001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkPositionIndexes; 020 021import com.google.common.annotations.Beta; 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.annotations.VisibleForTesting; 024import com.google.errorprone.annotations.CanIgnoreReturnValue; 025import java.nio.ByteOrder; 026import java.util.Arrays; 027import java.util.Comparator; 028import sun.misc.Unsafe; 029 030/** 031 * Static utility methods pertaining to {@code byte} primitives that interpret values as 032 * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value 033 * {@code 256 + b}). The corresponding methods that treat the values as signed are found in 034 * {@link SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}. 035 * 036 * <p>See the Guava User Guide article on 037 * <a href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 038 * 039 * @author Kevin Bourrillion 040 * @author Martin Buchholz 041 * @author Hiroshi Yamauchi 042 * @author Louis Wasserman 043 * @since 1.0 044 */ 045@GwtIncompatible 046public final class UnsignedBytes { 047 private UnsignedBytes() {} 048 049 /** 050 * The largest power of two that can be represented as an unsigned {@code 051 * byte}. 052 * 053 * @since 10.0 054 */ 055 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 056 057 /** 058 * The largest value that fits into an unsigned byte. 059 * 060 * @since 13.0 061 */ 062 public static final byte MAX_VALUE = (byte) 0xFF; 063 064 private static final int UNSIGNED_MASK = 0xFF; 065 066 /** 067 * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns 068 * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise. 069 * 070 * <p><b>Java 8 users:</b> use {@link Byte#toUnsignedInt(byte)} instead. 071 * 072 * @since 6.0 073 */ 074 public static int toInt(byte value) { 075 return value & UNSIGNED_MASK; 076 } 077 078 /** 079 * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if 080 * possible. 081 * 082 * @param value a value between 0 and 255 inclusive 083 * @return the {@code byte} value that, when treated as unsigned, equals {@code value} 084 * @throws IllegalArgumentException if {@code value} is negative or greater than 255 085 */ 086 @CanIgnoreReturnValue 087 public static byte checkedCast(long value) { 088 checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); 089 return (byte) value; 090 } 091 092 /** 093 * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to 094 * {@code value}. 095 * 096 * @param value any {@code long} value 097 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and 098 * {@code value} cast to {@code byte} otherwise 099 */ 100 public static byte saturatedCast(long value) { 101 if (value > toInt(MAX_VALUE)) { 102 return MAX_VALUE; // -1 103 } 104 if (value < 0) { 105 return (byte) 0; 106 } 107 return (byte) value; 108 } 109 110 /** 111 * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and 112 * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127} 113 * because it is seen as having the value of positive {@code 129}. 114 * 115 * @param a the first {@code byte} to compare 116 * @param b the second {@code byte} to compare 117 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 118 * greater than {@code b}; or zero if they are equal 119 */ 120 public static int compare(byte a, byte b) { 121 return toInt(a) - toInt(b); 122 } 123 124 /** 125 * Returns the least value present in {@code array}. 126 * 127 * @param array a <i>nonempty</i> array of {@code byte} values 128 * @return the value present in {@code array} that is less than or equal to every other value in 129 * the array 130 * @throws IllegalArgumentException if {@code array} is empty 131 */ 132 public static byte min(byte... array) { 133 checkArgument(array.length > 0); 134 int min = toInt(array[0]); 135 for (int i = 1; i < array.length; i++) { 136 int next = toInt(array[i]); 137 if (next < min) { 138 min = next; 139 } 140 } 141 return (byte) min; 142 } 143 144 /** 145 * Returns the greatest value present in {@code array}. 146 * 147 * @param array a <i>nonempty</i> array of {@code byte} values 148 * @return the value present in {@code array} that is greater than or equal to every other value 149 * in the array 150 * @throws IllegalArgumentException if {@code array} is empty 151 */ 152 public static byte max(byte... array) { 153 checkArgument(array.length > 0); 154 int max = toInt(array[0]); 155 for (int i = 1; i < array.length; i++) { 156 int next = toInt(array[i]); 157 if (next > max) { 158 max = next; 159 } 160 } 161 return (byte) max; 162 } 163 164 /** 165 * Returns a string representation of x, where x is treated as unsigned. 166 * 167 * @since 13.0 168 */ 169 @Beta 170 public static String toString(byte x) { 171 return toString(x, 10); 172 } 173 174 /** 175 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as 176 * unsigned. 177 * 178 * @param x the value to convert to a string. 179 * @param radix the radix to use while working with {@code x} 180 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 181 * and {@link Character#MAX_RADIX}. 182 * @since 13.0 183 */ 184 @Beta 185 public static String toString(byte x, int radix) { 186 checkArgument( 187 radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 188 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 189 radix); 190 // Benchmarks indicate this is probably not worth optimizing. 191 return Integer.toString(toInt(x), radix); 192 } 193 194 /** 195 * Returns the unsigned {@code byte} value represented by the given decimal string. 196 * 197 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 198 * value 199 * @throws NullPointerException if {@code string} is null (in contrast to 200 * {@link Byte#parseByte(String)}) 201 * @since 13.0 202 */ 203 @Beta 204 @CanIgnoreReturnValue 205 public static byte parseUnsignedByte(String string) { 206 return parseUnsignedByte(string, 10); 207 } 208 209 /** 210 * Returns the unsigned {@code byte} value represented by a string with the given radix. 211 * 212 * @param string the string containing the unsigned {@code byte} representation to be parsed. 213 * @param radix the radix to use while parsing {@code string} 214 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with 215 * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and 216 * {@link Character#MAX_RADIX}. 217 * @throws NullPointerException if {@code string} is null (in contrast to 218 * {@link Byte#parseByte(String)}) 219 * @since 13.0 220 */ 221 @Beta 222 @CanIgnoreReturnValue 223 public static byte parseUnsignedByte(String string, int radix) { 224 int parse = Integer.parseInt(checkNotNull(string), radix); 225 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 226 if (parse >> Byte.SIZE == 0) { 227 return (byte) parse; 228 } else { 229 throw new NumberFormatException("out of range: " + parse); 230 } 231 } 232 233 /** 234 * Returns a string containing the supplied {@code byte} values separated by {@code separator}. 235 * For example, {@code join(":", (byte) 1, (byte) 2, 236 * (byte) 255)} returns the string {@code "1:2:255"}. 237 * 238 * @param separator the text that should appear between consecutive values in the resulting string 239 * (but not at the start or end) 240 * @param array an array of {@code byte} values, possibly empty 241 */ 242 public static String join(String separator, byte... array) { 243 checkNotNull(separator); 244 if (array.length == 0) { 245 return ""; 246 } 247 248 // For pre-sizing a builder, just get the right order of magnitude 249 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 250 builder.append(toInt(array[0])); 251 for (int i = 1; i < array.length; i++) { 252 builder.append(separator).append(toString(array[i])); 253 } 254 return builder.toString(); 255 } 256 257 /** 258 * Returns a comparator that compares two {@code byte} arrays <a 259 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 260 * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common 261 * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For 262 * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as 263 * unsigned. 264 * 265 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 266 * support only identity equality), but it is consistent with 267 * {@link java.util.Arrays#equals(byte[], byte[])}. 268 * 269 * @since 2.0 270 */ 271 public static Comparator<byte[]> lexicographicalComparator() { 272 return LexicographicalComparatorHolder.BEST_COMPARATOR; 273 } 274 275 @VisibleForTesting 276 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 277 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 278 } 279 280 /** 281 * Provides a lexicographical comparator implementation; either a Java implementation or a faster 282 * implementation based on {@link Unsafe}. 283 * 284 * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't 285 * available. 286 */ 287 @VisibleForTesting 288 static class LexicographicalComparatorHolder { 289 static final String UNSAFE_COMPARATOR_NAME = 290 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 291 292 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 293 294 @VisibleForTesting 295 enum UnsafeComparator implements Comparator<byte[]> { 296 INSTANCE; 297 298 static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 299 300 /* 301 * The following static final fields exist for performance reasons. 302 * 303 * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the 304 * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static 305 * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the 306 * non-final fields need to be reloaded inside the loop. 307 * 308 * And, no, defining (final or not) local variables out of the loop still isn't as good 309 * because the null check on the theUnsafe object remains inside the loop and 310 * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded. 311 * 312 * The compiler can treat static final fields as compile-time constants and can constant-fold 313 * them while (final or not) local variables are run time values. 314 */ 315 316 static final Unsafe theUnsafe = getUnsafe(); 317 318 /** The offset to the first element in a byte array. */ 319 static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 320 321 static { 322 // fall back to the safer pure java implementation unless we're in 323 // a 64-bit JVM with an 8-byte aligned field offset. 324 if (!("64".equals(System.getProperty("sun.arch.data.model")) 325 && (BYTE_ARRAY_BASE_OFFSET % 8) == 0 326 // sanity check - this should never fail 327 && theUnsafe.arrayIndexScale(byte[].class) == 1)) { 328 throw new Error(); // force fallback to PureJavaComparator 329 } 330 } 331 332 /** 333 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple 334 * call to Unsafe.getUnsafe when integrating into a jdk. 335 * 336 * @return a sun.misc.Unsafe 337 */ 338 private static sun.misc.Unsafe getUnsafe() { 339 try { 340 return sun.misc.Unsafe.getUnsafe(); 341 } catch (SecurityException e) { 342 // that's okay; try reflection instead 343 } 344 try { 345 return java.security.AccessController.doPrivileged( 346 new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() { 347 @Override 348 public sun.misc.Unsafe run() throws Exception { 349 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class; 350 for (java.lang.reflect.Field f : k.getDeclaredFields()) { 351 f.setAccessible(true); 352 Object x = f.get(null); 353 if (k.isInstance(x)) { 354 return k.cast(x); 355 } 356 } 357 throw new NoSuchFieldError("the Unsafe"); 358 } 359 }); 360 } catch (java.security.PrivilegedActionException e) { 361 throw new RuntimeException("Could not initialize intrinsics", e.getCause()); 362 } 363 } 364 365 @Override 366 public int compare(byte[] left, byte[] right) { 367 final int stride = 8; 368 int minLength = Math.min(left.length, right.length); 369 int strideLimit = minLength & ~(stride - 1); 370 int i; 371 372 /* 373 * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower 374 * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. 375 */ 376 for (i = 0; i < strideLimit; i += stride) { 377 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 378 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 379 if (lw != rw) { 380 if (BIG_ENDIAN) { 381 return UnsignedLongs.compare(lw, rw); 382 } 383 384 /* 385 * We want to compare only the first index where left[index] != right[index]. This 386 * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are 387 * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant 388 * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get 389 * that least significant nonzero byte. 390 */ 391 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 392 return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK)); 393 } 394 } 395 396 // The epilogue to cover the last (minLength % stride) elements. 397 for (; i < minLength; i++) { 398 int result = UnsignedBytes.compare(left[i], right[i]); 399 if (result != 0) { 400 return result; 401 } 402 } 403 return left.length - right.length; 404 } 405 406 @Override 407 public String toString() { 408 return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)"; 409 } 410 } 411 412 enum PureJavaComparator implements Comparator<byte[]> { 413 INSTANCE; 414 415 @Override 416 public int compare(byte[] left, byte[] right) { 417 int minLength = Math.min(left.length, right.length); 418 for (int i = 0; i < minLength; i++) { 419 int result = UnsignedBytes.compare(left[i], right[i]); 420 if (result != 0) { 421 return result; 422 } 423 } 424 return left.length - right.length; 425 } 426 427 @Override 428 public String toString() { 429 return "UnsignedBytes.lexicographicalComparator() (pure Java version)"; 430 } 431 } 432 433 /** 434 * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable 435 * to do so. 436 */ 437 static Comparator<byte[]> getBestComparator() { 438 try { 439 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 440 441 // yes, UnsafeComparator does implement Comparator<byte[]> 442 @SuppressWarnings("unchecked") 443 Comparator<byte[]> comparator = (Comparator<byte[]>) theClass.getEnumConstants()[0]; 444 return comparator; 445 } catch (Throwable t) { // ensure we really catch *everything* 446 return lexicographicalComparatorJavaImpl(); 447 } 448 } 449 } 450 451 private static byte flip(byte b) { 452 return (byte) (b ^ 0x80); 453 } 454 455 /** 456 * Sorts the array, treating its elements as unsigned bytes. 457 * 458 * @since 23.1 459 */ 460 public static void sort(byte[] array) { 461 checkNotNull(array); 462 sort(array, 0, array.length); 463 } 464 465 /** 466 * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its 467 * elements as unsigned bytes. 468 * 469 * @since 23.1 470 */ 471 public static void sort(byte[] array, int fromIndex, int toIndex) { 472 checkNotNull(array); 473 checkPositionIndexes(fromIndex, toIndex, array.length); 474 for (int i = fromIndex; i < toIndex; i++) { 475 array[i] = flip(array[i]); 476 } 477 Arrays.sort(array, fromIndex, toIndex); 478 for (int i = fromIndex; i < toIndex; i++) { 479 array[i] = flip(array[i]); 480 } 481 } 482 483 /** 484 * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit 485 * integers. 486 * 487 * @since 23.1 488 */ 489 public static void sortDescending(byte[] array) { 490 checkNotNull(array); 491 sortDescending(array, 0, array.length); 492 } 493 494 /** 495 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 496 * exclusive in descending order, interpreting them as unsigned 8-bit integers. 497 * 498 * @since 23.1 499 */ 500 public static void sortDescending(byte[] array, int fromIndex, int toIndex) { 501 checkNotNull(array); 502 checkPositionIndexes(fromIndex, toIndex, array.length); 503 for (int i = fromIndex; i < toIndex; i++) { 504 array[i] ^= Byte.MAX_VALUE; 505 } 506 Arrays.sort(array, fromIndex, toIndex); 507 for (int i = fromIndex; i < toIndex; i++) { 508 array[i] ^= Byte.MAX_VALUE; 509 } 510 } 511}