001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.Beta; 024import com.google.common.annotations.GwtCompatible; 025import com.google.common.base.Function; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.math.IntMath; 029import com.google.common.primitives.Ints; 030import java.util.AbstractCollection; 031import java.util.ArrayList; 032import java.util.Arrays; 033import java.util.Collection; 034import java.util.Collections; 035import java.util.Comparator; 036import java.util.Iterator; 037import java.util.List; 038import java.util.Set; 039import org.checkerframework.checker.nullness.compatqual.NullableDecl; 040 041/** 042 * Provides static methods for working with {@code Collection} instances. 043 * 044 * <p><b>Java 8 users:</b> several common uses for this class are now more comprehensively addressed 045 * by the new {@link java.util.stream.Stream} library. Read the method documentation below for 046 * comparisons. These methods are not being deprecated, but we gently encourage you to migrate to 047 * streams. 048 * 049 * @author Chris Povirk 050 * @author Mike Bostock 051 * @author Jared Levy 052 * @since 2.0 053 */ 054@GwtCompatible 055public final class Collections2 { 056 private Collections2() {} 057 058 /** 059 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned collection is 060 * a live view of {@code unfiltered}; changes to one affect the other. 061 * 062 * <p>The resulting collection's iterator does not support {@code remove()}, but all other 063 * collection methods are supported. When given an element that doesn't satisfy the predicate, the 064 * collection's {@code add()} and {@code addAll()} methods throw an {@link 065 * IllegalArgumentException}. When methods such as {@code removeAll()} and {@code clear()} are 066 * called on the filtered collection, only elements that satisfy the filter will be removed from 067 * the underlying collection. 068 * 069 * <p>The returned collection isn't threadsafe or serializable, even if {@code unfiltered} is. 070 * 071 * <p>Many of the filtered collection's methods, such as {@code size()}, iterate across every 072 * element in the underlying collection and determine which elements satisfy the filter. When a 073 * live view is <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, 074 * predicate)} and use the copy. 075 * 076 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 077 * {@link Predicate#apply}. Do not provide a predicate such as {@code 078 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 079 * Iterables#filter(Iterable, Class)} for related functionality.) 080 * 081 * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}. 082 */ 083 // TODO(kevinb): how can we omit that Iterables link when building gwt 084 // javadoc? 085 public static <E> Collection<E> filter(Collection<E> unfiltered, Predicate<? super E> predicate) { 086 if (unfiltered instanceof FilteredCollection) { 087 // Support clear(), removeAll(), and retainAll() when filtering a filtered 088 // collection. 089 return ((FilteredCollection<E>) unfiltered).createCombined(predicate); 090 } 091 092 return new FilteredCollection<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 093 } 094 095 /** 096 * Delegates to {@link Collection#contains}. Returns {@code false} if the {@code contains} method 097 * throws a {@code ClassCastException} or {@code NullPointerException}. 098 */ 099 static boolean safeContains(Collection<?> collection, @NullableDecl Object object) { 100 checkNotNull(collection); 101 try { 102 return collection.contains(object); 103 } catch (ClassCastException | NullPointerException e) { 104 return false; 105 } 106 } 107 108 /** 109 * Delegates to {@link Collection#remove}. Returns {@code false} if the {@code remove} method 110 * throws a {@code ClassCastException} or {@code NullPointerException}. 111 */ 112 static boolean safeRemove(Collection<?> collection, @NullableDecl Object object) { 113 checkNotNull(collection); 114 try { 115 return collection.remove(object); 116 } catch (ClassCastException | NullPointerException e) { 117 return false; 118 } 119 } 120 121 static class FilteredCollection<E> extends AbstractCollection<E> { 122 final Collection<E> unfiltered; 123 final Predicate<? super E> predicate; 124 125 FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) { 126 this.unfiltered = unfiltered; 127 this.predicate = predicate; 128 } 129 130 FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) { 131 return new FilteredCollection<E>(unfiltered, Predicates.<E>and(predicate, newPredicate)); 132 // .<E> above needed to compile in JDK 5 133 } 134 135 @Override 136 public boolean add(E element) { 137 checkArgument(predicate.apply(element)); 138 return unfiltered.add(element); 139 } 140 141 @Override 142 public boolean addAll(Collection<? extends E> collection) { 143 for (E element : collection) { 144 checkArgument(predicate.apply(element)); 145 } 146 return unfiltered.addAll(collection); 147 } 148 149 @Override 150 public void clear() { 151 Iterables.removeIf(unfiltered, predicate); 152 } 153 154 @Override 155 public boolean contains(@NullableDecl Object element) { 156 if (safeContains(unfiltered, element)) { 157 @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E 158 E e = (E) element; 159 return predicate.apply(e); 160 } 161 return false; 162 } 163 164 @Override 165 public boolean containsAll(Collection<?> collection) { 166 return containsAllImpl(this, collection); 167 } 168 169 @Override 170 public boolean isEmpty() { 171 return !Iterables.any(unfiltered, predicate); 172 } 173 174 @Override 175 public Iterator<E> iterator() { 176 return Iterators.filter(unfiltered.iterator(), predicate); 177 } 178 179 @Override 180 public boolean remove(Object element) { 181 return contains(element) && unfiltered.remove(element); 182 } 183 184 @Override 185 public boolean removeAll(final Collection<?> collection) { 186 boolean changed = false; 187 Iterator<E> itr = unfiltered.iterator(); 188 while (itr.hasNext()) { 189 E e = itr.next(); 190 if (predicate.apply(e) && collection.contains(e)) { 191 itr.remove(); 192 changed = true; 193 } 194 } 195 return changed; 196 } 197 198 @Override 199 public boolean retainAll(final Collection<?> collection) { 200 boolean changed = false; 201 Iterator<E> itr = unfiltered.iterator(); 202 while (itr.hasNext()) { 203 E e = itr.next(); 204 if (predicate.apply(e) && !collection.contains(e)) { 205 itr.remove(); 206 changed = true; 207 } 208 } 209 return changed; 210 } 211 212 @Override 213 public int size() { 214 int size = 0; 215 for (E e : unfiltered) { 216 if (predicate.apply(e)) { 217 size++; 218 } 219 } 220 return size; 221 } 222 223 @Override 224 public Object[] toArray() { 225 // creating an ArrayList so filtering happens once 226 return Lists.newArrayList(iterator()).toArray(); 227 } 228 229 @Override 230 public <T> T[] toArray(T[] array) { 231 return Lists.newArrayList(iterator()).toArray(array); 232 } 233 } 234 235 /** 236 * Returns a collection that applies {@code function} to each element of {@code fromCollection}. 237 * The returned collection is a live view of {@code fromCollection}; changes to one affect the 238 * other. 239 * 240 * <p>The returned collection's {@code add()} and {@code addAll()} methods throw an {@link 241 * UnsupportedOperationException}. All other collection methods are supported, as long as {@code 242 * fromCollection} supports them. 243 * 244 * <p>The returned collection isn't threadsafe or serializable, even if {@code fromCollection} is. 245 * 246 * <p>When a live view is <i>not</i> needed, it may be faster to copy the transformed collection 247 * and use the copy. 248 * 249 * <p>If the input {@code Collection} is known to be a {@code List}, consider {@link 250 * Lists#transform}. If only an {@code Iterable} is available, use {@link Iterables#transform}. 251 * 252 * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}. 253 */ 254 public static <F, T> Collection<T> transform( 255 Collection<F> fromCollection, Function<? super F, T> function) { 256 return new TransformedCollection<>(fromCollection, function); 257 } 258 259 static class TransformedCollection<F, T> extends AbstractCollection<T> { 260 final Collection<F> fromCollection; 261 final Function<? super F, ? extends T> function; 262 263 TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) { 264 this.fromCollection = checkNotNull(fromCollection); 265 this.function = checkNotNull(function); 266 } 267 268 @Override 269 public void clear() { 270 fromCollection.clear(); 271 } 272 273 @Override 274 public boolean isEmpty() { 275 return fromCollection.isEmpty(); 276 } 277 278 @Override 279 public Iterator<T> iterator() { 280 return Iterators.transform(fromCollection.iterator(), function); 281 } 282 283 @Override 284 public int size() { 285 return fromCollection.size(); 286 } 287 } 288 289 /** 290 * Returns {@code true} if the collection {@code self} contains all of the elements in the 291 * collection {@code c}. 292 * 293 * <p>This method iterates over the specified collection {@code c}, checking each element returned 294 * by the iterator in turn to see if it is contained in the specified collection {@code self}. If 295 * all elements are so contained, {@code true} is returned, otherwise {@code false}. 296 * 297 * @param self a collection which might contain all elements in {@code c} 298 * @param c a collection whose elements might be contained by {@code self} 299 */ 300 static boolean containsAllImpl(Collection<?> self, Collection<?> c) { 301 for (Object o : c) { 302 if (!self.contains(o)) { 303 return false; 304 } 305 } 306 return true; 307 } 308 309 /** An implementation of {@link Collection#toString()}. */ 310 static String toStringImpl(final Collection<?> collection) { 311 StringBuilder sb = newStringBuilderForCollection(collection.size()).append('['); 312 boolean first = true; 313 for (Object o : collection) { 314 if (!first) { 315 sb.append(", "); 316 } 317 first = false; 318 if (o == collection) { 319 sb.append("(this Collection)"); 320 } else { 321 sb.append(o); 322 } 323 } 324 return sb.append(']').toString(); 325 } 326 327 /** Returns best-effort-sized StringBuilder based on the given collection size. */ 328 static StringBuilder newStringBuilderForCollection(int size) { 329 checkNonnegative(size, "size"); 330 return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO)); 331 } 332 333 /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */ 334 static <T> Collection<T> cast(Iterable<T> iterable) { 335 return (Collection<T>) iterable; 336 } 337 338 /** 339 * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}. 340 * 341 * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations 342 * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, 343 * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the 344 * first permutation will be in ascending order, and the last will be in descending order. 345 * 346 * <p>Duplicate elements are considered equal. For example, the list [1, 1] will have only one 347 * permutation, instead of two. This is why the elements have to implement {@link Comparable}. 348 * 349 * <p>An empty iterable has only one permutation, which is an empty list. 350 * 351 * <p>This method is equivalent to {@code Collections2.orderedPermutations(list, 352 * Ordering.natural())}. 353 * 354 * @param elements the original iterable whose elements have to be permuted. 355 * @return an immutable {@link Collection} containing all the different permutations of the 356 * original iterable. 357 * @throws NullPointerException if the specified iterable is null or has any null elements. 358 * @since 12.0 359 */ 360 @Beta 361 public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations( 362 Iterable<E> elements) { 363 return orderedPermutations(elements, Ordering.natural()); 364 } 365 366 /** 367 * Returns a {@link Collection} of all the permutations of the specified {@link Iterable} using 368 * the specified {@link Comparator} for establishing the lexicographical ordering. 369 * 370 * <p>Examples: 371 * 372 * <pre>{@code 373 * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) { 374 * println(perm); 375 * } 376 * // -> ["a", "b", "c"] 377 * // -> ["a", "c", "b"] 378 * // -> ["b", "a", "c"] 379 * // -> ["b", "c", "a"] 380 * // -> ["c", "a", "b"] 381 * // -> ["c", "b", "a"] 382 * 383 * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) { 384 * println(perm); 385 * } 386 * // -> [1, 1, 2, 2] 387 * // -> [1, 2, 1, 2] 388 * // -> [1, 2, 2, 1] 389 * // -> [2, 1, 1, 2] 390 * // -> [2, 1, 2, 1] 391 * // -> [2, 2, 1, 1] 392 * }</pre> 393 * 394 * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations 395 * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, 396 * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the 397 * first permutation will be in ascending order, and the last will be in descending order. 398 * 399 * <p>Elements that compare equal are considered equal and no new permutations are created by 400 * swapping them. 401 * 402 * <p>An empty iterable has only one permutation, which is an empty list. 403 * 404 * @param elements the original iterable whose elements have to be permuted. 405 * @param comparator a comparator for the iterable's elements. 406 * @return an immutable {@link Collection} containing all the different permutations of the 407 * original iterable. 408 * @throws NullPointerException If the specified iterable is null, has any null elements, or if 409 * the specified comparator is null. 410 * @since 12.0 411 */ 412 @Beta 413 public static <E> Collection<List<E>> orderedPermutations( 414 Iterable<E> elements, Comparator<? super E> comparator) { 415 return new OrderedPermutationCollection<E>(elements, comparator); 416 } 417 418 private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> { 419 final ImmutableList<E> inputList; 420 final Comparator<? super E> comparator; 421 final int size; 422 423 OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) { 424 this.inputList = ImmutableList.sortedCopyOf(comparator, input); 425 this.comparator = comparator; 426 this.size = calculateSize(inputList, comparator); 427 } 428 429 /** 430 * The number of permutations with repeated elements is calculated as follows: 431 * 432 * <ul> 433 * <li>For an empty list, it is 1 (base case). 434 * <li>When r numbers are added to a list of n-r elements, the number of permutations is 435 * increased by a factor of (n choose r). 436 * </ul> 437 */ 438 private static <E> int calculateSize( 439 List<E> sortedInputList, Comparator<? super E> comparator) { 440 int permutations = 1; 441 int n = 1; 442 int r = 1; 443 while (n < sortedInputList.size()) { 444 int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n)); 445 if (comparison < 0) { 446 // We move to the next non-repeated element. 447 permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r)); 448 r = 0; 449 if (permutations == Integer.MAX_VALUE) { 450 return Integer.MAX_VALUE; 451 } 452 } 453 n++; 454 r++; 455 } 456 return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r)); 457 } 458 459 @Override 460 public int size() { 461 return size; 462 } 463 464 @Override 465 public boolean isEmpty() { 466 return false; 467 } 468 469 @Override 470 public Iterator<List<E>> iterator() { 471 return new OrderedPermutationIterator<E>(inputList, comparator); 472 } 473 474 @Override 475 public boolean contains(@NullableDecl Object obj) { 476 if (obj instanceof List) { 477 List<?> list = (List<?>) obj; 478 return isPermutation(inputList, list); 479 } 480 return false; 481 } 482 483 @Override 484 public String toString() { 485 return "orderedPermutationCollection(" + inputList + ")"; 486 } 487 } 488 489 private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> { 490 @NullableDecl 491 List<E> nextPermutation; 492 final Comparator<? super E> comparator; 493 494 OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) { 495 this.nextPermutation = Lists.newArrayList(list); 496 this.comparator = comparator; 497 } 498 499 @Override 500 protected List<E> computeNext() { 501 if (nextPermutation == null) { 502 return endOfData(); 503 } 504 ImmutableList<E> next = ImmutableList.copyOf(nextPermutation); 505 calculateNextPermutation(); 506 return next; 507 } 508 509 void calculateNextPermutation() { 510 int j = findNextJ(); 511 if (j == -1) { 512 nextPermutation = null; 513 return; 514 } 515 516 int l = findNextL(j); 517 Collections.swap(nextPermutation, j, l); 518 int n = nextPermutation.size(); 519 Collections.reverse(nextPermutation.subList(j + 1, n)); 520 } 521 522 int findNextJ() { 523 for (int k = nextPermutation.size() - 2; k >= 0; k--) { 524 if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) { 525 return k; 526 } 527 } 528 return -1; 529 } 530 531 int findNextL(int j) { 532 E ak = nextPermutation.get(j); 533 for (int l = nextPermutation.size() - 1; l > j; l--) { 534 if (comparator.compare(ak, nextPermutation.get(l)) < 0) { 535 return l; 536 } 537 } 538 throw new AssertionError("this statement should be unreachable"); 539 } 540 } 541 542 /** 543 * Returns a {@link Collection} of all the permutations of the specified {@link Collection}. 544 * 545 * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm for permutations 546 * generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7, 547 * Section 7.2.1.2. 548 * 549 * <p>If the input list contains equal elements, some of the generated permutations will be equal. 550 * 551 * <p>An empty collection has only one permutation, which is an empty list. 552 * 553 * @param elements the original collection whose elements have to be permuted. 554 * @return an immutable {@link Collection} containing all the different permutations of the 555 * original collection. 556 * @throws NullPointerException if the specified collection is null or has any null elements. 557 * @since 12.0 558 */ 559 @Beta 560 public static <E> Collection<List<E>> permutations(Collection<E> elements) { 561 return new PermutationCollection<E>(ImmutableList.copyOf(elements)); 562 } 563 564 private static final class PermutationCollection<E> extends AbstractCollection<List<E>> { 565 final ImmutableList<E> inputList; 566 567 PermutationCollection(ImmutableList<E> input) { 568 this.inputList = input; 569 } 570 571 @Override 572 public int size() { 573 return IntMath.factorial(inputList.size()); 574 } 575 576 @Override 577 public boolean isEmpty() { 578 return false; 579 } 580 581 @Override 582 public Iterator<List<E>> iterator() { 583 return new PermutationIterator<E>(inputList); 584 } 585 586 @Override 587 public boolean contains(@NullableDecl Object obj) { 588 if (obj instanceof List) { 589 List<?> list = (List<?>) obj; 590 return isPermutation(inputList, list); 591 } 592 return false; 593 } 594 595 @Override 596 public String toString() { 597 return "permutations(" + inputList + ")"; 598 } 599 } 600 601 private static class PermutationIterator<E> extends AbstractIterator<List<E>> { 602 final List<E> list; 603 final int[] c; 604 final int[] o; 605 int j; 606 607 PermutationIterator(List<E> list) { 608 this.list = new ArrayList<E>(list); 609 int n = list.size(); 610 c = new int[n]; 611 o = new int[n]; 612 Arrays.fill(c, 0); 613 Arrays.fill(o, 1); 614 j = Integer.MAX_VALUE; 615 } 616 617 @Override 618 protected List<E> computeNext() { 619 if (j <= 0) { 620 return endOfData(); 621 } 622 ImmutableList<E> next = ImmutableList.copyOf(list); 623 calculateNextPermutation(); 624 return next; 625 } 626 627 void calculateNextPermutation() { 628 j = list.size() - 1; 629 int s = 0; 630 631 // Handle the special case of an empty list. Skip the calculation of the 632 // next permutation. 633 if (j == -1) { 634 return; 635 } 636 637 while (true) { 638 int q = c[j] + o[j]; 639 if (q < 0) { 640 switchDirection(); 641 continue; 642 } 643 if (q == j + 1) { 644 if (j == 0) { 645 break; 646 } 647 s++; 648 switchDirection(); 649 continue; 650 } 651 652 Collections.swap(list, j - c[j] + s, j - q + s); 653 c[j] = q; 654 break; 655 } 656 } 657 658 void switchDirection() { 659 o[j] = -o[j]; 660 j--; 661 } 662 } 663 664 /** Returns {@code true} if the second list is a permutation of the first. */ 665 private static boolean isPermutation(List<?> first, List<?> second) { 666 return first.size() == second.size() && counts(first).equals(counts(second)); 667 } 668 669 private static <E> Set<Multiset.Entry<E>> counts(Collection<E> collection) { 670 AbstractObjectCountMap<E> map = new ObjectCountHashMap<>(); 671 for (E e : collection) { 672 map.put(e, map.get(e) + 1); 673 } 674 return map.entrySet(); 675 } 676}