @Override
729    public Character get(int index) {
730      checkElementIndex(index, size()); // for GWT
731      return string.charAt(index);
732    }
733
734    @Override
735    public int size() {
736      return string.length();
737    }
738  }
739
740  /**
741   * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing
742   * {@code sequence} as a sequence of Unicode code units. The view does not support any
743   * modification operations, but reflects any changes to the underlying character sequence.
744   *
745   * @param sequence the character sequence to view as a {@code List} of characters
746   * @return an {@code List<Character>} view of the character sequence
747   * @since 7.0
748   */
749  @Beta
750  public static List<Character> charactersOf(CharSequence sequence) {
751    return new CharSequenceAsList(checkNotNull(sequence));
752  }
753
754  private static final class CharSequenceAsList extends AbstractList<Character> {
755    private final CharSequence sequence;
756
757    CharSequenceAsList(CharSequence sequence) {
758      this.sequence = sequence;
759    }
760
761    @Override
762    public Character get(int index) {
763      checkElementIndex(index, size()); // for GWT
764      return sequence.charAt(index);
765    }
766
767    @Override
768    public int size() {
769      return sequence.length();
770    }
771  }
772
773  /**
774   * Returns a reversed view of the specified list. For example, {@code
775   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
776   * list is backed by this list, so changes in the returned list are reflected in this list, and
777   * vice-versa. The returned list supports all of the optional list operations supported by this
778   * list.
779   *
780   * <p>The returned list is random-access if the specified list is random access.
781   *
782   * @since 7.0
783   */
784  public static <T> List<T> reverse(List<T> list) {
785    if (list instanceof ImmutableList) {
786      return ((ImmutableList<T>) list).reverse();
787    } else if (list instanceof ReverseList) {
788      return ((ReverseList<T>) list).getForwardList();
789    } else if (list instanceof RandomAccess) {
790      return new RandomAccessReverseList<>(list);
791    } else {
792      return new ReverseList<>(list);
793    }
794  }
795
796  private static class ReverseList<T> extends AbstractList<T> {
797    private final List<T> forwardList;
798
799    ReverseList(List<T> forwardList) {
800      this.forwardList = checkNotNull(forwardList);
801    }
802
803    List<T> getForwardList() {
804      return forwardList;
805    }
806
807    private int reverseIndex(int index) {
808      int size = size();
809      checkElementIndex(index, size);
810      return (size - 1) - index;
811    }
812
813    private int reversePosition(int index) {
814      int size = size();
815      checkPositionIndex(index, size);
816      return size - index;
817    }
818
819    @Override
820    public void add(int index, @NullableDecl T element) {
821      forwardList.add(reversePosition(index), element);
822    }
823
824    @Override
825    public void clear() {
826      forwardList.clear();
827    }
828
829    @Override
830    public T remove(int index) {
831      return forwardList.remove(reverseIndex(index));
832    }
833
834    @Override
835    protected void removeRange(int fromIndex, int toIndex) {
836      subList(fromIndex, toIndex).clear();
837    }
838
839    @Override
840    public T set(int index, @NullableDecl T element) {
841      return forwardList.set(reverseIndex(index), element);
842    }
843
844    @Override
845    public T get(int index) {
846      return forwardList.get(reverseIndex(index));
847    }
848
849    @Override
850    public int size() {
851      return forwardList.size();
852    }
853
854    @Override
855    public List<T> subList(int fromIndex, int toIndex) {
856      checkPositionIndexes(fromIndex, toIndex, size());
857      return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
858    }
859
860    @Override
861    public Iterator<T> iterator() {
862      return listIterator();
863    }
864
865    @Override
866    public ListIterator<T> listIterator(int index) {
867      int start = reversePosition(index);
868      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
869      return new ListIterator<T>() {
870
871        boolean canRemoveOrSet;
872
873        @Override
874        public void add(T e) {
875          forwardIterator.add(e);
876          forwardIterator.previous();
877          canRemoveOrSet = false;
878        }
879
880        @Override
881        public boolean hasNext() {
882          return forwardIterator.hasPrevious();
883        }
884
885        @Override
886        public boolean hasPrevious() {
887          return forwardIterator.hasNext();
888        }
889
890        @Override
891        public T next() {
892          if (!hasNext()) {
893            throw new NoSuchElementException();
894          }
895          canRemoveOrSet = true;
896          return forwardIterator.previous();
897        }
898
899        @Override
900        public int nextIndex() {
901          return reversePosition(forwardIterator.nextIndex());
902        }
903
904        @Override
905        public T previous() {
906          if (!hasPrevious()) {
907            throw new NoSuchElementException();
908          }
909          canRemoveOrSet = true;
910          return forwardIterator.next();
911        }
912
913        @Override
914        public int previousIndex() {
915          return nextIndex() - 1;
916        }
917
918        @Override
919        public void remove() {
920          checkRemove(canRemoveOrSet);
921          forwardIterator.remove();
922          canRemoveOrSet = false;
923        }
924
925        @Override
926        public void set(T e) {
927          checkState(canRemoveOrSet);
928          forwardIterator.set(e);
929        }
930      };
931    }
932  }
933
934  private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess {
935    RandomAccessReverseList(List<T> forwardList) {
936      super(forwardList);
937    }
938  }
939
940  /** An implementation of {@link List#hashCode()}. */
941  static int hashCodeImpl(List<?> list) {
942    // TODO(lowasser): worth optimizing for RandomAccess?
943    int hashCode = 1;
944    for (Object o : list) {
945      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
946
947      hashCode = ~~hashCode;
948      // needed to deal with GWT integer overflow
949    }
950    return hashCode;
951  }
952
953  /** An implementation of {@link List#equals(Object)}. */
954  static boolean equalsImpl(List<?> thisList, @NullableDecl Object other) {
955    if (other == checkNotNull(thisList)) {
956      return true;
957    }
958    if (!(other instanceof List)) {
959      return false;
960    }
961    List<?> otherList = (List<?>) other;
962    int size = thisList.size();
963    if (size != otherList.size()) {
964      return false;
965    }
966    if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
967      // avoid allocation and use the faster loop
968      for (int i = 0; i < size; i++) {
969        if (!Objects.equal(thisList.get(i), otherList.get(i))) {
970          return false;
971        }
972      }
973      return true;
974    } else {
975      return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
976    }
977  }
978
979  /** An implementation of {@link List#addAll(int, Collection)}. */
980  static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) {
981    boolean changed = false;
982    ListIterator<E> listIterator = list.listIterator(index);
983    for (E e : elements) {
984      listIterator.add(e);
985      changed = true;
986    }
987    return changed;
988  }
989
990  /** An implementation of {@link List#indexOf(Object)}. */
991  static int indexOfImpl(List<?> list, @NullableDecl Object element) {
992    if (list instanceof RandomAccess) {
993      return indexOfRandomAccess(list, element);
994    } else {
995      ListIterator<?> listIterator = list.listIterator();
996      while (listIterator.hasNext()) {
997        if (Objects.equal(element, listIterator.next())) {
998          return listIterator.previousIndex();
999        }
1000      }
1001      return -1;
1002    }
1003  }
1004
1005  private static int indexOfRandomAccess(List<?> list, @NullableDecl Object element) {
1006    int size = list.size();
1007    if (element == null) {
1008      for (int i = 0; i < size; i++) {
1009        if (list.get(i) == null) {
1010          return i;
1011        }
1012      }
1013    } else {
1014      for (int i = 0; i < size; i++) {
1015        if (element.equals(list.get(i))) {
1016          return i;
1017        }
1018      }
1019    }
1020    return -1;
1021  }
1022
1023  /** An implementation of {@link List#lastIndexOf(Object)}. */
1024  static int lastIndexOfImpl(List<?> list, @NullableDecl Object element) {
1025    if (list instanceof RandomAccess) {
1026      return lastIndexOfRandomAccess(list, element);
1027    } else {
1028      ListIterator<?> listIterator = list.listIterator(list.size());
1029      while (listIterator.hasPrevious()) {
1030        if (Objects.equal(element, listIterator.previous())) {
1031          return listIterator.nextIndex();
1032        }
1033      }
1034      return -1;
1035    }
1036  }
1037
1038  private static int lastIndexOfRandomAccess(List<?> list, @NullableDecl Object element) {
1039    if (element == null) {
1040      for (int i = list.size() - 1; i >= 0; i--) {
1041        if (list.get(i) == null) {
1042          return i;
1043        }
1044      }
1045    } else {
1046      for (int i = list.size() - 1; i >= 0; i--) {
1047        if (element.equals(list.get(i))) {
1048          return i;
1049        }
1050      }
1051    }
1052    return -1;
1053  }
1054
1055  /** Returns an implementation of {@link List#listIterator(int)}. */
1056  static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) {
1057    return new AbstractListWrapper<>(list).listIterator(index);
1058  }
1059
1060  /** An implementation of {@link List#subList(int, int)}. */
1061  static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) {
1062    List<E> wrapper;
1063    if (list instanceof RandomAccess) {
1064      wrapper =
1065          new RandomAccessListWrapper<E>(list) {
1066            @Override
1067            public ListIterator<E> listIterator(int index) {
1068              return backingList.listIterator(index);
1069            }
1070
1071            private static final long serialVersionUID = 0;
1072          };
1073    } else {
1074      wrapper =
1075          new AbstractListWrapper<E>(list) {
1076            @Override
1077            public ListIterator<E> listIterator(int index) {
1078              return backingList.listIterator(index);
1079            }
1080
1081            private static final long serialVersionUID = 0;
1082          };
1083    }
1084    return wrapper.subList(fromIndex, toIndex);
1085  }
1086
1087  private static class AbstractListWrapper<E> extends AbstractList<E> {
1088    final List<E> backingList;
1089
1090    AbstractListWrapper(List<E> backingList) {
1091      this.backingList = checkNotNull(backingList);
1092    }
1093
1094    @Override
1095    public void add(int index, E element) {
1096      backingList.add(index, element);
1097    }
1098
1099    @Override
1100    public boolean addAll(int index, Collection<? extends E> c) {
1101      return backingList.addAll(index, c);
1102    }
1103
1104    @Override
1105    public E get(int index) {
1106      return backingList.get(index);
1107    }
1108
1109    @Override
1110    public E remove(int index) {
1111      return backingList.remove(index);
1112    }
1113
1114    @Override
1115    public E set(int index, E element) {
1116      return backingList.set(index, element);
1117    }
1118
1119    @Override
1120    public boolean contains(Object o) {
1121      return backingList.contains(o);
1122    }
1123
1124    @Override
1125    public int size() {
1126      return backingList.size();
1127    }
1128  }
1129
1130  private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E>
1131      implements RandomAccess {
1132    RandomAccessListWrapper(List<E> backingList) {
1133      super(backingList);
1134    }
1135  }
1136
1137  /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
1138  static <T> List<T> cast(Iterable<T> iterable) {
1139    return (List<T>) iterable;
1140  }
1141}