001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import com.google.common.annotations.Beta; 020import java.util.Optional; 021import java.util.Set; 022import javax.annotation.Nullable; 023 024/** 025 * An interface for <a 026 * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data, 027 * whose edges are unique objects. 028 * 029 * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes. 030 * 031 * <p>There are three primary interfaces provided to represent graphs. In order of increasing 032 * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally 033 * prefer the simplest interface that satisfies your use case. See the <a 034 * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type"> 035 * "Choosing the right graph type"</a> section of the Guava User Guide for more details. 036 * 037 * <h3>Capabilities</h3> 038 * 039 * <p>{@code Network} supports the following use cases (<a 040 * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of 041 * terms</a>): 042 * 043 * <ul> 044 * <li>directed graphs 045 * <li>undirected graphs 046 * <li>graphs that do/don't allow parallel edges 047 * <li>graphs that do/don't allow self-loops 048 * <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered 049 * <li>graphs whose edges are unique objects 050 * </ul> 051 * 052 * <h3>Building a {@code Network}</h3> 053 * 054 * <p>The implementation classes that {@code common.graph} provides are not public, by design. To 055 * create an instance of one of the built-in implementations of {@code Network}, use the 056 * {@link NetworkBuilder} class: 057 * 058 * <pre>{@code 059 * MutableNetwork<Integer, MyEdge> graph = NetworkBuilder.directed().build(); 060 * }</pre> 061 * 062 * <p>{@link NetworkBuilder#build()} returns an instance of {@link MutableNetwork}, which is a 063 * subtype of {@code Network} that provides methods for adding and removing nodes and edges. If you 064 * do not need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the 065 * graph), you should use the non-mutating {@link Network} interface, or an {@link 066 * ImmutableNetwork}. 067 * 068 * <p>You can create an immutable copy of an existing {@code Network} using {@link 069 * ImmutableNetwork#copyOf(Network)}: 070 * 071 * <pre>{@code 072 * ImmutableNetwork<Integer, MyEdge> immutableGraph = ImmutableNetwork.copyOf(graph); 073 * }</pre> 074 * 075 * <p>Instances of {@link ImmutableNetwork} do not implement {@link MutableNetwork} (obviously!) and 076 * are contractually guaranteed to be unmodifiable and thread-safe. 077 * 078 * <p>The Guava User Guide has <a 079 * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more 080 * information on (and examples of) building graphs</a>. 081 * 082 * <h3>Additional documentation</h3> 083 * 084 * <p>See the Guava User Guide for the {@code common.graph} package (<a 085 * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for 086 * additional documentation, including: 087 * 088 * <ul> 089 * <li><a 090 * href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence"> 091 * {@code equals()}, {@code hashCode()}, and graph equivalence</a> 092 * <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization"> 093 * Synchronization policy</a> 094 * <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes 095 * for implementors</a> 096 * </ul> 097 * 098 * @author James Sexton 099 * @author Joshua O'Madadhain 100 * @param <N> Node parameter type 101 * @param <E> Edge parameter type 102 * @since 20.0 103 */ 104@Beta 105public interface Network<N, E> extends SuccessorsFunction<N>, PredecessorsFunction<N> { 106 // 107 // Network-level accessors 108 // 109 110 /** Returns all nodes in this network, in the order specified by {@link #nodeOrder()}. */ 111 Set<N> nodes(); 112 113 /** Returns all edges in this network, in the order specified by {@link #edgeOrder()}. */ 114 Set<E> edges(); 115 116 /** 117 * Returns a live view of this network as a {@link Graph}. The resulting {@link Graph} will have 118 * an edge connecting node A to node B if this {@link Network} has an edge connecting A to B. 119 * 120 * <p>If this network {@link #allowsParallelEdges() allows parallel edges}, parallel edges will be 121 * treated as if collapsed into a single edge. For example, the {@link #degree(Object)} of a node 122 * in the {@link Graph} view may be less than the degree of the same node in this {@link Network}. 123 */ 124 Graph<N> asGraph(); 125 126 // 127 // Network properties 128 // 129 130 /** 131 * Returns true if the edges in this network are directed. Directed edges connect a {@link 132 * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while 133 * undirected edges connect a pair of nodes to each other. 134 */ 135 boolean isDirected(); 136 137 /** 138 * Returns true if this network allows parallel edges. Attempting to add a parallel edge to a 139 * network that does not allow them will throw an {@link IllegalArgumentException}. 140 */ 141 boolean allowsParallelEdges(); 142 143 /** 144 * Returns true if this network allows self-loops (edges that connect a node to itself). 145 * Attempting to add a self-loop to a network that does not allow them will throw an {@link 146 * IllegalArgumentException}. 147 */ 148 boolean allowsSelfLoops(); 149 150 /** Returns the order of iteration for the elements of {@link #nodes()}. */ 151 ElementOrder<N> nodeOrder(); 152 153 /** Returns the order of iteration for the elements of {@link #edges()}. */ 154 ElementOrder<E> edgeOrder(); 155 156 // 157 // Element-level accessors 158 // 159 160 /** 161 * Returns the nodes which have an incident edge in common with {@code node} in this network. 162 * 163 * @throws IllegalArgumentException if {@code node} is not an element of this network 164 */ 165 Set<N> adjacentNodes(N node); 166 167 /** 168 * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing 169 * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge. 170 * 171 * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}. 172 * 173 * @throws IllegalArgumentException if {@code node} is not an element of this network 174 */ 175 @Override 176 Set<N> predecessors(N node); 177 178 /** 179 * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing 180 * {@code node}'s outgoing edges in the direction (if any) of the edge. 181 * 182 * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}. 183 * 184 * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing 185 * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}. 186 * 187 * @throws IllegalArgumentException if {@code node} is not an element of this network 188 */ 189 @Override 190 Set<N> successors(N node); 191 192 /** 193 * Returns the edges whose {@link #incidentNodes(Object) incident nodes} in this network include 194 * {@code node}. 195 * 196 * @throws IllegalArgumentException if {@code node} is not an element of this network 197 */ 198 Set<E> incidentEdges(N node); 199 200 /** 201 * Returns all edges in this network which can be traversed in the direction (if any) of the edge 202 * to end at {@code node}. 203 * 204 * <p>In a directed network, an incoming edge's {@link EndpointPair#target()} equals {@code node}. 205 * 206 * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}. 207 * 208 * @throws IllegalArgumentException if {@code node} is not an element of this network 209 */ 210 Set<E> inEdges(N node); 211 212 /** 213 * Returns all edges in this network which can be traversed in the direction (if any) of the edge 214 * starting from {@code node}. 215 * 216 * <p>In a directed network, an outgoing edge's {@link EndpointPair#source()} equals {@code node}. 217 * 218 * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}. 219 * 220 * @throws IllegalArgumentException if {@code node} is not an element of this network 221 */ 222 Set<E> outEdges(N node); 223 224 /** 225 * Returns the count of {@code node}'s {@link #incidentEdges(Object) incident edges}, counting 226 * self-loops twice (equivalently, the number of times an edge touches {@code node}). 227 * 228 * <p>For directed networks, this is equal to {@code inDegree(node) + outDegree(node)}. 229 * 230 * <p>For undirected networks, this is equal to {@code incidentEdges(node).size()} + (number of 231 * self-loops incident to {@code node}). 232 * 233 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 234 * 235 * @throws IllegalArgumentException if {@code node} is not an element of this network 236 */ 237 int degree(N node); 238 239 /** 240 * Returns the count of {@code node}'s {@link #inEdges(Object) incoming edges} in a directed 241 * network. In an undirected network, returns the {@link #degree(Object)}. 242 * 243 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 244 * 245 * @throws IllegalArgumentException if {@code node} is not an element of this network 246 */ 247 int inDegree(N node); 248 249 /** 250 * Returns the count of {@code node}'s {@link #outEdges(Object) outgoing edges} in a directed 251 * network. In an undirected network, returns the {@link #degree(Object)}. 252 * 253 * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}. 254 * 255 * @throws IllegalArgumentException if {@code node} is not an element of this network 256 */ 257 int outDegree(N node); 258 259 /** 260 * Returns the nodes which are the endpoints of {@code edge} in this network. 261 * 262 * @throws IllegalArgumentException if {@code edge} is not an element of this network 263 */ 264 EndpointPair<N> incidentNodes(E edge); 265 266 /** 267 * Returns the edges which have an {@link #incidentNodes(Object) incident node} in common with 268 * {@code edge}. An edge is not considered adjacent to itself. 269 * 270 * @throws IllegalArgumentException if {@code edge} is not an element of this network 271 */ 272 Set<E> adjacentEdges(E edge); 273 274 /** 275 * Returns the set of edges directly connecting {@code nodeU} to {@code nodeV}. 276 * 277 * <p>In an undirected network, this is equal to {@code edgesConnecting(nodeV, nodeU)}. 278 * 279 * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}. 280 * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set 281 * will contain at most one edge (equivalent to {@code edgeConnecting(nodeU, nodeV).asSet()}). 282 * 283 * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this 284 * network 285 */ 286 Set<E> edgesConnecting(N nodeU, N nodeV); 287 288 /** 289 * Returns the single edge directly connecting {@code nodeU} to {@code nodeV}, if one is present, 290 * or {@code Optional.empty()} if no such edge exists. 291 * 292 * <p>In an undirected network, this is equal to {@code edgeConnecting(nodeV, nodeU)}. 293 * 294 * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU} 295 * to {@code nodeV} 296 * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this 297 * network 298 * @since 23.0 299 */ 300 Optional<E> edgeConnecting(N nodeU, N nodeV); 301 302 /** 303 * Returns the single edge directly connecting {@code nodeU} to {@code nodeV}, if one is present, 304 * or {@code null} if no such edge exists. 305 * 306 * <p>In an undirected network, this is equal to {@code edgeConnectingOrNull(nodeV, nodeU)}. 307 * 308 * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU} 309 * to {@code nodeV} 310 * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this 311 * network 312 * @since 23.0 313 */ 314 @Nullable 315 E edgeConnectingOrNull(N nodeU, N nodeV); 316 317 /** 318 * Returns true if there is an edge directly connecting {@code nodeU} to {@code nodeV}. This is 319 * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}, 320 * and to {@code edgeConnectingOrNull(nodeU, nodeV) != null}. 321 * 322 * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}. 323 * 324 * @since 23.0 325 */ 326 boolean hasEdgeConnecting(N nodeU, N nodeV); 327 328 // 329 // Network identity 330 // 331 332 /** 333 * Returns {@code true} iff {@code object} is a {@link Network} that has the same elements and the 334 * same structural relationships as those in this network. 335 * 336 * <p>Thus, two networks A and B are equal if <b>all</b> of the following are true: 337 * 338 * <ul> 339 * <li>A and B have equal {@link #isDirected() directedness}. 340 * <li>A and B have equal {@link #nodes() node sets}. 341 * <li>A and B have equal {@link #edges() edge sets}. 342 * <li>Every edge in A and B connects the same nodes in the same direction (if any). 343 * </ul> 344 * 345 * <p>Network properties besides {@link #isDirected() directedness} do <b>not</b> affect equality. 346 * For example, two networks may be considered equal even if one allows parallel edges and the 347 * other doesn't. Additionally, the order in which nodes or edges are added to the network, and 348 * the order in which they are iterated over, are irrelevant. 349 * 350 * <p>A reference implementation of this is provided by {@link AbstractNetwork#equals(Object)}. 351 */ 352 @Override 353 boolean equals(@Nullable Object object); 354 355 /** 356 * Returns the hash code for this network. The hash code of a network is defined as the hash code 357 * of a map from each of its {@link #edges() edges} to their {@link #incidentNodes(Object) 358 * incident nodes}. 359 * 360 * <p>A reference implementation of this is provided by {@link AbstractNetwork#hashCode()}. 361 */ 362 @Override 363 int hashCode(); 364}