001/*
002 * Copyright (C) 2009 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.cache;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static com.google.common.base.Preconditions.checkState;
020
021import com.google.common.annotations.GwtCompatible;
022import com.google.common.annotations.GwtIncompatible;
023import com.google.common.base.Ascii;
024import com.google.common.base.Equivalence;
025import com.google.common.base.MoreObjects;
026import com.google.common.base.Supplier;
027import com.google.common.base.Suppliers;
028import com.google.common.base.Ticker;
029import com.google.common.cache.AbstractCache.SimpleStatsCounter;
030import com.google.common.cache.AbstractCache.StatsCounter;
031import com.google.common.cache.LocalCache.Strength;
032import com.google.errorprone.annotations.CheckReturnValue;
033import java.lang.ref.SoftReference;
034import java.lang.ref.WeakReference;
035import java.util.ConcurrentModificationException;
036import java.util.IdentityHashMap;
037import java.util.Map;
038import java.util.concurrent.ConcurrentHashMap;
039import java.util.concurrent.TimeUnit;
040import java.util.logging.Level;
041import java.util.logging.Logger;
042
043/**
044 * A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the
045 * following features:
046 *
047 * <ul>
048 *   <li>automatic loading of entries into the cache
049 *   <li>least-recently-used eviction when a maximum size is exceeded
050 *   <li>time-based expiration of entries, measured since last access or last write
051 *   <li>keys automatically wrapped in {@linkplain WeakReference weak} references
052 *   <li>values automatically wrapped in {@linkplain WeakReference weak} or {@linkplain
053 *       SoftReference soft} references
054 *   <li>notification of evicted (or otherwise removed) entries
055 *   <li>accumulation of cache access statistics
056 * </ul>
057 *
058 *
059 * <p>These features are all optional; caches can be created using all or none of them. By default
060 * cache instances created by {@code CacheBuilder} will not perform any type of eviction.
061 *
062 * <p>Usage example:
063 *
064 * <pre>{@code
065 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
066 *     .maximumSize(10000)
067 *     .expireAfterWrite(10, TimeUnit.MINUTES)
068 *     .removalListener(MY_LISTENER)
069 *     .build(
070 *         new CacheLoader<Key, Graph>() {
071 *           public Graph load(Key key) throws AnyException {
072 *             return createExpensiveGraph(key);
073 *           }
074 *         });
075 * }</pre>
076 *
077 * <p>Or equivalently,
078 *
079 * <pre>{@code
080 * // In real life this would come from a command-line flag or config file
081 * String spec = "maximumSize=10000,expireAfterWrite=10m";
082 *
083 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec)
084 *     .removalListener(MY_LISTENER)
085 *     .build(
086 *         new CacheLoader<Key, Graph>() {
087 *           public Graph load(Key key) throws AnyException {
088 *             return createExpensiveGraph(key);
089 *           }
090 *         });
091 * }</pre>
092 *
093 * <p>The returned cache is implemented as a hash table with similar performance characteristics to
094 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and
095 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly
096 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads
097 * modify the cache after the iterator is created, it is undefined which of these changes, if any,
098 * are reflected in that iterator. These iterators never throw {@link
099 * ConcurrentModificationException}.
100 *
101 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the {@link
102 * Object#equals equals} method) to determine equality for keys or values. However, if {@link
103 * #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for keys.
104 * Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses identity
105 * comparisons for values.
106 *
107 * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long)
108 * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite
109 * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys
110 * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are
111 * requested.
112 *
113 * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long)
114 * maximumWeight} is requested entries may be evicted on each cache modification.
115 *
116 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess
117 * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional
118 * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by {@link
119 * Cache#size}, but will never be visible to read or write operations.
120 *
121 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain
122 * #softValues softValues} are requested, it is possible for a key or value present in the cache to
123 * be reclaimed by the garbage collector. Entries with reclaimed keys or values may be removed from
124 * the cache on each cache modification, on occasional cache accesses, or on calls to {@link
125 * Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be visible to
126 * read or write operations.
127 *
128 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which
129 * will be performed during write operations, or during occasional read operations in the absence of
130 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but
131 * calling it should not be necessary with a high throughput cache. Only caches built with
132 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite},
133 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, {@linkplain
134 * #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic maintenance.
135 *
136 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches
137 * retain all the configuration properties of the original cache. Note that the serialized form does
138 * <i>not</i> include cache contents, but only configuration.
139 *
140 * <p>See the Guava User Guide article on <a
141 * href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level
142 * explanation.
143 *
144 * @param <K> the base key type for all caches created by this builder
145 * @param <V> the base value type for all caches created by this builder
146 * @author Charles Fry
147 * @author Kevin Bourrillion
148 * @since 10.0
149 */
150@GwtCompatible(emulated = true)
151public final class CacheBuilder<K, V> {
152  private static final int DEFAULT_INITIAL_CAPACITY = 16;
153  private static final int DEFAULT_CONCURRENCY_LEVEL = 4;
154  private static final int DEFAULT_EXPIRATION_NANOS = 0;
155  private static final int DEFAULT_REFRESH_NANOS = 0;
156
157  static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER =
158      Suppliers.ofInstance(
159          new StatsCounter() {
160            @Override
161            public void recordHits(int count) {}
162
163            @Override
164            public void recordMisses(int count) {}
165
166            @Override
167            public void recordLoadSuccess(long loadTime) {}
168
169            @Override
170            public void recordLoadException(long loadTime) {}
171
172            @Override
173            public void recordEviction() {}
174
175            @Override
176            public CacheStats snapshot() {
177              return EMPTY_STATS;
178            }
179          });
180  static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0);
181
182  static final Supplier<StatsCounter> CACHE_STATS_COUNTER =
183      new Supplier<StatsCounter>() {
184        @Override
185        public StatsCounter get() {
186          return new SimpleStatsCounter();
187        }
188      };
189
190  enum NullListener implements RemovalListener<Object, Object> {
191    INSTANCE;
192
193    @Override
194    public void onRemoval(RemovalNotification<Object, Object> notification) {}
195  }
196
197  enum OneWeigher implements Weigher<Object, Object> {
198    INSTANCE;
199
200    @Override
201    public int weigh(Object key, Object value) {
202      return 1;
203    }
204  }
205
206  static final Ticker NULL_TICKER =
207      new Ticker() {
208        @Override
209        public long read() {
210          return 0;
211        }
212      };
213
214  private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName());
215
216  static final int UNSET_INT = -1;
217
218  boolean strictParsing = true;
219
220  int initialCapacity = UNSET_INT;
221  int concurrencyLevel = UNSET_INT;
222  long maximumSize = UNSET_INT;
223  long maximumWeight = UNSET_INT;
224  Weigher<? super K, ? super V> weigher;
225
226  Strength keyStrength;
227  Strength valueStrength;
228
229  long expireAfterWriteNanos = UNSET_INT;
230  long expireAfterAccessNanos = UNSET_INT;
231  long refreshNanos = UNSET_INT;
232
233  Equivalence<Object> keyEquivalence;
234  Equivalence<Object> valueEquivalence;
235
236  RemovalListener<? super K, ? super V> removalListener;
237  Ticker ticker;
238
239  Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER;
240
241  private CacheBuilder() {}
242
243  /**
244   * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys,
245   * strong values, and no automatic eviction of any kind.
246   */
247  public static CacheBuilder<Object, Object> newBuilder() {
248    return new CacheBuilder<>();
249  }
250
251  /**
252   * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
253   *
254   * @since 12.0
255   */
256  @GwtIncompatible // To be supported
257  public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) {
258    return spec.toCacheBuilder().lenientParsing();
259  }
260
261  /**
262   * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
263   * This is especially useful for command-line configuration of a {@code CacheBuilder}.
264   *
265   * @param spec a String in the format specified by {@link CacheBuilderSpec}
266   * @since 12.0
267   */
268  @GwtIncompatible // To be supported
269  public static CacheBuilder<Object, Object> from(String spec) {
270    return from(CacheBuilderSpec.parse(spec));
271  }
272
273  /**
274   * Enables lenient parsing. Useful for tests and spec parsing.
275   *
276   * @return this {@code CacheBuilder} instance (for chaining)
277   */
278  @GwtIncompatible // To be supported
279  CacheBuilder<K, V> lenientParsing() {
280    strictParsing = false;
281    return this;
282  }
283
284  /**
285   * Sets a custom {@code Equivalence} strategy for comparing keys.
286   *
287   * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when
288   * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise.
289   *
290   * @return this {@code CacheBuilder} instance (for chaining)
291   */
292  @GwtIncompatible // To be supported
293  CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) {
294    checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence);
295    keyEquivalence = checkNotNull(equivalence);
296    return this;
297  }
298
299  Equivalence<Object> getKeyEquivalence() {
300    return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence());
301  }
302
303  /**
304   * Sets a custom {@code Equivalence} strategy for comparing values.
305   *
306   * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when
307   * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()}
308   * otherwise.
309   *
310   * @return this {@code CacheBuilder} instance (for chaining)
311   */
312  @GwtIncompatible // To be supported
313  CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) {
314    checkState(
315        valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence);
316    this.valueEquivalence = checkNotNull(equivalence);
317    return this;
318  }
319
320  Equivalence<Object> getValueEquivalence() {
321    return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence());
322  }
323
324  /**
325   * Sets the minimum total size for the internal hash tables. For example, if the initial capacity
326   * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each
327   * having a hash table of size eight. Providing a large enough estimate at construction time
328   * avoids the need for expensive resizing operations later, but setting this value unnecessarily
329   * high wastes memory.
330   *
331   * @return this {@code CacheBuilder} instance (for chaining)
332   * @throws IllegalArgumentException if {@code initialCapacity} is negative
333   * @throws IllegalStateException if an initial capacity was already set
334   */
335  public CacheBuilder<K, V> initialCapacity(int initialCapacity) {
336    checkState(
337        this.initialCapacity == UNSET_INT,
338        "initial capacity was already set to %s",
339        this.initialCapacity);
340    checkArgument(initialCapacity >= 0);
341    this.initialCapacity = initialCapacity;
342    return this;
343  }
344
345  int getInitialCapacity() {
346    return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity;
347  }
348
349  /**
350   * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The
351   * table is internally partitioned to try to permit the indicated number of concurrent updates
352   * without contention. Because assignment of entries to these partitions is not necessarily
353   * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to
354   * accommodate as many threads as will ever concurrently modify the table. Using a significantly
355   * higher value than you need can waste space and time, and a significantly lower value can lead
356   * to thread contention. But overestimates and underestimates within an order of magnitude do not
357   * usually have much noticeable impact. A value of one permits only one thread to modify the cache
358   * at a time, but since read operations and cache loading computations can proceed concurrently,
359   * this still yields higher concurrency than full synchronization.
360   *
361   * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this
362   * value, you should always choose it explicitly.
363   *
364   * <p>The current implementation uses the concurrency level to create a fixed number of hashtable
365   * segments, each governed by its own write lock. The segment lock is taken once for each explicit
366   * write, and twice for each cache loading computation (once prior to loading the new value, and
367   * once after loading completes). Much internal cache management is performed at the segment
368   * granularity. For example, access queues and write queues are kept per segment when they are
369   * required by the selected eviction algorithm. As such, when writing unit tests it is not
370   * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction
371   * behavior.
372   *
373   * <p>Note that future implementations may abandon segment locking in favor of more advanced
374   * concurrency controls.
375   *
376   * @return this {@code CacheBuilder} instance (for chaining)
377   * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive
378   * @throws IllegalStateException if a concurrency level was already set
379   */
380  public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) {
381    checkState(
382        this.concurrencyLevel == UNSET_INT,
383        "concurrency level was already set to %s",
384        this.concurrencyLevel);
385    checkArgument(concurrencyLevel > 0);
386    this.concurrencyLevel = concurrencyLevel;
387    return this;
388  }
389
390  int getConcurrencyLevel() {
391    return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel;
392  }
393
394  /**
395   * Specifies the maximum number of entries the cache may contain.
396   *
397   * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in
398   * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each
399   * resulting segment inside the cache <i>independently</i> limits its own size to approximately
400   * {@code maximumSize / concurrencyLevel}.
401   *
402   * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again.
403   * For example, the cache may evict an entry because it hasn't been used recently or very often.
404   *
405   * <p>If {@code maximumSize} is zero, elements will be evicted immediately after being loaded into
406   * cache. This can be useful in testing, or to disable caching temporarily.
407   *
408   * <p>This feature cannot be used in conjunction with {@link #maximumWeight}.
409   *
410   * @param maximumSize the maximum size of the cache
411   * @return this {@code CacheBuilder} instance (for chaining)
412   * @throws IllegalArgumentException if {@code maximumSize} is negative
413   * @throws IllegalStateException if a maximum size or weight was already set
414   */
415  public CacheBuilder<K, V> maximumSize(long maximumSize) {
416    checkState(
417        this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize);
418    checkState(
419        this.maximumWeight == UNSET_INT,
420        "maximum weight was already set to %s",
421        this.maximumWeight);
422    checkState(this.weigher == null, "maximum size can not be combined with weigher");
423    checkArgument(maximumSize >= 0, "maximum size must not be negative");
424    this.maximumSize = maximumSize;
425    return this;
426  }
427
428  /**
429   * Specifies the maximum weight of entries the cache may contain. Weight is determined using the
430   * {@link Weigher} specified with {@link #weigher}, and use of this method requires a
431   * corresponding call to {@link #weigher} prior to calling {@link #build}.
432   *
433   * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in
434   * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each
435   * resulting segment inside the cache <i>independently</i> limits its own weight to approximately
436   * {@code maximumWeight / concurrencyLevel}.
437   *
438   * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again.
439   * For example, the cache may evict an entry because it hasn't been used recently or very often.
440   *
441   * <p>If {@code maximumWeight} is zero, elements will be evicted immediately after being loaded
442   * into cache. This can be useful in testing, or to disable caching temporarily.
443   *
444   * <p>Note that weight is only used to determine whether the cache is over capacity; it has no
445   * effect on selecting which entry should be evicted next.
446   *
447   * <p>This feature cannot be used in conjunction with {@link #maximumSize}.
448   *
449   * @param maximumWeight the maximum total weight of entries the cache may contain
450   * @return this {@code CacheBuilder} instance (for chaining)
451   * @throws IllegalArgumentException if {@code maximumWeight} is negative
452   * @throws IllegalStateException if a maximum weight or size was already set
453   * @since 11.0
454   */
455  @GwtIncompatible // To be supported
456  public CacheBuilder<K, V> maximumWeight(long maximumWeight) {
457    checkState(
458        this.maximumWeight == UNSET_INT,
459        "maximum weight was already set to %s",
460        this.maximumWeight);
461    checkState(
462        this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize);
463    this.maximumWeight = maximumWeight;
464    checkArgument(maximumWeight >= 0, "maximum weight must not be negative");
465    return this;
466  }
467
468  /**
469   * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into
470   * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use
471   * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling
472   * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and
473   * are thus effectively static during the lifetime of a cache entry.
474   *
475   * <p>When the weight of an entry is zero it will not be considered for size-based eviction
476   * (though it still may be evicted by other means).
477   *
478   * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder}
479   * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the
480   * original reference or the returned reference may be used to complete configuration and build
481   * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from
482   * building caches whose key or value types are incompatible with the types accepted by the
483   * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results,
484   * simply use the standard method-chaining idiom, as illustrated in the documentation at top,
485   * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement.
486   *
487   * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a
488   * cache whose key or value type is incompatible with the weigher, you will likely experience a
489   * {@link ClassCastException} at some <i>undefined</i> point in the future.
490   *
491   * @param weigher the weigher to use in calculating the weight of cache entries
492   * @return this {@code CacheBuilder} instance (for chaining)
493   * @throws IllegalArgumentException if {@code size} is negative
494   * @throws IllegalStateException if a maximum size was already set
495   * @since 11.0
496   */
497  @GwtIncompatible // To be supported
498  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher(
499      Weigher<? super K1, ? super V1> weigher) {
500    checkState(this.weigher == null);
501    if (strictParsing) {
502      checkState(
503          this.maximumSize == UNSET_INT,
504          "weigher can not be combined with maximum size",
505          this.maximumSize);
506    }
507
508    // safely limiting the kinds of caches this can produce
509    @SuppressWarnings("unchecked")
510    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
511    me.weigher = checkNotNull(weigher);
512    return me;
513  }
514
515  long getMaximumWeight() {
516    if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) {
517      return 0;
518    }
519    return (weigher == null) ? maximumSize : maximumWeight;
520  }
521
522  // Make a safe contravariant cast now so we don't have to do it over and over.
523  @SuppressWarnings("unchecked")
524  <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() {
525    return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE);
526  }
527
528  /**
529   * Specifies that each key (not value) stored in the cache should be wrapped in a {@link
530   * WeakReference} (by default, strong references are used).
531   *
532   * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==})
533   * comparison to determine equality of keys. Its {@link Cache#asMap} view will therefore
534   * technically violate the {@link Map} specification (in the same way that {@link IdentityHashMap}
535   * does).
536   *
537   * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but
538   * will never be visible to read or write operations; such entries are cleaned up as part of the
539   * routine maintenance described in the class javadoc.
540   *
541   * @return this {@code CacheBuilder} instance (for chaining)
542   * @throws IllegalStateException if the key strength was already set
543   */
544  @GwtIncompatible // java.lang.ref.WeakReference
545  public CacheBuilder<K, V> weakKeys() {
546    return setKeyStrength(Strength.WEAK);
547  }
548
549  CacheBuilder<K, V> setKeyStrength(Strength strength) {
550    checkState(keyStrength == null, "Key strength was already set to %s", keyStrength);
551    keyStrength = checkNotNull(strength);
552    return this;
553  }
554
555  Strength getKeyStrength() {
556    return MoreObjects.firstNonNull(keyStrength, Strength.STRONG);
557  }
558
559  /**
560   * Specifies that each value (not key) stored in the cache should be wrapped in a {@link
561   * WeakReference} (by default, strong references are used).
562   *
563   * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor
564   * candidate for caching; consider {@link #softValues} instead.
565   *
566   * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
567   * comparison to determine equality of values.
568   *
569   * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
570   * but will never be visible to read or write operations; such entries are cleaned up as part of
571   * the routine maintenance described in the class javadoc.
572   *
573   * @return this {@code CacheBuilder} instance (for chaining)
574   * @throws IllegalStateException if the value strength was already set
575   */
576  @GwtIncompatible // java.lang.ref.WeakReference
577  public CacheBuilder<K, V> weakValues() {
578    return setValueStrength(Strength.WEAK);
579  }
580
581  /**
582   * Specifies that each value (not key) stored in the cache should be wrapped in a {@link
583   * SoftReference} (by default, strong references are used). Softly-referenced objects will be
584   * garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory
585   * demand.
586   *
587   * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain
588   * #maximumSize(long) maximum size} instead of using soft references. You should only use this
589   * method if you are well familiar with the practical consequences of soft references.
590   *
591   * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
592   * comparison to determine equality of values.
593   *
594   * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
595   * but will never be visible to read or write operations; such entries are cleaned up as part of
596   * the routine maintenance described in the class javadoc.
597   *
598   * @return this {@code CacheBuilder} instance (for chaining)
599   * @throws IllegalStateException if the value strength was already set
600   */
601  @GwtIncompatible // java.lang.ref.SoftReference
602  public CacheBuilder<K, V> softValues() {
603    return setValueStrength(Strength.SOFT);
604  }
605
606  CacheBuilder<K, V> setValueStrength(Strength strength) {
607    checkState(valueStrength == null, "Value strength was already set to %s", valueStrength);
608    valueStrength = checkNotNull(strength);
609    return this;
610  }
611
612  Strength getValueStrength() {
613    return MoreObjects.firstNonNull(valueStrength, Strength.STRONG);
614  }
615
616  /**
617   * Specifies that each entry should be automatically removed from the cache once a fixed duration
618   * has elapsed after the entry's creation, or the most recent replacement of its value.
619   *
620   * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long)
621   * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be
622   * useful in testing, or to disable caching temporarily without a code change.
623   *
624   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
625   * write operations. Expired entries are cleaned up as part of the routine maintenance described
626   * in the class javadoc.
627   *
628   * @param duration the length of time after an entry is created that it should be automatically
629   *     removed
630   * @param unit the unit that {@code duration} is expressed in
631   * @return this {@code CacheBuilder} instance (for chaining)
632   * @throws IllegalArgumentException if {@code duration} is negative
633   * @throws IllegalStateException if the time to live or time to idle was already set
634   */
635  public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
636    checkState(
637        expireAfterWriteNanos == UNSET_INT,
638        "expireAfterWrite was already set to %s ns",
639        expireAfterWriteNanos);
640    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
641    this.expireAfterWriteNanos = unit.toNanos(duration);
642    return this;
643  }
644
645  long getExpireAfterWriteNanos() {
646    return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos;
647  }
648
649  /**
650   * Specifies that each entry should be automatically removed from the cache once a fixed duration
651   * has elapsed after the entry's creation, the most recent replacement of its value, or its last
652   * access. Access time is reset by all cache read and write operations (including {@code
653   * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations on the
654   * collection-views of {@link Cache#asMap}.
655   *
656   * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long)
657   * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be
658   * useful in testing, or to disable caching temporarily without a code change.
659   *
660   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
661   * write operations. Expired entries are cleaned up as part of the routine maintenance described
662   * in the class javadoc.
663   *
664   * @param duration the length of time after an entry is last accessed that it should be
665   *     automatically removed
666   * @param unit the unit that {@code duration} is expressed in
667   * @return this {@code CacheBuilder} instance (for chaining)
668   * @throws IllegalArgumentException if {@code duration} is negative
669   * @throws IllegalStateException if the time to idle or time to live was already set
670   */
671  public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) {
672    checkState(
673        expireAfterAccessNanos == UNSET_INT,
674        "expireAfterAccess was already set to %s ns",
675        expireAfterAccessNanos);
676    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
677    this.expireAfterAccessNanos = unit.toNanos(duration);
678    return this;
679  }
680
681  long getExpireAfterAccessNanos() {
682    return (expireAfterAccessNanos == UNSET_INT)
683        ? DEFAULT_EXPIRATION_NANOS
684        : expireAfterAccessNanos;
685  }
686
687  /**
688   * Specifies that active entries are eligible for automatic refresh once a fixed duration has
689   * elapsed after the entry's creation, or the most recent replacement of its value. The semantics
690   * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link
691   * CacheLoader#reload}.
692   *
693   * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is
694   * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous
695   * implementation; otherwise refreshes will be performed during unrelated cache read and write
696   * operations.
697   *
698   * <p>Currently automatic refreshes are performed when the first stale request for an entry
699   * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload}
700   * and immediately return the new value if the returned future is complete, and the old value
701   * otherwise.
702   *
703   * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>.
704   *
705   * @param duration the length of time after an entry is created that it should be considered
706   *     stale, and thus eligible for refresh
707   * @param unit the unit that {@code duration} is expressed in
708   * @return this {@code CacheBuilder} instance (for chaining)
709   * @throws IllegalArgumentException if {@code duration} is negative
710   * @throws IllegalStateException if the refresh interval was already set
711   * @since 11.0
712   */
713  @GwtIncompatible // To be supported (synchronously).
714  public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) {
715    checkNotNull(unit);
716    checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos);
717    checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit);
718    this.refreshNanos = unit.toNanos(duration);
719    return this;
720  }
721
722  long getRefreshNanos() {
723    return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos;
724  }
725
726  /**
727   * Specifies a nanosecond-precision time source for this cache. By default, {@link
728   * System#nanoTime} is used.
729   *
730   * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock
731   * time source.
732   *
733   * @return this {@code CacheBuilder} instance (for chaining)
734   * @throws IllegalStateException if a ticker was already set
735   */
736  public CacheBuilder<K, V> ticker(Ticker ticker) {
737    checkState(this.ticker == null);
738    this.ticker = checkNotNull(ticker);
739    return this;
740  }
741
742  Ticker getTicker(boolean recordsTime) {
743    if (ticker != null) {
744      return ticker;
745    }
746    return recordsTime ? Ticker.systemTicker() : NULL_TICKER;
747  }
748
749  /**
750   * Specifies a listener instance that caches should notify each time an entry is removed for any
751   * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener
752   * as part of the routine maintenance described in the class documentation above.
753   *
754   * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder
755   * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the
756   * same instance, but only the returned reference has the correct generic type information so as
757   * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in
758   * the class documentation above, configuring a builder and building your cache in a single
759   * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown
760   * by a cache operation at some <i>undefined</i> point in the future.
761   *
762   * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to
763   * the {@code Cache} user, only logged via a {@link Logger}.
764   *
765   * @return the cache builder reference that should be used instead of {@code this} for any
766   *     remaining configuration and cache building
767   * @return this {@code CacheBuilder} instance (for chaining)
768   * @throws IllegalStateException if a removal listener was already set
769   */
770  @CheckReturnValue
771  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener(
772      RemovalListener<? super K1, ? super V1> listener) {
773    checkState(this.removalListener == null);
774
775    // safely limiting the kinds of caches this can produce
776    @SuppressWarnings("unchecked")
777    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
778    me.removalListener = checkNotNull(listener);
779    return me;
780  }
781
782  // Make a safe contravariant cast now so we don't have to do it over and over.
783  @SuppressWarnings("unchecked")
784  <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() {
785    return (RemovalListener<K1, V1>)
786        MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE);
787  }
788
789  /**
790   * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this
791   * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires
792   * bookkeeping to be performed with each operation, and thus imposes a performance penalty on
793   * cache operation.
794   *
795   * @return this {@code CacheBuilder} instance (for chaining)
796   * @since 12.0 (previously, stats collection was automatic)
797   */
798  public CacheBuilder<K, V> recordStats() {
799    statsCounterSupplier = CACHE_STATS_COUNTER;
800    return this;
801  }
802
803  boolean isRecordingStats() {
804    return statsCounterSupplier == CACHE_STATS_COUNTER;
805  }
806
807  Supplier<? extends StatsCounter> getStatsCounterSupplier() {
808    return statsCounterSupplier;
809  }
810
811  /**
812   * Builds a cache, which either returns an already-loaded value for a given key or atomically
813   * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently
814   * loading the value for this key, simply waits for that thread to finish and returns its loaded
815   * value. Note that multiple threads can concurrently load values for distinct keys.
816   *
817   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
818   * invoked again to create multiple independent caches.
819   *
820   * @param loader the cache loader used to obtain new values
821   * @return a cache having the requested features
822   */
823  public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
824      CacheLoader<? super K1, V1> loader) {
825    checkWeightWithWeigher();
826    return new LocalCache.LocalLoadingCache<>(this, loader);
827  }
828
829  /**
830   * Builds a cache which does not automatically load values when keys are requested.
831   *
832   * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a {@code
833   * CacheLoader}.
834   *
835   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
836   * invoked again to create multiple independent caches.
837   *
838   * @return a cache having the requested features
839   * @since 11.0
840   */
841  public <K1 extends K, V1 extends V> Cache<K1, V1> build() {
842    checkWeightWithWeigher();
843    checkNonLoadingCache();
844    return new LocalCache.LocalManualCache<>(this);
845  }
846
847  private void checkNonLoadingCache() {
848    checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache");
849  }
850
851  private void checkWeightWithWeigher() {
852    if (weigher == null) {
853      checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher");
854    } else {
855      if (strictParsing) {
856        checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight");
857      } else {
858        if (maximumWeight == UNSET_INT) {
859          logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight");
860        }
861      }
862    }
863  }
864
865  /**
866   * Returns a string representation for this CacheBuilder instance. The exact form of the returned
867   * string is not specified.
868   */
869  @Override
870  public String toString() {
871    MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this);
872    if (initialCapacity != UNSET_INT) {
873      s.add("initialCapacity", initialCapacity);
874    }
875    if (concurrencyLevel != UNSET_INT) {
876      s.add("concurrencyLevel", concurrencyLevel);
877    }
878    if (maximumSize != UNSET_INT) {
879      s.add("maximumSize", maximumSize);
880    }
881    if (maximumWeight != UNSET_INT) {
882      s.add("maximumWeight", maximumWeight);
883    }
884    if (expireAfterWriteNanos != UNSET_INT) {
885      s.add("expireAfterWrite", expireAfterWriteNanos + "ns");
886    }
887    if (expireAfterAccessNanos != UNSET_INT) {
888      s.add("expireAfterAccess", expireAfterAccessNanos + "ns");
889    }
890    if (keyStrength != null) {
891      s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString()));
892    }
893    if (valueStrength != null) {
894      s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString()));
895    }
896    if (keyEquivalence != null) {
897      s.addValue("keyEquivalence");
898    }
899    if (valueEquivalence != null) {
900      s.addValue("valueEquivalence");
901    }
902    if (removalListener != null) {
903      s.addValue("removalListener");
904    }
905    return s.toString();
906  }
907}