001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Optional; 034import java.util.Queue; 035import java.util.Set; 036import org.checkerframework.checker.nullness.compatqual.NullableDecl; 037 038/** 039 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 040 * 041 * @author James Sexton 042 * @author Joshua O'Madadhain 043 * @since 20.0 044 */ 045@Beta 046public final class Graphs { 047 048 private Graphs() {} 049 050 // Graph query methods 051 052 /** 053 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 054 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 055 * and ending with the same node. 056 * 057 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 058 */ 059 public static <N> boolean hasCycle(Graph<N> graph) { 060 int numEdges = graph.edges().size(); 061 if (numEdges == 0) { 062 return false; // An edge-free graph is acyclic by definition. 063 } 064 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 065 return true; // Optimization for the undirected case: at least one cycle must exist. 066 } 067 068 Map<Object, NodeVisitState> visitedNodes = 069 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 070 for (N node : graph.nodes()) { 071 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 072 return true; 073 } 074 } 075 return false; 076 } 077 078 /** 079 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 080 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 081 * starting and ending with the same node. 082 * 083 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 084 */ 085 public static boolean hasCycle(Network<?, ?> network) { 086 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 087 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 088 if (!network.isDirected() 089 && network.allowsParallelEdges() 090 && network.edges().size() > network.asGraph().edges().size()) { 091 return true; 092 } 093 return hasCycle(network.asGraph()); 094 } 095 096 /** 097 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 098 * already visited (following only outgoing edges and without reusing edges), we know there's a 099 * cycle in the graph. 100 */ 101 private static <N> boolean subgraphHasCycle( 102 Graph<N> graph, 103 Map<Object, NodeVisitState> visitedNodes, 104 N node, 105 @NullableDecl N previousNode) { 106 NodeVisitState state = visitedNodes.get(node); 107 if (state == NodeVisitState.COMPLETE) { 108 return false; 109 } 110 if (state == NodeVisitState.PENDING) { 111 return true; 112 } 113 114 visitedNodes.put(node, NodeVisitState.PENDING); 115 for (N nextNode : graph.successors(node)) { 116 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 117 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 118 return true; 119 } 120 } 121 visitedNodes.put(node, NodeVisitState.COMPLETE); 122 return false; 123 } 124 125 /** 126 * Determines whether an edge has already been used during traversal. In the directed case a cycle 127 * is always detected before reusing an edge, so no special logic is required. In the undirected 128 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 129 * from B to A). 130 */ 131 private static boolean canTraverseWithoutReusingEdge( 132 Graph<?> graph, Object nextNode, @NullableDecl Object previousNode) { 133 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 134 return true; 135 } 136 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 137 // edges, so this traversal would require reusing the undirected AB edge. 138 return false; 139 } 140 141 /** 142 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 143 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 144 * Object) reachable} from node A. 145 * 146 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 147 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 148 * be updated after modifications to {@code graph}. 149 */ 150 // TODO(b/31438252): Consider potential optimizations for this algorithm. 151 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 152 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 153 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 154 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 155 156 if (graph.isDirected()) { 157 // Note: works for both directed and undirected graphs, but we only use in the directed case. 158 for (N node : graph.nodes()) { 159 for (N reachableNode : reachableNodes(graph, node)) { 160 transitiveClosure.putEdge(node, reachableNode); 161 } 162 } 163 } else { 164 // An optimization for the undirected case: for every node B reachable from node A, 165 // node A and node B have the same reachability set. 166 Set<N> visitedNodes = new HashSet<N>(); 167 for (N node : graph.nodes()) { 168 if (!visitedNodes.contains(node)) { 169 Set<N> reachableNodes = reachableNodes(graph, node); 170 visitedNodes.addAll(reachableNodes); 171 int pairwiseMatch = 1; // start at 1 to include self-loops 172 for (N nodeU : reachableNodes) { 173 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 174 transitiveClosure.putEdge(nodeU, nodeV); 175 } 176 } 177 } 178 } 179 } 180 181 return transitiveClosure; 182 } 183 184 /** 185 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 186 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 187 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 188 * 189 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 190 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 191 * not be updated after modifications to {@code graph}. 192 * 193 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 194 */ 195 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 196 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 197 Set<N> visitedNodes = new LinkedHashSet<N>(); 198 Queue<N> queuedNodes = new ArrayDeque<N>(); 199 visitedNodes.add(node); 200 queuedNodes.add(node); 201 // Perform a breadth-first traversal rooted at the input node. 202 while (!queuedNodes.isEmpty()) { 203 N currentNode = queuedNodes.remove(); 204 for (N successor : graph.successors(currentNode)) { 205 if (visitedNodes.add(successor)) { 206 queuedNodes.add(successor); 207 } 208 } 209 } 210 return Collections.unmodifiableSet(visitedNodes); 211 } 212 213 /** 214 * @deprecated Use {@link Graph#equals(Object)} instead. This method will be removed in January 215 * 2018. 216 */ 217 // TODO(user): Delete this method. 218 @Deprecated 219 public static boolean equivalent(@NullableDecl Graph<?> graphA, @NullableDecl Graph<?> graphB) { 220 return Objects.equal(graphA, graphB); 221 } 222 223 /** 224 * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method will be removed in 225 * January 2018. 226 */ 227 // TODO(user): Delete this method. 228 @Deprecated 229 public static boolean equivalent( 230 @NullableDecl ValueGraph<?, ?> graphA, @NullableDecl ValueGraph<?, ?> graphB) { 231 return Objects.equal(graphA, graphB); 232 } 233 234 /** 235 * @deprecated Use {@link Network#equals(Object)} instead. This method will be removed in January 236 * 2018. 237 */ 238 // TODO(user): Delete this method. 239 @Deprecated 240 public static boolean equivalent( 241 @NullableDecl Network<?, ?> networkA, @NullableDecl Network<?, ?> networkB) { 242 return Objects.equal(networkA, networkB); 243 } 244 245 // Graph mutation methods 246 247 // Graph view methods 248 249 /** 250 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 251 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 252 */ 253 public static <N> Graph<N> transpose(Graph<N> graph) { 254 if (!graph.isDirected()) { 255 return graph; // the transpose of an undirected graph is an identical graph 256 } 257 258 if (graph instanceof TransposedGraph) { 259 return ((TransposedGraph<N>) graph).graph; 260 } 261 262 return new TransposedGraph<N>(graph); 263 } 264 265 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 266 // AbstractGraph) derives its behavior from calling successors(). 267 private static class TransposedGraph<N> extends ForwardingGraph<N> { 268 private final Graph<N> graph; 269 270 TransposedGraph(Graph<N> graph) { 271 this.graph = graph; 272 } 273 274 @Override 275 protected Graph<N> delegate() { 276 return graph; 277 } 278 279 @Override 280 public Set<N> predecessors(N node) { 281 return delegate().successors(node); // transpose 282 } 283 284 @Override 285 public Set<N> successors(N node) { 286 return delegate().predecessors(node); // transpose 287 } 288 289 @Override 290 public int inDegree(N node) { 291 return delegate().outDegree(node); // transpose 292 } 293 294 @Override 295 public int outDegree(N node) { 296 return delegate().inDegree(node); // transpose 297 } 298 299 @Override 300 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 301 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 302 } 303 } 304 305 /** 306 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 307 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 308 */ 309 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 310 if (!graph.isDirected()) { 311 return graph; // the transpose of an undirected graph is an identical graph 312 } 313 314 if (graph instanceof TransposedValueGraph) { 315 return ((TransposedValueGraph<N, V>) graph).graph; 316 } 317 318 return new TransposedValueGraph<>(graph); 319 } 320 321 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 322 // AbstractValueGraph) derives its behavior from calling successors(). 323 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 324 private final ValueGraph<N, V> graph; 325 326 TransposedValueGraph(ValueGraph<N, V> graph) { 327 this.graph = graph; 328 } 329 330 @Override 331 protected ValueGraph<N, V> delegate() { 332 return graph; 333 } 334 335 @Override 336 public Set<N> predecessors(N node) { 337 return delegate().successors(node); // transpose 338 } 339 340 @Override 341 public Set<N> successors(N node) { 342 return delegate().predecessors(node); // transpose 343 } 344 345 @Override 346 public int inDegree(N node) { 347 return delegate().outDegree(node); // transpose 348 } 349 350 @Override 351 public int outDegree(N node) { 352 return delegate().inDegree(node); // transpose 353 } 354 355 @Override 356 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 357 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 358 } 359 360 @Override 361 public Optional<V> edgeValue(N nodeU, N nodeV) { 362 return delegate().edgeValue(nodeV, nodeU); // transpose 363 } 364 365 @Override 366 @NullableDecl 367 public V edgeValueOrDefault(N nodeU, N nodeV, @NullableDecl V defaultValue) { 368 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 369 } 370 } 371 372 /** 373 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 374 * properties remain intact, and further updates to {@code network} will be reflected in the view. 375 */ 376 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 377 if (!network.isDirected()) { 378 return network; // the transpose of an undirected network is an identical network 379 } 380 381 if (network instanceof TransposedNetwork) { 382 return ((TransposedNetwork<N, E>) network).network; 383 } 384 385 return new TransposedNetwork<>(network); 386 } 387 388 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 389 private final Network<N, E> network; 390 391 TransposedNetwork(Network<N, E> network) { 392 this.network = network; 393 } 394 395 @Override 396 protected Network<N, E> delegate() { 397 return network; 398 } 399 400 @Override 401 public Set<N> predecessors(N node) { 402 return delegate().successors(node); // transpose 403 } 404 405 @Override 406 public Set<N> successors(N node) { 407 return delegate().predecessors(node); // transpose 408 } 409 410 @Override 411 public int inDegree(N node) { 412 return delegate().outDegree(node); // transpose 413 } 414 415 @Override 416 public int outDegree(N node) { 417 return delegate().inDegree(node); // transpose 418 } 419 420 @Override 421 public Set<E> inEdges(N node) { 422 return delegate().outEdges(node); // transpose 423 } 424 425 @Override 426 public Set<E> outEdges(N node) { 427 return delegate().inEdges(node); // transpose 428 } 429 430 @Override 431 public EndpointPair<N> incidentNodes(E edge) { 432 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 433 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 434 } 435 436 @Override 437 public Set<E> edgesConnecting(N nodeU, N nodeV) { 438 return delegate().edgesConnecting(nodeV, nodeU); // transpose 439 } 440 441 @Override 442 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 443 return delegate().edgeConnecting(nodeV, nodeU); // transpose 444 } 445 446 @Override 447 public E edgeConnectingOrNull(N nodeU, N nodeV) { 448 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 449 } 450 451 @Override 452 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 453 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 454 } 455 } 456 457 // Graph copy methods 458 459 /** 460 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 461 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 462 * from {@code graph} for which both nodes are contained by {@code nodes}. 463 * 464 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 465 */ 466 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 467 MutableGraph<N> subgraph = 468 (nodes instanceof Collection) 469 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 470 : GraphBuilder.from(graph).build(); 471 for (N node : nodes) { 472 subgraph.addNode(node); 473 } 474 for (N node : subgraph.nodes()) { 475 for (N successorNode : graph.successors(node)) { 476 if (subgraph.nodes().contains(successorNode)) { 477 subgraph.putEdge(node, successorNode); 478 } 479 } 480 } 481 return subgraph; 482 } 483 484 /** 485 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 486 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 487 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 488 * nodes}. 489 * 490 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 491 */ 492 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 493 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 494 MutableValueGraph<N, V> subgraph = 495 (nodes instanceof Collection) 496 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 497 : ValueGraphBuilder.from(graph).build(); 498 for (N node : nodes) { 499 subgraph.addNode(node); 500 } 501 for (N node : subgraph.nodes()) { 502 for (N successorNode : graph.successors(node)) { 503 if (subgraph.nodes().contains(successorNode)) { 504 subgraph.putEdgeValue( 505 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 506 } 507 } 508 } 509 return subgraph; 510 } 511 512 /** 513 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 514 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 515 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 516 * both contained by {@code nodes}. 517 * 518 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 519 */ 520 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 521 Network<N, E> network, Iterable<? extends N> nodes) { 522 MutableNetwork<N, E> subgraph = 523 (nodes instanceof Collection) 524 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 525 : NetworkBuilder.from(network).build(); 526 for (N node : nodes) { 527 subgraph.addNode(node); 528 } 529 for (N node : subgraph.nodes()) { 530 for (E edge : network.outEdges(node)) { 531 N successorNode = network.incidentNodes(edge).adjacentNode(node); 532 if (subgraph.nodes().contains(successorNode)) { 533 subgraph.addEdge(node, successorNode, edge); 534 } 535 } 536 } 537 return subgraph; 538 } 539 540 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 541 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 542 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 543 for (N node : graph.nodes()) { 544 copy.addNode(node); 545 } 546 for (EndpointPair<N> edge : graph.edges()) { 547 copy.putEdge(edge.nodeU(), edge.nodeV()); 548 } 549 return copy; 550 } 551 552 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 553 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 554 MutableValueGraph<N, V> copy = 555 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 556 for (N node : graph.nodes()) { 557 copy.addNode(node); 558 } 559 for (EndpointPair<N> edge : graph.edges()) { 560 copy.putEdgeValue( 561 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 562 } 563 return copy; 564 } 565 566 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 567 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 568 MutableNetwork<N, E> copy = 569 NetworkBuilder.from(network) 570 .expectedNodeCount(network.nodes().size()) 571 .expectedEdgeCount(network.edges().size()) 572 .build(); 573 for (N node : network.nodes()) { 574 copy.addNode(node); 575 } 576 for (E edge : network.edges()) { 577 EndpointPair<N> endpointPair = network.incidentNodes(edge); 578 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 579 } 580 return copy; 581 } 582 583 @CanIgnoreReturnValue 584 static int checkNonNegative(int value) { 585 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 586 return value; 587 } 588 589 @CanIgnoreReturnValue 590 static int checkPositive(int value) { 591 checkArgument(value > 0, "Not true that %s is positive.", value); 592 return value; 593 } 594 595 @CanIgnoreReturnValue 596 static long checkNonNegative(long value) { 597 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 598 return value; 599 } 600 601 @CanIgnoreReturnValue 602 static long checkPositive(long value) { 603 checkArgument(value > 0, "Not true that %s is positive.", value); 604 return value; 605 } 606 607 /** 608 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 609 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 610 * been already explored. Any node that has not been explored will not have a state at all. 611 */ 612 private enum NodeVisitState { 613 PENDING, 614 COMPLETE 615 } 616}