001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkPositionIndexes; 020 021import com.google.common.annotations.Beta; 022import com.google.common.annotations.GwtCompatible; 023import com.google.errorprone.annotations.CanIgnoreReturnValue; 024import java.math.BigInteger; 025import java.util.Arrays; 026import java.util.Comparator; 027 028/** 029 * Static utility methods pertaining to {@code long} primitives that interpret values as 030 * <i>unsigned</i> (that is, any negative value {@code x} is treated as the positive value 031 * {@code 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as well 032 * as signed versions of methods for which signedness is an issue. 033 * 034 * <p>In addition, this class provides several static methods for converting a {@code long} to a 035 * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned 036 * number. 037 * 038 * <p>Users of these utilities must be <i>extremely careful</i> not to mix up signed and unsigned 039 * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper class 040 * be used, at a small efficiency penalty, to enforce the distinction in the type system. 041 * 042 * <p>See the Guava User Guide article on 043 * <a href="https://github.com/google/guava/wiki/PrimitivesExplained#unsigned-support">unsigned 044 * primitive utilities</a>. 045 * 046 * @author Louis Wasserman 047 * @author Brian Milch 048 * @author Colin Evans 049 * @since 10.0 050 */ 051@Beta 052@GwtCompatible 053public final class UnsignedLongs { 054 private UnsignedLongs() {} 055 056 public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1 057 058 /** 059 * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on 060 * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} as 061 * signed longs. 062 */ 063 private static long flip(long a) { 064 return a ^ Long.MIN_VALUE; 065 } 066 067 /** 068 * Compares the two specified {@code long} values, treating them as unsigned values between 069 * {@code 0} and {@code 2^64 - 1} inclusive. 070 * 071 * <p><b>Java 8 users:</b> use {@link Long#compareUnsigned(long, long)} instead. 072 * 073 * @param a the first unsigned {@code long} to compare 074 * @param b the second unsigned {@code long} to compare 075 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 076 * greater than {@code b}; or zero if they are equal 077 */ 078 public static int compare(long a, long b) { 079 return Longs.compare(flip(a), flip(b)); 080 } 081 082 /** 083 * Returns the least value present in {@code array}, treating values as unsigned. 084 * 085 * @param array a <i>nonempty</i> array of unsigned {@code long} values 086 * @return the value present in {@code array} that is less than or equal to every other value in 087 * the array according to {@link #compare} 088 * @throws IllegalArgumentException if {@code array} is empty 089 */ 090 public static long min(long... array) { 091 checkArgument(array.length > 0); 092 long min = flip(array[0]); 093 for (int i = 1; i < array.length; i++) { 094 long next = flip(array[i]); 095 if (next < min) { 096 min = next; 097 } 098 } 099 return flip(min); 100 } 101 102 /** 103 * Returns the greatest value present in {@code array}, treating values as unsigned. 104 * 105 * @param array a <i>nonempty</i> array of unsigned {@code long} values 106 * @return the value present in {@code array} that is greater than or equal to every other value 107 * in the array according to {@link #compare} 108 * @throws IllegalArgumentException if {@code array} is empty 109 */ 110 public static long max(long... array) { 111 checkArgument(array.length > 0); 112 long max = flip(array[0]); 113 for (int i = 1; i < array.length; i++) { 114 long next = flip(array[i]); 115 if (next > max) { 116 max = next; 117 } 118 } 119 return flip(max); 120 } 121 122 /** 123 * Returns a string containing the supplied unsigned {@code long} values separated by 124 * {@code separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}. 125 * 126 * @param separator the text that should appear between consecutive values in the resulting string 127 * (but not at the start or end) 128 * @param array an array of unsigned {@code long} values, possibly empty 129 */ 130 public static String join(String separator, long... array) { 131 checkNotNull(separator); 132 if (array.length == 0) { 133 return ""; 134 } 135 136 // For pre-sizing a builder, just get the right order of magnitude 137 StringBuilder builder = new StringBuilder(array.length * 5); 138 builder.append(toString(array[0])); 139 for (int i = 1; i < array.length; i++) { 140 builder.append(separator).append(toString(array[i])); 141 } 142 return builder.toString(); 143 } 144 145 /** 146 * Returns a comparator that compares two arrays of unsigned {@code long} values <a 147 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 148 * compares, using {@link #compare(long, long)}), the first pair of values that follow any common 149 * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For 150 * example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}. 151 * 152 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 153 * support only identity equality), but it is consistent with 154 * {@link Arrays#equals(long[], long[])}. 155 */ 156 public static Comparator<long[]> lexicographicalComparator() { 157 return LexicographicalComparator.INSTANCE; 158 } 159 160 enum LexicographicalComparator implements Comparator<long[]> { 161 INSTANCE; 162 163 @Override 164 public int compare(long[] left, long[] right) { 165 int minLength = Math.min(left.length, right.length); 166 for (int i = 0; i < minLength; i++) { 167 if (left[i] != right[i]) { 168 return UnsignedLongs.compare(left[i], right[i]); 169 } 170 } 171 return left.length - right.length; 172 } 173 174 @Override 175 public String toString() { 176 return "UnsignedLongs.lexicographicalComparator()"; 177 } 178 } 179 /** 180 * Sorts the array, treating its elements as unsigned 64-bit integers. 181 * 182 * @since 23.1 183 */ 184 public static void sort(long[] array) { 185 checkNotNull(array); 186 sort(array, 0, array.length); 187 } 188 189 /** 190 * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its 191 * elements as unsigned 64-bit integers. 192 * 193 * @since 23.1 194 */ 195 public static void sort(long[] array, int fromIndex, int toIndex) { 196 checkNotNull(array); 197 checkPositionIndexes(fromIndex, toIndex, array.length); 198 for (int i = fromIndex; i < toIndex; i++) { 199 array[i] = flip(array[i]); 200 } 201 Arrays.sort(array, fromIndex, toIndex); 202 for (int i = fromIndex; i < toIndex; i++) { 203 array[i] = flip(array[i]); 204 } 205 } 206 207 /** 208 * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 64-bit 209 * integers. 210 * 211 * @since 23.1 212 */ 213 public static void sortDescending(long[] array) { 214 checkNotNull(array); 215 sortDescending(array, 0, array.length); 216 } 217 218 /** 219 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 220 * exclusive in descending order, interpreting them as unsigned 64-bit integers. 221 * 222 * @since 23.1 223 */ 224 public static void sortDescending(long[] array, int fromIndex, int toIndex) { 225 checkNotNull(array); 226 checkPositionIndexes(fromIndex, toIndex, array.length); 227 for (int i = fromIndex; i < toIndex; i++) { 228 array[i] ^= Long.MAX_VALUE; 229 } 230 Arrays.sort(array, fromIndex, toIndex); 231 for (int i = fromIndex; i < toIndex; i++) { 232 array[i] ^= Long.MAX_VALUE; 233 } 234 } 235 236 /** 237 * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit 238 * quantities. 239 * 240 * <p><b>Java 8 users:</b> use {@link Long#divideUnsigned(long, long)} instead. 241 * 242 * @param dividend the dividend (numerator) 243 * @param divisor the divisor (denominator) 244 * @throws ArithmeticException if divisor is 0 245 */ 246 public static long divide(long dividend, long divisor) { 247 if (divisor < 0) { // i.e., divisor >= 2^63: 248 if (compare(dividend, divisor) < 0) { 249 return 0; // dividend < divisor 250 } else { 251 return 1; // dividend >= divisor 252 } 253 } 254 255 // Optimization - use signed division if dividend < 2^63 256 if (dividend >= 0) { 257 return dividend / divisor; 258 } 259 260 /* 261 * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is 262 * guaranteed to be either exact or one less than the correct value. This follows from fact that 263 * floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not quite 264 * trivial. 265 */ 266 long quotient = ((dividend >>> 1) / divisor) << 1; 267 long rem = dividend - quotient * divisor; 268 return quotient + (compare(rem, divisor) >= 0 ? 1 : 0); 269 } 270 271 /** 272 * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit 273 * quantities. 274 * 275 * <p><b>Java 8 users:</b> use {@link Long#remainderUnsigned(long, long)} instead. 276 * 277 * @param dividend the dividend (numerator) 278 * @param divisor the divisor (denominator) 279 * @throws ArithmeticException if divisor is 0 280 * @since 11.0 281 */ 282 public static long remainder(long dividend, long divisor) { 283 if (divisor < 0) { // i.e., divisor >= 2^63: 284 if (compare(dividend, divisor) < 0) { 285 return dividend; // dividend < divisor 286 } else { 287 return dividend - divisor; // dividend >= divisor 288 } 289 } 290 291 // Optimization - use signed modulus if dividend < 2^63 292 if (dividend >= 0) { 293 return dividend % divisor; 294 } 295 296 /* 297 * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is 298 * guaranteed to be either exact or one less than the correct value. This follows from the fact 299 * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not 300 * quite trivial. 301 */ 302 long quotient = ((dividend >>> 1) / divisor) << 1; 303 long rem = dividend - quotient * divisor; 304 return rem - (compare(rem, divisor) >= 0 ? divisor : 0); 305 } 306 307 /** 308 * Returns the unsigned {@code long} value represented by the given decimal string. 309 * 310 * <p><b>Java 8 users:</b> use {@link Long#parseUnsignedLong(String)} instead. 311 * 312 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} 313 * value 314 * @throws NullPointerException if {@code string} is null (in contrast to 315 * {@link Long#parseLong(String)}) 316 */ 317 @CanIgnoreReturnValue 318 public static long parseUnsignedLong(String string) { 319 return parseUnsignedLong(string, 10); 320 } 321 322 /** 323 * Returns the unsigned {@code long} value represented by the given string. 324 * 325 * Accepts a decimal, hexadecimal, or octal number given by specifying the following prefix: 326 * 327 * <ul> 328 * <li>{@code 0x}<i>HexDigits</i> 329 * <li>{@code 0X}<i>HexDigits</i> 330 * <li>{@code #}<i>HexDigits</i> 331 * <li>{@code 0}<i>OctalDigits</i> 332 * </ul> 333 * 334 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} 335 * value 336 * @since 13.0 337 */ 338 @CanIgnoreReturnValue 339 public static long decode(String stringValue) { 340 ParseRequest request = ParseRequest.fromString(stringValue); 341 342 try { 343 return parseUnsignedLong(request.rawValue, request.radix); 344 } catch (NumberFormatException e) { 345 NumberFormatException decodeException = 346 new NumberFormatException("Error parsing value: " + stringValue); 347 decodeException.initCause(e); 348 throw decodeException; 349 } 350 } 351 352 /** 353 * Returns the unsigned {@code long} value represented by a string with the given radix. 354 * 355 * <p><b>Java 8 users:</b> use {@link Long#parseUnsignedLong(String, int)} instead. 356 * 357 * @param string the string containing the unsigned {@code long} representation to be parsed. 358 * @param radix the radix to use while parsing {@code string} 359 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} with 360 * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and 361 * {@link Character#MAX_RADIX}. 362 * @throws NullPointerException if {@code string} is null (in contrast to 363 * {@link Long#parseLong(String)}) 364 */ 365 @CanIgnoreReturnValue 366 public static long parseUnsignedLong(String string, int radix) { 367 checkNotNull(string); 368 if (string.length() == 0) { 369 throw new NumberFormatException("empty string"); 370 } 371 if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { 372 throw new NumberFormatException("illegal radix: " + radix); 373 } 374 375 int maxSafePos = ParseOverflowDetection.maxSafeDigits[radix] - 1; 376 long value = 0; 377 for (int pos = 0; pos < string.length(); pos++) { 378 int digit = Character.digit(string.charAt(pos), radix); 379 if (digit == -1) { 380 throw new NumberFormatException(string); 381 } 382 if (pos > maxSafePos && ParseOverflowDetection.overflowInParse(value, digit, radix)) { 383 throw new NumberFormatException("Too large for unsigned long: " + string); 384 } 385 value = (value * radix) + digit; 386 } 387 388 return value; 389 } 390 391 /* 392 * We move the static constants into this class so ProGuard can inline UnsignedLongs entirely 393 * unless the user is actually calling a parse method. 394 */ 395 private static final class ParseOverflowDetection { 396 private ParseOverflowDetection() {} 397 398 // calculated as 0xffffffffffffffff / radix 399 static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1]; 400 static final int[] maxValueMods = new int[Character.MAX_RADIX + 1]; 401 static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1]; 402 403 static { 404 BigInteger overflow = new BigInteger("10000000000000000", 16); 405 for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) { 406 maxValueDivs[i] = divide(MAX_VALUE, i); 407 maxValueMods[i] = (int) remainder(MAX_VALUE, i); 408 maxSafeDigits[i] = overflow.toString(i).length() - 1; 409 } 410 } 411 412 /** 413 * Returns true if (current * radix) + digit is a number too large to be represented by an 414 * unsigned long. This is useful for detecting overflow while parsing a string representation of 415 * a number. Does not verify whether supplied radix is valid, passing an invalid radix will give 416 * undefined results or an ArrayIndexOutOfBoundsException. 417 */ 418 static boolean overflowInParse(long current, int digit, int radix) { 419 if (current >= 0) { 420 if (current < maxValueDivs[radix]) { 421 return false; 422 } 423 if (current > maxValueDivs[radix]) { 424 return true; 425 } 426 // current == maxValueDivs[radix] 427 return (digit > maxValueMods[radix]); 428 } 429 430 // current < 0: high bit is set 431 return true; 432 } 433 } 434 435 /** 436 * Returns a string representation of x, where x is treated as unsigned. 437 * 438 * <p><b>Java 8 users:</b> use {@link Long#toUnsignedString(long)} instead. 439 */ 440 public static String toString(long x) { 441 return toString(x, 10); 442 } 443 444 /** 445 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as 446 * unsigned. 447 * 448 * <p><b>Java 8 users:</b> use {@link Long#toUnsignedString(long, int)} instead. 449 * 450 * @param x the value to convert to a string. 451 * @param radix the radix to use while working with {@code x} 452 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 453 * and {@link Character#MAX_RADIX}. 454 */ 455 public static String toString(long x, int radix) { 456 checkArgument( 457 radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 458 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 459 radix); 460 if (x == 0) { 461 // Simply return "0" 462 return "0"; 463 } else if (x > 0) { 464 return Long.toString(x, radix); 465 } else { 466 char[] buf = new char[64]; 467 int i = buf.length; 468 if ((radix & (radix - 1)) == 0) { 469 // Radix is a power of two so we can avoid division. 470 int shift = Integer.numberOfTrailingZeros(radix); 471 int mask = radix - 1; 472 do { 473 buf[--i] = Character.forDigit(((int) x) & mask, radix); 474 x >>>= shift; 475 } while (x != 0); 476 } else { 477 // Separate off the last digit using unsigned division. That will leave 478 // a number that is nonnegative as a signed integer. 479 long quotient; 480 if ((radix & 1) == 0) { 481 // Fast path for the usual case where the radix is even. 482 quotient = (x >>> 1) / (radix >>> 1); 483 } else { 484 quotient = divide(x, radix); 485 } 486 long rem = x - quotient * radix; 487 buf[--i] = Character.forDigit((int) rem, radix); 488 x = quotient; 489 // Simple modulo/division approach 490 while (x > 0) { 491 buf[--i] = Character.forDigit((int) (x % radix), radix); 492 x /= radix; 493 } 494 } 495 // Generate string 496 return new String(buf, i, buf.length - i); 497 } 498 } 499}