001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Queue; 034import java.util.Set; 035import org.checkerframework.checker.nullness.compatqual.NullableDecl; 036 037/** 038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 039 * 040 * @author James Sexton 041 * @author Joshua O'Madadhain 042 * @since 20.0 043 */ 044@Beta 045public final class Graphs { 046 047 private Graphs() {} 048 049 // Graph query methods 050 051 /** 052 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 053 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 054 * and ending with the same node. 055 * 056 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 057 */ 058 public static <N> boolean hasCycle(Graph<N> graph) { 059 int numEdges = graph.edges().size(); 060 if (numEdges == 0) { 061 return false; // An edge-free graph is acyclic by definition. 062 } 063 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 064 return true; // Optimization for the undirected case: at least one cycle must exist. 065 } 066 067 Map<Object, NodeVisitState> visitedNodes = 068 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 069 for (N node : graph.nodes()) { 070 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 071 return true; 072 } 073 } 074 return false; 075 } 076 077 /** 078 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 079 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 080 * starting and ending with the same node. 081 * 082 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 083 */ 084 public static boolean hasCycle(Network<?, ?> network) { 085 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 086 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 087 if (!network.isDirected() 088 && network.allowsParallelEdges() 089 && network.edges().size() > network.asGraph().edges().size()) { 090 return true; 091 } 092 return hasCycle(network.asGraph()); 093 } 094 095 /** 096 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 097 * already visited (following only outgoing edges and without reusing edges), we know there's a 098 * cycle in the graph. 099 */ 100 private static <N> boolean subgraphHasCycle( 101 Graph<N> graph, 102 Map<Object, NodeVisitState> visitedNodes, 103 N node, 104 @NullableDecl N previousNode) { 105 NodeVisitState state = visitedNodes.get(node); 106 if (state == NodeVisitState.COMPLETE) { 107 return false; 108 } 109 if (state == NodeVisitState.PENDING) { 110 return true; 111 } 112 113 visitedNodes.put(node, NodeVisitState.PENDING); 114 for (N nextNode : graph.successors(node)) { 115 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 116 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 117 return true; 118 } 119 } 120 visitedNodes.put(node, NodeVisitState.COMPLETE); 121 return false; 122 } 123 124 /** 125 * Determines whether an edge has already been used during traversal. In the directed case a cycle 126 * is always detected before reusing an edge, so no special logic is required. In the undirected 127 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 128 * from B to A). 129 */ 130 private static boolean canTraverseWithoutReusingEdge( 131 Graph<?> graph, Object nextNode, @NullableDecl Object previousNode) { 132 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 133 return true; 134 } 135 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 136 // edges, so this traversal would require reusing the undirected AB edge. 137 return false; 138 } 139 140 /** 141 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 142 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 143 * Object) reachable} from node A. 144 * 145 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 146 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 147 * be updated after modifications to {@code graph}. 148 */ 149 // TODO(b/31438252): Consider potential optimizations for this algorithm. 150 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 151 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 152 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 153 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 154 155 if (graph.isDirected()) { 156 // Note: works for both directed and undirected graphs, but we only use in the directed case. 157 for (N node : graph.nodes()) { 158 for (N reachableNode : reachableNodes(graph, node)) { 159 transitiveClosure.putEdge(node, reachableNode); 160 } 161 } 162 } else { 163 // An optimization for the undirected case: for every node B reachable from node A, 164 // node A and node B have the same reachability set. 165 Set<N> visitedNodes = new HashSet<N>(); 166 for (N node : graph.nodes()) { 167 if (!visitedNodes.contains(node)) { 168 Set<N> reachableNodes = reachableNodes(graph, node); 169 visitedNodes.addAll(reachableNodes); 170 int pairwiseMatch = 1; // start at 1 to include self-loops 171 for (N nodeU : reachableNodes) { 172 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 173 transitiveClosure.putEdge(nodeU, nodeV); 174 } 175 } 176 } 177 } 178 } 179 180 return transitiveClosure; 181 } 182 183 /** 184 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 185 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 186 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 187 * 188 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 189 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 190 * not be updated after modifications to {@code graph}. 191 * 192 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 193 */ 194 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 195 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 196 Set<N> visitedNodes = new LinkedHashSet<N>(); 197 Queue<N> queuedNodes = new ArrayDeque<N>(); 198 visitedNodes.add(node); 199 queuedNodes.add(node); 200 // Perform a breadth-first traversal rooted at the input node. 201 while (!queuedNodes.isEmpty()) { 202 N currentNode = queuedNodes.remove(); 203 for (N successor : graph.successors(currentNode)) { 204 if (visitedNodes.add(successor)) { 205 queuedNodes.add(successor); 206 } 207 } 208 } 209 return Collections.unmodifiableSet(visitedNodes); 210 } 211 212 /** 213 * @deprecated Use {@link Graph#equals(Object)} instead. This method will be removed in January 214 * 2018. 215 */ 216 // TODO(user): Delete this method. 217 @Deprecated 218 public static boolean equivalent(@NullableDecl Graph<?> graphA, @NullableDecl Graph<?> graphB) { 219 return Objects.equal(graphA, graphB); 220 } 221 222 /** 223 * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method will be removed in 224 * January 2018. 225 */ 226 // TODO(user): Delete this method. 227 @Deprecated 228 public static boolean equivalent( 229 @NullableDecl ValueGraph<?, ?> graphA, @NullableDecl ValueGraph<?, ?> graphB) { 230 return Objects.equal(graphA, graphB); 231 } 232 233 /** 234 * @deprecated Use {@link Network#equals(Object)} instead. This method will be removed in January 235 * 2018. 236 */ 237 // TODO(user): Delete this method. 238 @Deprecated 239 public static boolean equivalent( 240 @NullableDecl Network<?, ?> networkA, @NullableDecl Network<?, ?> networkB) { 241 return Objects.equal(networkA, networkB); 242 } 243 244 // Graph mutation methods 245 246 // Graph view methods 247 248 /** 249 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 250 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 251 */ 252 public static <N> Graph<N> transpose(Graph<N> graph) { 253 if (!graph.isDirected()) { 254 return graph; // the transpose of an undirected graph is an identical graph 255 } 256 257 if (graph instanceof TransposedGraph) { 258 return ((TransposedGraph<N>) graph).graph; 259 } 260 261 return new TransposedGraph<N>(graph); 262 } 263 264 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 265 // AbstractGraph) derives its behavior from calling successors(). 266 private static class TransposedGraph<N> extends ForwardingGraph<N> { 267 private final Graph<N> graph; 268 269 TransposedGraph(Graph<N> graph) { 270 this.graph = graph; 271 } 272 273 @Override 274 protected Graph<N> delegate() { 275 return graph; 276 } 277 278 @Override 279 public Set<N> predecessors(N node) { 280 return delegate().successors(node); // transpose 281 } 282 283 @Override 284 public Set<N> successors(N node) { 285 return delegate().predecessors(node); // transpose 286 } 287 288 @Override 289 public int inDegree(N node) { 290 return delegate().outDegree(node); // transpose 291 } 292 293 @Override 294 public int outDegree(N node) { 295 return delegate().inDegree(node); // transpose 296 } 297 298 @Override 299 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 300 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 301 } 302 } 303 304 /** 305 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 306 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 307 */ 308 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 309 if (!graph.isDirected()) { 310 return graph; // the transpose of an undirected graph is an identical graph 311 } 312 313 if (graph instanceof TransposedValueGraph) { 314 return ((TransposedValueGraph<N, V>) graph).graph; 315 } 316 317 return new TransposedValueGraph<>(graph); 318 } 319 320 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 321 // AbstractValueGraph) derives its behavior from calling successors(). 322 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 323 private final ValueGraph<N, V> graph; 324 325 TransposedValueGraph(ValueGraph<N, V> graph) { 326 this.graph = graph; 327 } 328 329 @Override 330 protected ValueGraph<N, V> delegate() { 331 return graph; 332 } 333 334 @Override 335 public Set<N> predecessors(N node) { 336 return delegate().successors(node); // transpose 337 } 338 339 @Override 340 public Set<N> successors(N node) { 341 return delegate().predecessors(node); // transpose 342 } 343 344 @Override 345 public int inDegree(N node) { 346 return delegate().outDegree(node); // transpose 347 } 348 349 @Override 350 public int outDegree(N node) { 351 return delegate().inDegree(node); // transpose 352 } 353 354 @Override 355 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 356 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 357 } 358 359 @Override 360 @NullableDecl 361 public V edgeValueOrDefault(N nodeU, N nodeV, @NullableDecl V defaultValue) { 362 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 363 } 364 } 365 366 /** 367 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 368 * properties remain intact, and further updates to {@code network} will be reflected in the view. 369 */ 370 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 371 if (!network.isDirected()) { 372 return network; // the transpose of an undirected network is an identical network 373 } 374 375 if (network instanceof TransposedNetwork) { 376 return ((TransposedNetwork<N, E>) network).network; 377 } 378 379 return new TransposedNetwork<>(network); 380 } 381 382 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 383 private final Network<N, E> network; 384 385 TransposedNetwork(Network<N, E> network) { 386 this.network = network; 387 } 388 389 @Override 390 protected Network<N, E> delegate() { 391 return network; 392 } 393 394 @Override 395 public Set<N> predecessors(N node) { 396 return delegate().successors(node); // transpose 397 } 398 399 @Override 400 public Set<N> successors(N node) { 401 return delegate().predecessors(node); // transpose 402 } 403 404 @Override 405 public int inDegree(N node) { 406 return delegate().outDegree(node); // transpose 407 } 408 409 @Override 410 public int outDegree(N node) { 411 return delegate().inDegree(node); // transpose 412 } 413 414 @Override 415 public Set<E> inEdges(N node) { 416 return delegate().outEdges(node); // transpose 417 } 418 419 @Override 420 public Set<E> outEdges(N node) { 421 return delegate().inEdges(node); // transpose 422 } 423 424 @Override 425 public EndpointPair<N> incidentNodes(E edge) { 426 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 427 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 428 } 429 430 @Override 431 public Set<E> edgesConnecting(N nodeU, N nodeV) { 432 return delegate().edgesConnecting(nodeV, nodeU); // transpose 433 } 434 435 @Override 436 public E edgeConnectingOrNull(N nodeU, N nodeV) { 437 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 438 } 439 440 @Override 441 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 442 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 443 } 444 } 445 446 // Graph copy methods 447 448 /** 449 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 450 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 451 * from {@code graph} for which both nodes are contained by {@code nodes}. 452 * 453 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 454 */ 455 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 456 MutableGraph<N> subgraph = 457 (nodes instanceof Collection) 458 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 459 : GraphBuilder.from(graph).build(); 460 for (N node : nodes) { 461 subgraph.addNode(node); 462 } 463 for (N node : subgraph.nodes()) { 464 for (N successorNode : graph.successors(node)) { 465 if (subgraph.nodes().contains(successorNode)) { 466 subgraph.putEdge(node, successorNode); 467 } 468 } 469 } 470 return subgraph; 471 } 472 473 /** 474 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 475 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 476 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 477 * nodes}. 478 * 479 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 480 */ 481 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 482 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 483 MutableValueGraph<N, V> subgraph = 484 (nodes instanceof Collection) 485 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 486 : ValueGraphBuilder.from(graph).build(); 487 for (N node : nodes) { 488 subgraph.addNode(node); 489 } 490 for (N node : subgraph.nodes()) { 491 for (N successorNode : graph.successors(node)) { 492 if (subgraph.nodes().contains(successorNode)) { 493 subgraph.putEdgeValue( 494 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 495 } 496 } 497 } 498 return subgraph; 499 } 500 501 /** 502 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 503 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 504 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 505 * both contained by {@code nodes}. 506 * 507 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 508 */ 509 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 510 Network<N, E> network, Iterable<? extends N> nodes) { 511 MutableNetwork<N, E> subgraph = 512 (nodes instanceof Collection) 513 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 514 : NetworkBuilder.from(network).build(); 515 for (N node : nodes) { 516 subgraph.addNode(node); 517 } 518 for (N node : subgraph.nodes()) { 519 for (E edge : network.outEdges(node)) { 520 N successorNode = network.incidentNodes(edge).adjacentNode(node); 521 if (subgraph.nodes().contains(successorNode)) { 522 subgraph.addEdge(node, successorNode, edge); 523 } 524 } 525 } 526 return subgraph; 527 } 528 529 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 530 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 531 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 532 for (N node : graph.nodes()) { 533 copy.addNode(node); 534 } 535 for (EndpointPair<N> edge : graph.edges()) { 536 copy.putEdge(edge.nodeU(), edge.nodeV()); 537 } 538 return copy; 539 } 540 541 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 542 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 543 MutableValueGraph<N, V> copy = 544 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 545 for (N node : graph.nodes()) { 546 copy.addNode(node); 547 } 548 for (EndpointPair<N> edge : graph.edges()) { 549 copy.putEdgeValue( 550 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 551 } 552 return copy; 553 } 554 555 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 556 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 557 MutableNetwork<N, E> copy = 558 NetworkBuilder.from(network) 559 .expectedNodeCount(network.nodes().size()) 560 .expectedEdgeCount(network.edges().size()) 561 .build(); 562 for (N node : network.nodes()) { 563 copy.addNode(node); 564 } 565 for (E edge : network.edges()) { 566 EndpointPair<N> endpointPair = network.incidentNodes(edge); 567 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 568 } 569 return copy; 570 } 571 572 @CanIgnoreReturnValue 573 static int checkNonNegative(int value) { 574 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 575 return value; 576 } 577 578 @CanIgnoreReturnValue 579 static int checkPositive(int value) { 580 checkArgument(value > 0, "Not true that %s is positive.", value); 581 return value; 582 } 583 584 @CanIgnoreReturnValue 585 static long checkNonNegative(long value) { 586 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 587 return value; 588 } 589 590 @CanIgnoreReturnValue 591 static long checkPositive(long value) { 592 checkArgument(value > 0, "Not true that %s is positive.", value); 593 return value; 594 } 595 596 /** 597 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 598 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 599 * been already explored. Any node that has not been explored will not have a state at all. 600 */ 601 private enum NodeVisitState { 602 PENDING, 603 COMPLETE 604 } 605}