001/*
002 * Copyright (C) 2014 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.math;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static java.lang.Double.NEGATIVE_INFINITY;
019import static java.lang.Double.NaN;
020import static java.lang.Double.POSITIVE_INFINITY;
021import static java.util.Arrays.sort;
022import static java.util.Collections.unmodifiableMap;
023
024import com.google.common.annotations.Beta;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.primitives.Doubles;
027import com.google.common.primitives.Ints;
028import java.math.RoundingMode;
029import java.util.Collection;
030import java.util.HashMap;
031import java.util.Map;
032
033/**
034 * Provides a fluent API for calculating
035 * <a href="http://en.wikipedia.org/wiki/Quantile">quantiles</a>.
036 *
037 * <h3>Examples</h3>
038 *
039 * <p>To compute the median:
040 * <pre>   {@code
041 *
042 *   double myMedian = median().compute(myDataset);}</pre>
043 *
044 * where {@link #median()} has been statically imported.
045 *
046 * <p>To compute the 99th percentile:
047 * <pre>   {@code
048 *
049 *   double myPercentile99 = percentiles().index(99).compute(myDataset);}</pre>
050 *
051 * where {@link #percentiles()} has been statically imported.
052 *
053 * <p>To compute median and the 90th and 99th percentiles:
054 * <pre>   {@code
055 *
056 *   Map<Integer, Double> myPercentiles =
057 *       percentiles().indexes(50, 90, 99).compute(myDataset);}</pre>
058 *
059 * where {@link #percentiles()} has been statically imported: {@code myPercentiles} maps the keys
060 * 50, 90, and 99, to their corresponding quantile values.
061 *
062 * <p>To compute quartiles, use {@link #quartiles()} instead of {@link #percentiles()}. To compute
063 * arbitrary q-quantiles, use {@link #scale scale(q)}.
064 *
065 * <p>These examples all take a copy of your dataset. If you have a double array, you are okay with
066 * it being arbitrarily reordered, and you want to avoid that copy, you can use
067 * {@code computeInPlace} instead of {@code compute}.
068 *
069 * <h3>Definition and notes on interpolation</h3>
070 *
071 * <p>The definition of the kth q-quantile of N values is as follows: define x = k * (N - 1) / q; if
072 * x is an integer, the result is the value which would appear at index x in the sorted dataset
073 * (unless there are {@link Double#NaN NaN} values, see below); otherwise, the result is the average
074 * of the values which would appear at the indexes floor(x) and ceil(x) weighted by (1-frac(x)) and
075 * frac(x) respectively. This is the same definition as used by Excel and by S, it is the Type 7
076 * definition in
077 * <a href="http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html">R</a>, and it is
078 * described by
079 * <a href="http://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population">
080 * wikipedia</a> as providing "Linear interpolation of the modes for the order statistics for the
081 * uniform distribution on [0,1]."
082 *
083 * <h3>Handling of non-finite values</h3>
084 *
085 * <p>If any values in the input are {@link Double#NaN NaN} then all values returned are
086 * {@link Double#NaN NaN}. (This is the one occasion when the behaviour is not the same as you'd get
087 * from sorting with {@link java.util.Arrays#sort(double[]) Arrays.sort(double[])} or
088 * {@link java.util.Collections#sort(java.util.List) Collections.sort(List&lt;Double&gt;)} and
089 * selecting the required value(s). Those methods would sort {@link Double#NaN NaN} as if it is
090 * greater than any other value and place them at the end of the dataset, even after
091 * {@link Double#POSITIVE_INFINITY POSITIVE_INFINITY}.)
092 *
093 * <p>Otherwise, {@link Double#NEGATIVE_INFINITY NEGATIVE_INFINITY} and
094 * {@link Double#POSITIVE_INFINITY POSITIVE_INFINITY} sort to the beginning and the end of the
095 * dataset, as you would expect.
096 *
097 * <p>If required to do a weighted average between an infinity and a finite value, or between an
098 * infinite value and itself, the infinite value is returned. If required to do a weighted average
099 * between {@link Double#NEGATIVE_INFINITY NEGATIVE_INFINITY} and {@link Double#POSITIVE_INFINITY
100 * POSITIVE_INFINITY}, {@link Double#NaN NaN} is returned (note that this will only happen if the
101 * dataset contains no finite values).
102 *
103 * <h3>Performance</h3>
104 *
105 * <p>The average time complexity of the computation is O(N) in the size of the dataset. There is a
106 * worst case time complexity of O(N^2). You are extremely unlikely to hit this quadratic case on
107 * randomly ordered data (the probability decreases faster than exponentially in N), but if you are
108 * passing in unsanitized user data then a malicious user could force it. A light shuffle of the
109 * data using an unpredictable seed should normally be enough to thwart this attack.
110 *
111 * <p>The time taken to compute multiple quantiles on the same dataset using {@link Scale#indexes
112 * indexes} is generally less than the total time taken to compute each of them separately, and
113 * sometimes much less. For example, on a large enough dataset, computing the 90th and 99th
114 * percentiles together takes about 55% as long as computing them separately.
115 *
116 * <p>When calling {@link ScaleAndIndex#compute} (in {@linkplain ScaleAndIndexes#compute either
117 * form}), the memory requirement is 8*N bytes for the copy of the dataset plus an overhead which is
118 * independent of N (but depends on the quantiles being computed). When calling
119 * {@link ScaleAndIndex#computeInPlace computeInPlace} (in
120 * {@linkplain ScaleAndIndexes#computeInPlace either form}), only the overhead is required. The
121 * number of object allocations is independent of N in both cases.
122 *
123 * @author Pete Gillin
124 * @since 20.0
125 */
126@Beta
127@GwtIncompatible
128public final class Quantiles {
129
130  /**
131   * Specifies the computation of a median (i.e. the 1st 2-quantile).
132   */
133  public static ScaleAndIndex median() {
134    return scale(2).index(1);
135  }
136
137  /**
138   * Specifies the computation of quartiles (i.e. 4-quantiles).
139   */
140  public static Scale quartiles() {
141    return scale(4);
142  }
143
144  /**
145   * Specifies the computation of percentiles (i.e. 100-quantiles).
146   */
147  public static Scale percentiles() {
148    return scale(100);
149  }
150
151  /**
152   * Specifies the computation of q-quantiles.
153   *
154   * @param scale the scale for the quantiles to be calculated, i.e. the q of the q-quantiles, which
155   *     must be positive
156   */
157  public static Scale scale(int scale) {
158    return new Scale(scale);
159  }
160
161  /**
162   * Describes the point in a fluent API chain where only the scale (i.e. the q in q-quantiles) has
163   * been specified.
164   *
165   * @since 20.0
166   */
167  public static final class Scale {
168
169    private final int scale;
170
171    private Scale(int scale) {
172      checkArgument(scale > 0, "Quantile scale must be positive");
173      this.scale = scale;
174    }
175
176    /**
177     * Specifies a single quantile index to be calculated, i.e. the k in the kth q-quantile.
178     *
179     * @param index the quantile index, which must be in the inclusive range [0, q] for q-quantiles
180     */
181    public ScaleAndIndex index(int index) {
182      return new ScaleAndIndex(scale, index);
183    }
184
185    /**
186     * Specifies multiple quantile indexes to be calculated, each index being the k in the kth
187     * q-quantile.
188     *
189     * @param indexes the quantile indexes, each of which must be in the inclusive range [0, q] for
190     *     q-quantiles; the order of the indexes is unimportant, duplicates will be ignored, and the
191     *     set will be snapshotted when this method is called
192     */
193    public ScaleAndIndexes indexes(int... indexes) {
194      return new ScaleAndIndexes(scale, indexes.clone());
195    }
196
197    /**
198     * Specifies multiple quantile indexes to be calculated, each index being the k in the kth
199     * q-quantile.
200     *
201     * @param indexes the quantile indexes, each of which must be in the inclusive range [0, q] for
202     *     q-quantiles; the order of the indexes is unimportant, duplicates will be ignored, and the
203     *     set will be snapshotted when this method is called
204     */
205    public ScaleAndIndexes indexes(Collection<Integer> indexes) {
206      return new ScaleAndIndexes(scale, Ints.toArray(indexes));
207    }
208  }
209
210  /**
211   * Describes the point in a fluent API chain where the scale and a single quantile index (i.e. the
212   * q and the k in the kth q-quantile) have been specified.
213   *
214   * @since 20.0
215   */
216  public static final class ScaleAndIndex {
217
218    private final int scale;
219    private final int index;
220
221    private ScaleAndIndex(int scale, int index) {
222      checkIndex(index, scale);
223      this.scale = scale;
224      this.index = index;
225    }
226
227    /**
228     * Computes the quantile value of the given dataset.
229     *
230     * @param dataset the dataset to do the calculation on, which must be non-empty, which will be
231     *     cast to doubles (with any associated lost of precision), and which will not be mutated by
232     *     this call (it is copied instead)
233     * @return the quantile value
234     */
235    public double compute(Collection<? extends Number> dataset) {
236      return computeInPlace(Doubles.toArray(dataset));
237    }
238
239    /**
240     * Computes the quantile value of the given dataset.
241     *
242     * @param dataset the dataset to do the calculation on, which must be non-empty, which will not
243     *     be mutated by this call (it is copied instead)
244     * @return the quantile value
245     */
246    public double compute(double... dataset) {
247      return computeInPlace(dataset.clone());
248    }
249
250    /**
251     * Computes the quantile value of the given dataset.
252     *
253     * @param dataset the dataset to do the calculation on, which must be non-empty, which will be
254     *     cast to doubles (with any associated lost of precision), and which will not be mutated by
255     *     this call (it is copied instead)
256     * @return the quantile value
257     */
258    public double compute(long... dataset) {
259      return computeInPlace(longsToDoubles(dataset));
260    }
261
262    /**
263     * Computes the quantile value of the given dataset.
264     *
265     * @param dataset the dataset to do the calculation on, which must be non-empty, which will be
266     *     cast to doubles, and which will not be mutated by this call (it is copied instead)
267     * @return the quantile value
268     */
269    public double compute(int... dataset) {
270      return computeInPlace(intsToDoubles(dataset));
271    }
272
273    /**
274     * Computes the quantile value of the given dataset, performing the computation in-place.
275     *
276     * @param dataset the dataset to do the calculation on, which must be non-empty, and which will
277     *     be arbitrarily reordered by this method call
278     * @return the quantile value
279     */
280    public double computeInPlace(double... dataset) {
281      checkArgument(dataset.length > 0, "Cannot calculate quantiles of an empty dataset");
282      if (containsNaN(dataset)) {
283        return NaN;
284      }
285
286      // Calculate the quotient and remainder in the integer division x = k * (N-1) / q, i.e.
287      // index * (dataset.length - 1) / scale. If there is no remainder, we can just find the value
288      // whose index in the sorted dataset equals the quotient; if there is a remainder, we
289      // interpolate between that and the next value.
290
291      // Since index and (dataset.length - 1) are non-negative ints, their product can be expressed
292      // as a long, without risk of overflow:
293      long numerator = (long) index * (dataset.length - 1);
294      // Since scale is a positive int, index is in [0, scale], and (dataset.length - 1) is a
295      // non-negative int, we can do long-arithmetic on index * (dataset.length - 1) / scale to get
296      // a rounded ratio and a remainder which can be expressed as ints, without risk of overflow:
297      int quotient = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN);
298      int remainder = (int) (numerator - (long) quotient * scale);
299      selectInPlace(quotient, dataset, 0, dataset.length - 1);
300      if (remainder == 0) {
301        return dataset[quotient];
302      } else {
303        selectInPlace(quotient + 1, dataset, quotient + 1, dataset.length - 1);
304        return interpolate(dataset[quotient], dataset[quotient + 1], remainder, scale);
305      }
306    }
307  }
308
309  /**
310   * Describes the point in a fluent API chain where the scale and a multiple quantile indexes (i.e.
311   * the q and a set of values for the k in the kth q-quantile) have been specified.
312   *
313   * @since 20.0
314   */
315  public static final class ScaleAndIndexes {
316
317    private final int scale;
318    private final int[] indexes;
319
320    private ScaleAndIndexes(int scale, int[] indexes) {
321      for (int index : indexes) {
322        checkIndex(index, scale);
323      }
324      this.scale = scale;
325      this.indexes = indexes;
326    }
327
328    /**
329     * Computes the quantile values of the given dataset.
330     *
331     * @param dataset the dataset to do the calculation on, which must be non-empty, which will be
332     *     cast to doubles (with any associated lost of precision), and which will not be mutated by
333     *     this call (it is copied instead)
334     * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and
335     *     the values the corresponding quantile values
336     */
337    public Map<Integer, Double> compute(Collection<? extends Number> dataset) {
338      return computeInPlace(Doubles.toArray(dataset));
339    }
340
341    /**
342     * Computes the quantile values of the given dataset.
343     *
344     * @param dataset the dataset to do the calculation on, which must be non-empty, which will not
345     *     be mutated by this call (it is copied instead)
346     * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and
347     *     the values the corresponding quantile values
348     */
349    public Map<Integer, Double> compute(double... dataset) {
350      return computeInPlace(dataset.clone());
351    }
352
353    /**
354     * Computes the quantile values of the given dataset.
355     *
356     * @param dataset the dataset to do the calculation on, which must be non-empty, which will be
357     *     cast to doubles (with any associated lost of precision), and which will not be mutated by
358     *     this call (it is copied instead)
359     * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and
360     *     the values the corresponding quantile values
361     */
362    public Map<Integer, Double> compute(long... dataset) {
363      return computeInPlace(longsToDoubles(dataset));
364    }
365
366    /**
367     * Computes the quantile values of the given dataset.
368     *
369     * @param dataset the dataset to do the calculation on, which must be non-empty, which will be
370     *     cast to doubles, and which will not be mutated by this call (it is copied instead)
371     * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and
372     *     the values the corresponding quantile values
373     */
374    public Map<Integer, Double> compute(int... dataset) {
375      return computeInPlace(intsToDoubles(dataset));
376    }
377
378    /**
379     * Computes the quantile values of the given dataset, performing the computation in-place.
380     *
381     * @param dataset the dataset to do the calculation on, which must be non-empty, and which will
382     *     be arbitrarily reordered by this method call
383     * @return an unmodifiable map of results: the keys will be the specified quantile indexes, and
384     *     the values the corresponding quantile values
385     */
386    public Map<Integer, Double> computeInPlace(double... dataset) {
387      checkArgument(dataset.length > 0, "Cannot calculate quantiles of an empty dataset");
388      if (containsNaN(dataset)) {
389        Map<Integer, Double> nanMap = new HashMap<>();
390        for (int index : indexes) {
391          nanMap.put(index, NaN);
392        }
393        return unmodifiableMap(nanMap);
394      }
395
396      // Calculate the quotients and remainders in the integer division x = k * (N - 1) / q, i.e.
397      // index * (dataset.length - 1) / scale for each index in indexes. For each, if there is no
398      // remainder, we can just select the value whose index in the sorted dataset equals the
399      // quotient; if there is a remainder, we interpolate between that and the next value.
400
401      int[] quotients = new int[indexes.length];
402      int[] remainders = new int[indexes.length];
403      // The indexes to select. In the worst case, we'll need one each side of each quantile.
404      int[] requiredSelections = new int[indexes.length * 2];
405      int requiredSelectionsCount = 0;
406      for (int i = 0; i < indexes.length; i++) {
407        // Since index and (dataset.length - 1) are non-negative ints, their product can be
408        // expressed as a long, without risk of overflow:
409        long numerator = (long) indexes[i] * (dataset.length - 1);
410        // Since scale is a positive int, index is in [0, scale], and (dataset.length - 1) is a
411        // non-negative int, we can do long-arithmetic on index * (dataset.length - 1) / scale to
412        // get a rounded ratio and a remainder which can be expressed as ints, without risk of
413        // overflow:
414        int quotient = (int) LongMath.divide(numerator, scale, RoundingMode.DOWN);
415        int remainder = (int) (numerator - (long) quotient * scale);
416        quotients[i] = quotient;
417        remainders[i] = remainder;
418        requiredSelections[requiredSelectionsCount] = quotient;
419        requiredSelectionsCount++;
420        if (remainder != 0) {
421          requiredSelections[requiredSelectionsCount] = quotient + 1;
422          requiredSelectionsCount++;
423        }
424      }
425      sort(requiredSelections, 0, requiredSelectionsCount);
426      selectAllInPlace(
427          requiredSelections, 0, requiredSelectionsCount - 1, dataset, 0, dataset.length - 1);
428      Map<Integer, Double> ret = new HashMap<>();
429      for (int i = 0; i < indexes.length; i++) {
430        int quotient = quotients[i];
431        int remainder = remainders[i];
432        if (remainder == 0) {
433          ret.put(indexes[i], dataset[quotient]);
434        } else {
435          ret.put(
436              indexes[i], interpolate(dataset[quotient], dataset[quotient + 1], remainder, scale));
437        }
438      }
439      return unmodifiableMap(ret);
440    }
441  }
442
443  /**
444   * Returns whether any of the values in {@code dataset} are {@code NaN}.
445   */
446  private static boolean containsNaN(double... dataset) {
447    for (double value : dataset) {
448      if (Double.isNaN(value)) {
449        return true;
450      }
451    }
452    return false;
453  }
454
455  /**
456   * Returns a value a fraction {@code (remainder / scale)} of the way between {@code lower} and
457   * {@code upper}. Assumes that {@code lower <= upper}. Correctly handles infinities (but not
458   * {@code NaN}).
459   */
460  private static double interpolate(double lower, double upper, double remainder, double scale) {
461    if (lower == NEGATIVE_INFINITY) {
462      if (upper == POSITIVE_INFINITY) {
463        // Return NaN when lower == NEGATIVE_INFINITY and upper == POSITIVE_INFINITY:
464        return NaN;
465      }
466      // Return NEGATIVE_INFINITY when NEGATIVE_INFINITY == lower <= upper < POSITIVE_INFINITY:
467      return NEGATIVE_INFINITY;
468    }
469    if (upper == POSITIVE_INFINITY) {
470      // Return POSITIVE_INFINITY when NEGATIVE_INFINITY < lower <= upper == POSITIVE_INFINITY:
471      return POSITIVE_INFINITY;
472    }
473    return lower + (upper - lower) * remainder / scale;
474  }
475
476  private static void checkIndex(int index, int scale) {
477    if (index < 0 || index > scale) {
478      throw new IllegalArgumentException(
479          "Quantile indexes must be between 0 and the scale, which is " + scale);
480    }
481  }
482
483  private static double[] longsToDoubles(long[] longs) {
484    int len = longs.length;
485    double[] doubles = new double[len];
486    for (int i = 0; i < len; i++) {
487      doubles[i] = longs[i];
488    }
489    return doubles;
490  }
491
492  private static double[] intsToDoubles(int[] ints) {
493    int len = ints.length;
494    double[] doubles = new double[len];
495    for (int i = 0; i < len; i++) {
496      doubles[i] = ints[i];
497    }
498    return doubles;
499  }
500
501  /**
502   * Performs an in-place selection to find the element which would appear at a given index in a
503   * dataset if it were sorted. The following preconditions should hold:
504   * <ul>
505   * <li>{@code required}, {@code from}, and {@code to} should all be indexes into {@code array};
506   * <li>{@code required} should be in the range [{@code from}, {@code to}];
507   * <li>all the values with indexes in the range [0, {@code from}) should be less than or equal to
508   * all the values with indexes in the range [{@code from}, {@code to}];
509   * <li>all the values with indexes in the range ({@code to}, {@code array.length - 1}] should be
510   * greater than or equal to all the values with indexes in the range [{@code from}, {@code to}].
511   * </ul>
512   * This method will reorder the values with indexes in the range [{@code from}, {@code to}] such
513   * that all the values with indexes in the range [{@code from}, {@code required}) are less than or
514   * equal to the value with index {@code required}, and all the values with indexes in the range
515   * ({@code required}, {@code to}] are greater than or equal to that value. Therefore, the value at
516   * {@code required} is the value which would appear at that index in the sorted dataset.
517   */
518  private static void selectInPlace(int required, double[] array, int from, int to) {
519    // If we are looking for the least element in the range, we can just do a linear search for it.
520    // (We will hit this whenever we are doing quantile interpolation: our first selection finds
521    // the lower value, our second one finds the upper value by looking for the next least element.)
522    if (required == from) {
523      int min = from;
524      for (int index = from + 1; index <= to; index++) {
525        if (array[min] > array[index]) {
526          min = index;
527        }
528      }
529      if (min != from) {
530        swap(array, min, from);
531      }
532      return;
533    }
534
535    // Let's play quickselect! We'll repeatedly partition the range [from, to] containing the
536    // required element, as long as it has more than one element.
537    while (to > from) {
538      int partitionPoint = partition(array, from, to);
539      if (partitionPoint >= required) {
540        to = partitionPoint - 1;
541      }
542      if (partitionPoint <= required) {
543        from = partitionPoint + 1;
544      }
545    }
546  }
547
548  /**
549   * Performs a partition operation on the slice of {@code array} with elements in the range
550   * [{@code from}, {@code to}]. Uses the median of {@code from}, {@code to}, and the midpoint
551   * between them as a pivot. Returns the index which the slice is partitioned around, i.e. if it
552   * returns {@code ret} then we know that the values with indexes in [{@code from}, {@code ret})
553   * are less than or equal to the value at {@code ret} and the values with indexes in ({@code ret},
554   * {@code to}] are greater than or equal to that.
555   */
556  private static int partition(double[] array, int from, int to) {
557    // Select a pivot, and move it to the start of the slice i.e. to index from.
558    movePivotToStartOfSlice(array, from, to);
559    double pivot = array[from];
560
561    // Move all elements with indexes in (from, to] which are greater than the pivot to the end of
562    // the array. Keep track of where those elements begin.
563    int partitionPoint = to;
564    for (int i = to; i > from; i--) {
565      if (array[i] > pivot) {
566        swap(array, partitionPoint, i);
567        partitionPoint--;
568      }
569    }
570
571    // We now know that all elements with indexes in (from, partitionPoint] are less than or equal
572    // to the pivot at from, and all elements with indexes in (partitionPoint, to] are greater than
573    // it. We swap the pivot into partitionPoint and we know the array is partitioned around that.
574    swap(array, from, partitionPoint);
575    return partitionPoint;
576  }
577
578  /**
579   * Selects the pivot to use, namely the median of the values at {@code from}, {@code to}, and
580   * halfway between the two (rounded down), from {@code array}, and ensure (by swapping elements if
581   * necessary) that that pivot value appears at the start of the slice i.e. at {@code from}.
582   * Expects that {@code from} is strictly less than {@code to}.
583   */
584  private static void movePivotToStartOfSlice(double[] array, int from, int to) {
585    int mid = (from + to) >>> 1;
586    // We want to make a swap such that either array[to] <= array[from] <= array[mid], or
587    // array[mid] <= array[from] <= array[to]. We know that from < to, so we know mid < to
588    // (although it's possible that mid == from, if to == from + 1). Note that the postcondition
589    // would be impossible to fulfil if mid == to unless we also have array[from] == array[to].
590    boolean toLessThanMid = (array[to] < array[mid]);
591    boolean midLessThanFrom = (array[mid] < array[from]);
592    boolean toLessThanFrom = (array[to] < array[from]);
593    if (toLessThanMid == midLessThanFrom) {
594      // Either array[to] < array[mid] < array[from] or array[from] <= array[mid] <= array[to].
595      swap(array, mid, from);
596    } else if (toLessThanMid != toLessThanFrom) {
597      // Either array[from] <= array[to] < array[mid] or array[mid] <= array[to] < array[from].
598      swap(array, from, to);
599    }
600    // The postcondition now holds. So the median, our chosen pivot, is at from.
601  }
602
603  /**
604   * Performs an in-place selection, like {@link #selectInPlace}, to select all the indexes
605   * {@code allRequired[i]} for {@code i} in the range [{@code requiredFrom}, {@code requiredTo}].
606   * These indexes must be sorted in the array and must all be in the range [{@code from},
607   * {@code to}].
608   */
609  private static void selectAllInPlace(
610      int[] allRequired, int requiredFrom, int requiredTo, double[] array, int from, int to) {
611    // Choose the first selection to do...
612    int requiredChosen = chooseNextSelection(allRequired, requiredFrom, requiredTo, from, to);
613    int required = allRequired[requiredChosen];
614
615    // ...do the first selection...
616    selectInPlace(required, array, from, to);
617
618    // ...then recursively perform the selections in the range below...
619    int requiredBelow = requiredChosen - 1;
620    while (requiredBelow >= requiredFrom && allRequired[requiredBelow] == required) {
621      requiredBelow--; // skip duplicates of required in the range below
622    }
623    if (requiredBelow >= requiredFrom) {
624      selectAllInPlace(allRequired, requiredFrom, requiredBelow, array, from, required - 1);
625    }
626
627    // ...and then recursively perform the selections in the range above.
628    int requiredAbove = requiredChosen + 1;
629    while (requiredAbove <= requiredTo && allRequired[requiredAbove] == required) {
630      requiredAbove++; // skip duplicates of required in the range above
631    }
632    if (requiredAbove <= requiredTo) {
633      selectAllInPlace(allRequired, requiredAbove, requiredTo, array, required + 1, to);
634    }
635  }
636
637  /**
638   * Chooses the next selection to do from the required selections. It is required that the array
639   * {@code allRequired} is sorted and that {@code allRequired[i]} are in the range [{@code from},
640   * {@code to}] for all {@code i} in the range [{@code requiredFrom}, {@code requiredTo}]. The
641   * value returned by this method is the {@code i} in that range such that {@code allRequired[i]}
642   * is as close as possible to the center of the range [{@code from}, {@code to}]. Choosing the
643   * value closest to the center of the range first is the most efficient strategy because it
644   * minimizes the size of the subranges from which the remaining selections must be done.
645   */
646  private static int chooseNextSelection(
647      int[] allRequired, int requiredFrom, int requiredTo, int from, int to) {
648    if (requiredFrom == requiredTo) {
649      return requiredFrom; // only one thing to choose, so choose it
650    }
651
652    // Find the center and round down. The true center is either centerFloor or halfway between
653    // centerFloor and centerFloor + 1.
654    int centerFloor = (from + to) >>> 1;
655
656    // Do a binary search until we're down to the range of two which encloses centerFloor (unless
657    // all values are lower or higher than centerFloor, in which case we find the two highest or
658    // lowest respectively). If centerFloor is in allRequired, we will definitely find it. If not,
659    // but centerFloor + 1 is, we'll definitely find that. The closest value to the true (unrounded)
660    // center will be at either low or high.
661    int low = requiredFrom;
662    int high = requiredTo;
663    while (high > low + 1) {
664      int mid = (low + high) >>> 1;
665      if (allRequired[mid] > centerFloor) {
666        high = mid;
667      } else if (allRequired[mid] < centerFloor) {
668        low = mid;
669      } else {
670        return mid; // allRequired[mid] = centerFloor, so we can't get closer than that
671      }
672    }
673
674    // Now pick the closest of the two candidates. Note that there is no rounding here.
675    if (from + to - allRequired[low] - allRequired[high] > 0) {
676      return high;
677    } else {
678      return low;
679    }
680  }
681
682  /**
683   * Swaps the values at {@code i} and {@code j} in {@code array}.
684   */
685  private static void swap(double[] array, int i, int j) {
686    double temp = array[i];
687    array[i] = array[j];
688    array[j] = temp;
689  }
690}