001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.Beta; 024import com.google.common.annotations.GwtCompatible; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.collect.Collections2.FilteredCollection; 029import com.google.common.math.IntMath; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import java.io.Serializable; 032import java.util.AbstractSet; 033import java.util.Arrays; 034import java.util.BitSet; 035import java.util.Collection; 036import java.util.Collections; 037import java.util.Comparator; 038import java.util.EnumSet; 039import java.util.HashSet; 040import java.util.Iterator; 041import java.util.LinkedHashSet; 042import java.util.List; 043import java.util.Map; 044import java.util.NavigableSet; 045import java.util.NoSuchElementException; 046import java.util.Set; 047import java.util.SortedSet; 048import java.util.TreeSet; 049import java.util.concurrent.ConcurrentHashMap; 050import java.util.concurrent.CopyOnWriteArraySet; 051import java.util.function.Consumer; 052import java.util.stream.Collector; 053import java.util.stream.Stream; 054import javax.annotation.Nullable; 055 056/** 057 * Static utility methods pertaining to {@link Set} instances. Also see this 058 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}. 059 * 060 * <p>See the Guava User Guide article on <a href= 061 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> 062 * {@code Sets}</a>. 063 * 064 * @author Kevin Bourrillion 065 * @author Jared Levy 066 * @author Chris Povirk 067 * @since 2.0 068 */ 069@GwtCompatible(emulated = true) 070public final class Sets { 071 private Sets() {} 072 073 /** 074 * {@link AbstractSet} substitute without the potentially-quadratic 075 * {@code removeAll} implementation. 076 */ 077 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 078 @Override 079 public boolean removeAll(Collection<?> c) { 080 return removeAllImpl(this, c); 081 } 082 083 @Override 084 public boolean retainAll(Collection<?> c) { 085 return super.retainAll(checkNotNull(c)); // GWT compatibility 086 } 087 } 088 089 /** 090 * Returns an immutable set instance containing the given enum elements. 091 * Internally, the returned set will be backed by an {@link EnumSet}. 092 * 093 * <p>The iteration order of the returned set follows the enum's iteration 094 * order, not the order in which the elements are provided to the method. 095 * 096 * @param anElement one of the elements the set should contain 097 * @param otherElements the rest of the elements the set should contain 098 * @return an immutable set containing those elements, minus duplicates 099 */ 100 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 101 @GwtCompatible(serializable = true) 102 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 103 E anElement, E... otherElements) { 104 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 105 } 106 107 /** 108 * Returns an immutable set instance containing the given enum elements. 109 * Internally, the returned set will be backed by an {@link EnumSet}. 110 * 111 * <p>The iteration order of the returned set follows the enum's iteration 112 * order, not the order in which the elements appear in the given collection. 113 * 114 * @param elements the elements, all of the same {@code enum} type, that the 115 * set should contain 116 * @return an immutable set containing those elements, minus duplicates 117 */ 118 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 119 @GwtCompatible(serializable = true) 120 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 121 if (elements instanceof ImmutableEnumSet) { 122 return (ImmutableEnumSet<E>) elements; 123 } else if (elements instanceof Collection) { 124 Collection<E> collection = (Collection<E>) elements; 125 if (collection.isEmpty()) { 126 return ImmutableSet.of(); 127 } else { 128 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 129 } 130 } else { 131 Iterator<E> itr = elements.iterator(); 132 if (itr.hasNext()) { 133 EnumSet<E> enumSet = EnumSet.of(itr.next()); 134 Iterators.addAll(enumSet, itr); 135 return ImmutableEnumSet.asImmutable(enumSet); 136 } else { 137 return ImmutableSet.of(); 138 } 139 } 140 } 141 142 private static final class Accumulator<E extends Enum<E>> { 143 static final Collector<Enum<?>, ?, ImmutableSet<? extends Enum<?>>> 144 TO_IMMUTABLE_ENUM_SET = 145 (Collector) 146 Collector.<Enum, Accumulator, ImmutableSet<?>>of( 147 Accumulator::new, 148 Accumulator::add, 149 Accumulator::combine, 150 Accumulator::toImmutableSet, 151 Collector.Characteristics.UNORDERED); 152 153 private EnumSet<E> set; 154 155 void add(E e) { 156 if (set == null) { 157 set = EnumSet.of(e); 158 } else { 159 set.add(e); 160 } 161 } 162 163 Accumulator<E> combine(Accumulator<E> other) { 164 if (this.set == null) { 165 return other; 166 } else if (other.set == null) { 167 return this; 168 } else { 169 this.set.addAll(other.set); 170 return this; 171 } 172 } 173 174 ImmutableSet<E> toImmutableSet() { 175 return (set == null) ? ImmutableSet.<E>of() : ImmutableEnumSet.asImmutable(set); 176 } 177 } 178 179 /** 180 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 181 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 182 * resulting set will iterate over elements in their enum definition order, not encounter order. 183 * 184 * @since 21.0 185 */ 186 @Beta 187 public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 188 return (Collector) Accumulator.TO_IMMUTABLE_ENUM_SET; 189 } 190 191 /** 192 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 193 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 194 * accepts non-{@code Collection} iterables and empty iterables. 195 */ 196 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 197 Iterable<E> iterable, Class<E> elementType) { 198 EnumSet<E> set = EnumSet.noneOf(elementType); 199 Iterables.addAll(set, iterable); 200 return set; 201 } 202 203 // HashSet 204 205 /** 206 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 207 * 208 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If 209 * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly 210 * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to 211 * get deterministic iteration behavior. 212 * 213 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 214 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 215 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 216 */ 217 public static <E> HashSet<E> newHashSet() { 218 return new HashSet<E>(); 219 } 220 221 /** 222 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 223 * 224 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 225 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 226 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 227 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 228 * deterministic iteration behavior. 229 * 230 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 231 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 232 * This method is not actually very useful and will likely be deprecated in the future. 233 */ 234 public static <E> HashSet<E> newHashSet(E... elements) { 235 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 236 Collections.addAll(set, elements); 237 return set; 238 } 239 240 /** 241 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 242 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 243 * is what most users want and expect it to do. 244 * 245 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 246 * 247 * @param expectedSize the number of elements you expect to add to the returned set 248 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 249 * without resizing 250 * @throws IllegalArgumentException if {@code expectedSize} is negative 251 */ 252 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 253 return new HashSet<E>(Maps.capacity(expectedSize)); 254 } 255 256 /** 257 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 258 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 259 * Iterables#addAll}. 260 * 261 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 262 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 263 * FluentIterable} and call {@code elements.toSet()}.) 264 * 265 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 266 * instead. 267 * 268 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 269 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 270 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 271 * 272 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 273 */ 274 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 275 return (elements instanceof Collection) 276 ? new HashSet<E>(Collections2.cast(elements)) 277 : newHashSet(elements.iterator()); 278 } 279 280 /** 281 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 282 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 283 * 284 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 285 * ImmutableSet#copyOf(Iterator)} instead. 286 * 287 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 288 * instead. 289 * 290 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 291 */ 292 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 293 HashSet<E> set = newHashSet(); 294 Iterators.addAll(set, elements); 295 return set; 296 } 297 298 /** 299 * Creates a thread-safe set backed by a hash map. The set is backed by a 300 * {@link ConcurrentHashMap} instance, and thus carries the same concurrency 301 * guarantees. 302 * 303 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 304 * used as an element. The set is serializable. 305 * 306 * @return a new, empty thread-safe {@code Set} 307 * @since 15.0 308 */ 309 public static <E> Set<E> newConcurrentHashSet() { 310 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 311 } 312 313 /** 314 * Creates a thread-safe set backed by a hash map and containing the given 315 * elements. The set is backed by a {@link ConcurrentHashMap} instance, and 316 * thus carries the same concurrency guarantees. 317 * 318 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 319 * used as an element. The set is serializable. 320 * 321 * @param elements the elements that the set should contain 322 * @return a new thread-safe set containing those elements (minus duplicates) 323 * @throws NullPointerException if {@code elements} or any of its contents is 324 * null 325 * @since 15.0 326 */ 327 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 328 Set<E> set = newConcurrentHashSet(); 329 Iterables.addAll(set, elements); 330 return set; 331 } 332 333 // LinkedHashSet 334 335 /** 336 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 337 * 338 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 339 * 340 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 341 * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of 342 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 343 * 344 * @return a new, empty {@code LinkedHashSet} 345 */ 346 public static <E> LinkedHashSet<E> newLinkedHashSet() { 347 return new LinkedHashSet<E>(); 348 } 349 350 /** 351 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 352 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 353 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 354 * that the method isn't inadvertently <i>oversizing</i> the returned set. 355 * 356 * @param expectedSize the number of elements you expect to add to the returned set 357 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 358 * elements without resizing 359 * @throws IllegalArgumentException if {@code expectedSize} is negative 360 * @since 11.0 361 */ 362 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) { 363 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 364 } 365 366 /** 367 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 368 * 369 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 370 * ImmutableSet#copyOf(Iterable)} instead. 371 * 372 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 373 * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage 374 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 375 * 376 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 377 * 378 * @param elements the elements that the set should contain, in order 379 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 380 */ 381 public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) { 382 if (elements instanceof Collection) { 383 return new LinkedHashSet<E>(Collections2.cast(elements)); 384 } 385 LinkedHashSet<E> set = newLinkedHashSet(); 386 Iterables.addAll(set, elements); 387 return set; 388 } 389 390 // TreeSet 391 392 /** 393 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 394 * its elements. 395 * 396 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 397 * 398 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 399 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 400 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 401 * 402 * @return a new, empty {@code TreeSet} 403 */ 404 public static <E extends Comparable> TreeSet<E> newTreeSet() { 405 return new TreeSet<E>(); 406 } 407 408 /** 409 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 410 * natural ordering. 411 * 412 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 413 * instead. 414 * 415 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 416 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 417 * TreeSet} with that comparator. 418 * 419 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 420 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 421 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 422 * 423 * <p>This method is just a small convenience for creating an empty set and then calling {@link 424 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 425 * 426 * @param elements the elements that the set should contain 427 * @return a new {@code TreeSet} containing those elements (minus duplicates) 428 */ 429 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 430 TreeSet<E> set = newTreeSet(); 431 Iterables.addAll(set, elements); 432 return set; 433 } 434 435 /** 436 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 437 * 438 * <p><b>Note:</b> if mutability is not required, use {@code 439 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 440 * 441 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 442 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 443 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code 444 * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this 445 * factory rejects null. Clean your code accordingly. 446 * 447 * @param comparator the comparator to use to sort the set 448 * @return a new, empty {@code TreeSet} 449 * @throws NullPointerException if {@code comparator} is null 450 */ 451 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 452 return new TreeSet<E>(checkNotNull(comparator)); 453 } 454 455 /** 456 * Creates an empty {@code Set} that uses identity to determine equality. It 457 * compares object references, instead of calling {@code equals}, to 458 * determine whether a provided object matches an element in the set. For 459 * example, {@code contains} returns {@code false} when passed an object that 460 * equals a set member, but isn't the same instance. This behavior is similar 461 * to the way {@code IdentityHashMap} handles key lookups. 462 * 463 * @since 8.0 464 */ 465 public static <E> Set<E> newIdentityHashSet() { 466 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 467 } 468 469 /** 470 * Creates an empty {@code CopyOnWriteArraySet} instance. 471 * 472 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use 473 * {@link Collections#emptySet} instead. 474 * 475 * @return a new, empty {@code CopyOnWriteArraySet} 476 * @since 12.0 477 */ 478 @GwtIncompatible // CopyOnWriteArraySet 479 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 480 return new CopyOnWriteArraySet<E>(); 481 } 482 483 /** 484 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 485 * 486 * @param elements the elements that the set should contain, in order 487 * @return a new {@code CopyOnWriteArraySet} containing those elements 488 * @since 12.0 489 */ 490 @GwtIncompatible // CopyOnWriteArraySet 491 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) { 492 // We copy elements to an ArrayList first, rather than incurring the 493 // quadratic cost of adding them to the COWAS directly. 494 Collection<? extends E> elementsCollection = 495 (elements instanceof Collection) 496 ? Collections2.cast(elements) 497 : Lists.newArrayList(elements); 498 return new CopyOnWriteArraySet<E>(elementsCollection); 499 } 500 501 /** 502 * Creates an {@code EnumSet} consisting of all enum values that are not in 503 * the specified collection. If the collection is an {@link EnumSet}, this 504 * method has the same behavior as {@link EnumSet#complementOf}. Otherwise, 505 * the specified collection must contain at least one element, in order to 506 * determine the element type. If the collection could be empty, use 507 * {@link #complementOf(Collection, Class)} instead of this method. 508 * 509 * @param collection the collection whose complement should be stored in the 510 * enum set 511 * @return a new, modifiable {@code EnumSet} containing all values of the enum 512 * that aren't present in the given collection 513 * @throws IllegalArgumentException if {@code collection} is not an 514 * {@code EnumSet} instance and contains no elements 515 */ 516 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 517 if (collection instanceof EnumSet) { 518 return EnumSet.complementOf((EnumSet<E>) collection); 519 } 520 checkArgument( 521 !collection.isEmpty(), "collection is empty; use the other version of this method"); 522 Class<E> type = collection.iterator().next().getDeclaringClass(); 523 return makeComplementByHand(collection, type); 524 } 525 526 /** 527 * Creates an {@code EnumSet} consisting of all enum values that are not in 528 * the specified collection. This is equivalent to 529 * {@link EnumSet#complementOf}, but can act on any input collection, as long 530 * as the elements are of enum type. 531 * 532 * @param collection the collection whose complement should be stored in the 533 * {@code EnumSet} 534 * @param type the type of the elements in the set 535 * @return a new, modifiable {@code EnumSet} initially containing all the 536 * values of the enum not present in the given collection 537 */ 538 public static <E extends Enum<E>> EnumSet<E> complementOf( 539 Collection<E> collection, Class<E> type) { 540 checkNotNull(collection); 541 return (collection instanceof EnumSet) 542 ? EnumSet.complementOf((EnumSet<E>) collection) 543 : makeComplementByHand(collection, type); 544 } 545 546 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 547 Collection<E> collection, Class<E> type) { 548 EnumSet<E> result = EnumSet.allOf(type); 549 result.removeAll(collection); 550 return result; 551 } 552 553 /** 554 * Returns a set backed by the specified map. The resulting set displays 555 * the same ordering, concurrency, and performance characteristics as the 556 * backing map. In essence, this factory method provides a {@link Set} 557 * implementation corresponding to any {@link Map} implementation. There is no 558 * need to use this method on a {@link Map} implementation that already has a 559 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} 560 * or {@link java.util.TreeMap}). 561 * 562 * <p>Each method invocation on the set returned by this method results in 563 * exactly one method invocation on the backing map or its {@code keySet} 564 * view, with one exception. The {@code addAll} method is implemented as a 565 * sequence of {@code put} invocations on the backing map. 566 * 567 * <p>The specified map must be empty at the time this method is invoked, 568 * and should not be accessed directly after this method returns. These 569 * conditions are ensured if the map is created empty, passed directly 570 * to this method, and no reference to the map is retained, as illustrated 571 * in the following code fragment: <pre> {@code 572 * 573 * Set<Object> identityHashSet = Sets.newSetFromMap( 574 * new IdentityHashMap<Object, Boolean>());}</pre> 575 * 576 * <p>The returned set is serializable if the backing map is. 577 * 578 * @param map the backing map 579 * @return the set backed by the map 580 * @throws IllegalArgumentException if {@code map} is not empty 581 * @deprecated Use {@link Collections#newSetFromMap} instead. 582 */ 583 @Deprecated 584 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 585 return Collections.newSetFromMap(map); 586 } 587 588 /** 589 * An unmodifiable view of a set which may be backed by other sets; this view 590 * will change as the backing sets do. Contains methods to copy the data into 591 * a new set which will then remain stable. There is usually no reason to 592 * retain a reference of type {@code SetView}; typically, you either use it 593 * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 594 * {@link #copyInto} and forget the {@code SetView} itself. 595 * 596 * @since 2.0 597 */ 598 public abstract static class SetView<E> extends AbstractSet<E> { 599 private SetView() {} // no subclasses but our own 600 601 /** 602 * Returns an immutable copy of the current contents of this set view. 603 * Does not support null elements. 604 * 605 * <p><b>Warning:</b> this may have unexpected results if a backing set of 606 * this view uses a nonstandard notion of equivalence, for example if it is 607 * a {@link TreeSet} using a comparator that is inconsistent with {@link 608 * Object#equals(Object)}. 609 */ 610 public ImmutableSet<E> immutableCopy() { 611 return ImmutableSet.copyOf(this); 612 } 613 614 /** 615 * Copies the current contents of this set view into an existing set. This 616 * method has equivalent behavior to {@code set.addAll(this)}, assuming that 617 * all the sets involved are based on the same notion of equivalence. 618 * 619 * @return a reference to {@code set}, for convenience 620 */ 621 // Note: S should logically extend Set<? super E> but can't due to either 622 // some javac bug or some weirdness in the spec, not sure which. 623 @CanIgnoreReturnValue 624 public <S extends Set<E>> S copyInto(S set) { 625 set.addAll(this); 626 return set; 627 } 628 629 /** 630 * Guaranteed to throw an exception and leave the collection unmodified. 631 * 632 * @throws UnsupportedOperationException always 633 * @deprecated Unsupported operation. 634 */ 635 @CanIgnoreReturnValue 636 @Deprecated 637 @Override 638 public final boolean add(E e) { 639 throw new UnsupportedOperationException(); 640 } 641 642 /** 643 * Guaranteed to throw an exception and leave the collection unmodified. 644 * 645 * @throws UnsupportedOperationException always 646 * @deprecated Unsupported operation. 647 */ 648 @CanIgnoreReturnValue 649 @Deprecated 650 @Override 651 public final boolean remove(Object object) { 652 throw new UnsupportedOperationException(); 653 } 654 655 /** 656 * Guaranteed to throw an exception and leave the collection unmodified. 657 * 658 * @throws UnsupportedOperationException always 659 * @deprecated Unsupported operation. 660 */ 661 @CanIgnoreReturnValue 662 @Deprecated 663 @Override 664 public final boolean addAll(Collection<? extends E> newElements) { 665 throw new UnsupportedOperationException(); 666 } 667 668 /** 669 * Guaranteed to throw an exception and leave the collection unmodified. 670 * 671 * @throws UnsupportedOperationException always 672 * @deprecated Unsupported operation. 673 */ 674 @CanIgnoreReturnValue 675 @Deprecated 676 @Override 677 public final boolean removeAll(Collection<?> oldElements) { 678 throw new UnsupportedOperationException(); 679 } 680 681 /** 682 * Guaranteed to throw an exception and leave the collection unmodified. 683 * 684 * @throws UnsupportedOperationException always 685 * @deprecated Unsupported operation. 686 */ 687 @CanIgnoreReturnValue 688 @Deprecated 689 @Override 690 public final boolean removeIf(java.util.function.Predicate<? super E> filter) { 691 throw new UnsupportedOperationException(); 692 } 693 694 /** 695 * Guaranteed to throw an exception and leave the collection unmodified. 696 * 697 * @throws UnsupportedOperationException always 698 * @deprecated Unsupported operation. 699 */ 700 @CanIgnoreReturnValue 701 @Deprecated 702 @Override 703 public final boolean retainAll(Collection<?> elementsToKeep) { 704 throw new UnsupportedOperationException(); 705 } 706 707 /** 708 * Guaranteed to throw an exception and leave the collection unmodified. 709 * 710 * @throws UnsupportedOperationException always 711 * @deprecated Unsupported operation. 712 */ 713 @Deprecated 714 @Override 715 public final void clear() { 716 throw new UnsupportedOperationException(); 717 } 718 719 /** 720 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 721 * 722 * @since 20.0 (present with return type {@link Iterator} since 2.0) 723 */ 724 @Override 725 public abstract UnmodifiableIterator<E> iterator(); 726 } 727 728 /** 729 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned 730 * set contains all elements that are contained in either backing set. 731 * Iterating over the returned set iterates first over all the elements of 732 * {@code set1}, then over each element of {@code set2}, in order, that is not 733 * contained in {@code set1}. 734 * 735 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on 736 * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and 737 * the {@link Map#keySet} of an {@code IdentityHashMap} all are). 738 */ 739 public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) { 740 checkNotNull(set1, "set1"); 741 checkNotNull(set2, "set2"); 742 743 return new SetView<E>() { 744 @Override 745 public int size() { 746 int size = set1.size(); 747 for (E e : set2) { 748 if (!set1.contains(e)) { 749 size++; 750 } 751 } 752 return size; 753 } 754 755 @Override 756 public boolean isEmpty() { 757 return set1.isEmpty() && set2.isEmpty(); 758 } 759 760 @Override 761 public UnmodifiableIterator<E> iterator() { 762 return new AbstractIterator<E>() { 763 final Iterator<? extends E> itr1 = set1.iterator(); 764 final Iterator<? extends E> itr2 = set2.iterator(); 765 766 @Override 767 protected E computeNext() { 768 if (itr1.hasNext()) { 769 return itr1.next(); 770 } 771 while (itr2.hasNext()) { 772 E e = itr2.next(); 773 if (!set1.contains(e)) { 774 return e; 775 } 776 } 777 return endOfData(); 778 } 779 }; 780 } 781 782 @Override 783 public Stream<E> stream() { 784 return Stream.concat(set1.stream(), set2.stream().filter(e -> !set1.contains(e))); 785 } 786 787 @Override 788 public Stream<E> parallelStream() { 789 return stream().parallel(); 790 } 791 792 @Override 793 public boolean contains(Object object) { 794 return set1.contains(object) || set2.contains(object); 795 } 796 797 @Override 798 public <S extends Set<E>> S copyInto(S set) { 799 set.addAll(set1); 800 set.addAll(set2); 801 return set; 802 } 803 804 @Override 805 public ImmutableSet<E> immutableCopy() { 806 return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); 807 } 808 }; 809 } 810 811 /** 812 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The 813 * returned set contains all elements that are contained by both backing sets. 814 * The iteration order of the returned set matches that of {@code set1}. 815 * 816 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 817 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 818 * and the keySet of an {@code IdentityHashMap} all are). 819 * 820 * <p><b>Note:</b> The returned view performs slightly better when {@code 821 * set1} is the smaller of the two sets. If you have reason to believe one of 822 * your sets will generally be smaller than the other, pass it first. 823 * Unfortunately, since this method sets the generic type of the returned set 824 * based on the type of the first set passed, this could in rare cases force 825 * you to make a cast, for example: <pre> {@code 826 * 827 * Set<Object> aFewBadObjects = ... 828 * Set<String> manyBadStrings = ... 829 * 830 * // impossible for a non-String to be in the intersection 831 * SuppressWarnings("unchecked") 832 * Set<String> badStrings = (Set) Sets.intersection( 833 * aFewBadObjects, manyBadStrings);}</pre> 834 * 835 * <p>This is unfortunate, but should come up only very rarely. 836 */ 837 public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) { 838 checkNotNull(set1, "set1"); 839 checkNotNull(set2, "set2"); 840 841 return new SetView<E>() { 842 @Override 843 public UnmodifiableIterator<E> iterator() { 844 return new AbstractIterator<E>() { 845 final Iterator<E> itr = set1.iterator(); 846 847 @Override 848 protected E computeNext() { 849 while (itr.hasNext()) { 850 E e = itr.next(); 851 if (set2.contains(e)) { 852 return e; 853 } 854 } 855 return endOfData(); 856 } 857 }; 858 } 859 860 @Override 861 public Stream<E> stream() { 862 return set1.stream().filter(set2::contains); 863 } 864 865 @Override 866 public Stream<E> parallelStream() { 867 return set1.parallelStream().filter(set2::contains); 868 } 869 870 @Override 871 public int size() { 872 int size = 0; 873 for (E e : set1) { 874 if (set2.contains(e)) { 875 size++; 876 } 877 } 878 return size; 879 } 880 881 @Override 882 public boolean isEmpty() { 883 return Collections.disjoint(set1, set2); 884 } 885 886 @Override 887 public boolean contains(Object object) { 888 return set1.contains(object) && set2.contains(object); 889 } 890 891 @Override 892 public boolean containsAll(Collection<?> collection) { 893 return set1.containsAll(collection) && set2.containsAll(collection); 894 } 895 }; 896 } 897 898 /** 899 * Returns an unmodifiable <b>view</b> of the difference of two sets. The 900 * returned set contains all elements that are contained by {@code set1} and 901 * not contained by {@code set2}. {@code set2} may also contain elements not 902 * present in {@code set1}; these are simply ignored. The iteration order of 903 * the returned set matches that of {@code set1}. 904 * 905 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 906 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 907 * and the keySet of an {@code IdentityHashMap} all are). 908 */ 909 public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) { 910 checkNotNull(set1, "set1"); 911 checkNotNull(set2, "set2"); 912 913 return new SetView<E>() { 914 @Override 915 public UnmodifiableIterator<E> iterator() { 916 return new AbstractIterator<E>(){ 917 final Iterator<E> itr = set1.iterator(); 918 @Override 919 protected E computeNext() { 920 while (itr.hasNext()) { 921 E e = itr.next(); 922 if (!set2.contains(e)) { 923 return e; 924 } 925 } 926 return endOfData(); 927 } 928 }; 929 } 930 931 @Override 932 public Stream<E> stream() { 933 return set1.stream().filter(e -> !set2.contains(e)); 934 } 935 936 @Override 937 public Stream<E> parallelStream() { 938 return set1.parallelStream().filter(e -> !set2.contains(e)); 939 } 940 941 @Override 942 public int size() { 943 int size = 0; 944 for (E e : set1) { 945 if (!set2.contains(e)) { 946 size++; 947 } 948 } 949 return size; 950 } 951 952 @Override 953 public boolean isEmpty() { 954 return set2.containsAll(set1); 955 } 956 957 @Override 958 public boolean contains(Object element) { 959 return set1.contains(element) && !set2.contains(element); 960 } 961 }; 962 } 963 964 /** 965 * Returns an unmodifiable <b>view</b> of the symmetric difference of two 966 * sets. The returned set contains all elements that are contained in either 967 * {@code set1} or {@code set2} but not in both. The iteration order of the 968 * returned set is undefined. 969 * 970 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 971 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 972 * and the keySet of an {@code IdentityHashMap} all are). 973 * 974 * @since 3.0 975 */ 976 public static <E> SetView<E> symmetricDifference( 977 final Set<? extends E> set1, final Set<? extends E> set2) { 978 checkNotNull(set1, "set1"); 979 checkNotNull(set2, "set2"); 980 981 return new SetView<E>() { 982 @Override 983 public UnmodifiableIterator<E> iterator() { 984 final Iterator<? extends E> itr1 = set1.iterator(); 985 final Iterator<? extends E> itr2 = set2.iterator(); 986 return new AbstractIterator<E>() { 987 @Override 988 public E computeNext() { 989 while (itr1.hasNext()) { 990 E elem1 = itr1.next(); 991 if (!set2.contains(elem1)) { 992 return elem1; 993 } 994 } 995 while (itr2.hasNext()) { 996 E elem2 = itr2.next(); 997 if (!set1.contains(elem2)) { 998 return elem2; 999 } 1000 } 1001 return endOfData(); 1002 } 1003 }; 1004 } 1005 1006 @Override 1007 public int size() { 1008 int size = 0; 1009 for (E e : set1) { 1010 if (!set2.contains(e)) { 1011 size++; 1012 } 1013 } 1014 for (E e : set2) { 1015 if (!set1.contains(e)) { 1016 size++; 1017 } 1018 } 1019 return size; 1020 } 1021 1022 @Override 1023 public boolean isEmpty() { 1024 return set1.equals(set2); 1025 } 1026 1027 @Override 1028 public boolean contains(Object element) { 1029 return set1.contains(element) ^ set2.contains(element); 1030 } 1031 }; 1032 } 1033 1034 /** 1035 * Returns the elements of {@code unfiltered} that satisfy a predicate. The 1036 * returned set is a live view of {@code unfiltered}; changes to one affect 1037 * the other. 1038 * 1039 * <p>The resulting set's iterator does not support {@code remove()}, but all 1040 * other set methods are supported. When given an element that doesn't satisfy 1041 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1042 * an {@link IllegalArgumentException}. When methods such as {@code 1043 * removeAll()} and {@code clear()} are called on the filtered set, only 1044 * elements that satisfy the filter will be removed from the underlying set. 1045 * 1046 * <p>The returned set isn't threadsafe or serializable, even if 1047 * {@code unfiltered} is. 1048 * 1049 * <p>Many of the filtered set's methods, such as {@code size()}, iterate 1050 * across every element in the underlying set and determine which elements 1051 * satisfy the filter. When a live view is <i>not</i> needed, it may be faster 1052 * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1053 * 1054 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1055 * as documented at {@link Predicate#apply}. Do not provide a predicate such 1056 * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent 1057 * with equals. (See {@link Iterables#filter(Iterable, Class)} for related 1058 * functionality.) 1059 * 1060 * <p><b>Java 8 users:</b> many use cases for this method are better 1061 * addressed by {@link java.util.stream.Stream#filter}. This method is not 1062 * being deprecated, but we gently encourage you to migrate to streams. 1063 */ 1064 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 1065 public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) { 1066 if (unfiltered instanceof SortedSet) { 1067 return filter((SortedSet<E>) unfiltered, predicate); 1068 } 1069 if (unfiltered instanceof FilteredSet) { 1070 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1071 // collection. 1072 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1073 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1074 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 1075 } 1076 1077 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1078 } 1079 1080 private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> { 1081 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1082 super(unfiltered, predicate); 1083 } 1084 1085 @Override 1086 public boolean equals(@Nullable Object object) { 1087 return equalsImpl(this, object); 1088 } 1089 1090 @Override 1091 public int hashCode() { 1092 return hashCodeImpl(this); 1093 } 1094 } 1095 1096 /** 1097 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that 1098 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 1099 * changes to one affect the other. 1100 * 1101 * <p>The resulting set's iterator does not support {@code remove()}, but all 1102 * other set methods are supported. When given an element that doesn't satisfy 1103 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1104 * an {@link IllegalArgumentException}. When methods such as 1105 * {@code removeAll()} and {@code clear()} are called on the filtered set, 1106 * only elements that satisfy the filter will be removed from the underlying 1107 * set. 1108 * 1109 * <p>The returned set isn't threadsafe or serializable, even if 1110 * {@code unfiltered} is. 1111 * 1112 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 1113 * every element in the underlying set and determine which elements satisfy 1114 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 1115 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1116 * 1117 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1118 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 1119 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 1120 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 1121 * functionality.) 1122 * 1123 * @since 11.0 1124 */ 1125 public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1126 if (unfiltered instanceof FilteredSet) { 1127 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1128 // collection. 1129 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1130 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1131 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1132 } 1133 1134 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1135 } 1136 1137 private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> { 1138 1139 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1140 super(unfiltered, predicate); 1141 } 1142 1143 @Override 1144 public Comparator<? super E> comparator() { 1145 return ((SortedSet<E>) unfiltered).comparator(); 1146 } 1147 1148 @Override 1149 public SortedSet<E> subSet(E fromElement, E toElement) { 1150 return new FilteredSortedSet<E>( 1151 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1152 } 1153 1154 @Override 1155 public SortedSet<E> headSet(E toElement) { 1156 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1157 } 1158 1159 @Override 1160 public SortedSet<E> tailSet(E fromElement) { 1161 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1162 } 1163 1164 @Override 1165 public E first() { 1166 return Iterators.find(unfiltered.iterator(), predicate); 1167 } 1168 1169 @Override 1170 public E last() { 1171 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1172 while (true) { 1173 E element = sortedUnfiltered.last(); 1174 if (predicate.apply(element)) { 1175 return element; 1176 } 1177 sortedUnfiltered = sortedUnfiltered.headSet(element); 1178 } 1179 } 1180 } 1181 1182 /** 1183 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that 1184 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 1185 * changes to one affect the other. 1186 * 1187 * <p>The resulting set's iterator does not support {@code remove()}, but all 1188 * other set methods are supported. When given an element that doesn't satisfy 1189 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1190 * an {@link IllegalArgumentException}. When methods such as 1191 * {@code removeAll()} and {@code clear()} are called on the filtered set, 1192 * only elements that satisfy the filter will be removed from the underlying 1193 * set. 1194 * 1195 * <p>The returned set isn't threadsafe or serializable, even if 1196 * {@code unfiltered} is. 1197 * 1198 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 1199 * every element in the underlying set and determine which elements satisfy 1200 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 1201 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1202 * 1203 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1204 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 1205 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 1206 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 1207 * functionality.) 1208 * 1209 * @since 14.0 1210 */ 1211 @GwtIncompatible // NavigableSet 1212 @SuppressWarnings("unchecked") 1213 public static <E> NavigableSet<E> filter( 1214 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1215 if (unfiltered instanceof FilteredSet) { 1216 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1217 // collection. 1218 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1219 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1220 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1221 } 1222 1223 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1224 } 1225 1226 @GwtIncompatible // NavigableSet 1227 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 1228 implements NavigableSet<E> { 1229 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1230 super(unfiltered, predicate); 1231 } 1232 1233 NavigableSet<E> unfiltered() { 1234 return (NavigableSet<E>) unfiltered; 1235 } 1236 1237 @Override 1238 @Nullable 1239 public E lower(E e) { 1240 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1241 } 1242 1243 @Override 1244 @Nullable 1245 public E floor(E e) { 1246 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1247 } 1248 1249 @Override 1250 public E ceiling(E e) { 1251 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1252 } 1253 1254 @Override 1255 public E higher(E e) { 1256 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1257 } 1258 1259 @Override 1260 public E pollFirst() { 1261 return Iterables.removeFirstMatching(unfiltered(), predicate); 1262 } 1263 1264 @Override 1265 public E pollLast() { 1266 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1267 } 1268 1269 @Override 1270 public NavigableSet<E> descendingSet() { 1271 return Sets.filter(unfiltered().descendingSet(), predicate); 1272 } 1273 1274 @Override 1275 public Iterator<E> descendingIterator() { 1276 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1277 } 1278 1279 @Override 1280 public E last() { 1281 return Iterators.find(unfiltered().descendingIterator(), predicate); 1282 } 1283 1284 @Override 1285 public NavigableSet<E> subSet( 1286 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1287 return filter( 1288 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1289 } 1290 1291 @Override 1292 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1293 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1294 } 1295 1296 @Override 1297 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1298 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1299 } 1300 } 1301 1302 /** 1303 * Returns every possible list that can be formed by choosing one element 1304 * from each of the given sets in order; the "n-ary 1305 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1306 * product</a>" of the sets. For example: <pre> {@code 1307 * 1308 * Sets.cartesianProduct(ImmutableList.of( 1309 * ImmutableSet.of(1, 2), 1310 * ImmutableSet.of("A", "B", "C")))}</pre> 1311 * 1312 * <p>returns a set containing six lists: 1313 * 1314 * <ul> 1315 * <li>{@code ImmutableList.of(1, "A")} 1316 * <li>{@code ImmutableList.of(1, "B")} 1317 * <li>{@code ImmutableList.of(1, "C")} 1318 * <li>{@code ImmutableList.of(2, "A")} 1319 * <li>{@code ImmutableList.of(2, "B")} 1320 * <li>{@code ImmutableList.of(2, "C")} 1321 * </ul> 1322 * 1323 * <p>The result is guaranteed to be in the "traditional", lexicographical 1324 * order for Cartesian products that you would get from nesting for loops: 1325 * <pre> {@code 1326 * 1327 * for (B b0 : sets.get(0)) { 1328 * for (B b1 : sets.get(1)) { 1329 * ... 1330 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1331 * // operate on tuple 1332 * } 1333 * }}</pre> 1334 * 1335 * <p>Note that if any input set is empty, the Cartesian product will also be 1336 * empty. If no sets at all are provided (an empty list), the resulting 1337 * Cartesian product has one element, an empty list (counter-intuitive, but 1338 * mathematically consistent). 1339 * 1340 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1341 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1342 * consumption is much smaller. When the cartesian set is constructed, the 1343 * input sets are merely copied. Only as the resulting set is iterated are the 1344 * individual lists created, and these are not retained after iteration. 1345 * 1346 * @param sets the sets to choose elements from, in the order that 1347 * the elements chosen from those sets should appear in the resulting 1348 * lists 1349 * @param <B> any common base class shared by all axes (often just {@link 1350 * Object}) 1351 * @return the Cartesian product, as an immutable set containing immutable 1352 * lists 1353 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1354 * or any element of a provided set is null 1355 * @since 2.0 1356 */ 1357 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1358 return CartesianSet.create(sets); 1359 } 1360 1361 /** 1362 * Returns every possible list that can be formed by choosing one element 1363 * from each of the given sets in order; the "n-ary 1364 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1365 * product</a>" of the sets. For example: <pre> {@code 1366 * 1367 * Sets.cartesianProduct( 1368 * ImmutableSet.of(1, 2), 1369 * ImmutableSet.of("A", "B", "C"))}</pre> 1370 * 1371 * <p>returns a set containing six lists: 1372 * 1373 * <ul> 1374 * <li>{@code ImmutableList.of(1, "A")} 1375 * <li>{@code ImmutableList.of(1, "B")} 1376 * <li>{@code ImmutableList.of(1, "C")} 1377 * <li>{@code ImmutableList.of(2, "A")} 1378 * <li>{@code ImmutableList.of(2, "B")} 1379 * <li>{@code ImmutableList.of(2, "C")} 1380 * </ul> 1381 * 1382 * <p>The result is guaranteed to be in the "traditional", lexicographical 1383 * order for Cartesian products that you would get from nesting for loops: 1384 * <pre> {@code 1385 * 1386 * for (B b0 : sets.get(0)) { 1387 * for (B b1 : sets.get(1)) { 1388 * ... 1389 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1390 * // operate on tuple 1391 * } 1392 * }}</pre> 1393 * 1394 * <p>Note that if any input set is empty, the Cartesian product will also be 1395 * empty. If no sets at all are provided (an empty list), the resulting 1396 * Cartesian product has one element, an empty list (counter-intuitive, but 1397 * mathematically consistent). 1398 * 1399 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1400 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1401 * consumption is much smaller. When the cartesian set is constructed, the 1402 * input sets are merely copied. Only as the resulting set is iterated are the 1403 * individual lists created, and these are not retained after iteration. 1404 * 1405 * @param sets the sets to choose elements from, in the order that 1406 * the elements chosen from those sets should appear in the resulting 1407 * lists 1408 * @param <B> any common base class shared by all axes (often just {@link 1409 * Object}) 1410 * @return the Cartesian product, as an immutable set containing immutable 1411 * lists 1412 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1413 * or any element of a provided set is null 1414 * @since 2.0 1415 */ 1416 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1417 return cartesianProduct(Arrays.asList(sets)); 1418 } 1419 1420 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1421 implements Set<List<E>> { 1422 private final transient ImmutableList<ImmutableSet<E>> axes; 1423 private final transient CartesianList<E> delegate; 1424 1425 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1426 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1427 for (Set<? extends E> set : sets) { 1428 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1429 if (copy.isEmpty()) { 1430 return ImmutableSet.of(); 1431 } 1432 axesBuilder.add(copy); 1433 } 1434 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1435 ImmutableList<List<E>> listAxes = 1436 new ImmutableList<List<E>>() { 1437 @Override 1438 public int size() { 1439 return axes.size(); 1440 } 1441 1442 @Override 1443 public List<E> get(int index) { 1444 return axes.get(index).asList(); 1445 } 1446 1447 @Override 1448 boolean isPartialView() { 1449 return true; 1450 } 1451 }; 1452 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1453 } 1454 1455 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1456 this.axes = axes; 1457 this.delegate = delegate; 1458 } 1459 1460 @Override 1461 protected Collection<List<E>> delegate() { 1462 return delegate; 1463 } 1464 1465 @Override 1466 public boolean equals(@Nullable Object object) { 1467 // Warning: this is broken if size() == 0, so it is critical that we 1468 // substitute an empty ImmutableSet to the user in place of this 1469 if (object instanceof CartesianSet) { 1470 CartesianSet<?> that = (CartesianSet<?>) object; 1471 return this.axes.equals(that.axes); 1472 } 1473 return super.equals(object); 1474 } 1475 1476 @Override 1477 public int hashCode() { 1478 // Warning: this is broken if size() == 0, so it is critical that we 1479 // substitute an empty ImmutableSet to the user in place of this 1480 1481 // It's a weird formula, but tests prove it works. 1482 int adjust = size() - 1; 1483 for (int i = 0; i < axes.size(); i++) { 1484 adjust *= 31; 1485 adjust = ~~adjust; 1486 // in GWT, we have to deal with integer overflow carefully 1487 } 1488 int hash = 1; 1489 for (Set<E> axis : axes) { 1490 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1491 1492 hash = ~~hash; 1493 } 1494 hash += adjust; 1495 return ~~hash; 1496 } 1497 } 1498 1499 /** 1500 * Returns the set of all possible subsets of {@code set}. For example, 1501 * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, 1502 * {1}, {2}, {1, 2}}}. 1503 * 1504 * <p>Elements appear in these subsets in the same iteration order as they 1505 * appeared in the input set. The order in which these subsets appear in the 1506 * outer set is undefined. Note that the power set of the empty set is not the 1507 * empty set, but a one-element set containing the empty set. 1508 * 1509 * <p>The returned set and its constituent sets use {@code equals} to decide 1510 * whether two elements are identical, even if the input set uses a different 1511 * concept of equivalence. 1512 * 1513 * <p><i>Performance notes:</i> while the power set of a set with size {@code 1514 * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the 1515 * power set is constructed, the input set is merely copied. Only as the 1516 * power set is iterated are the individual subsets created, and these subsets 1517 * themselves occupy only a small constant amount of memory. 1518 * 1519 * @param set the set of elements to construct a power set from 1520 * @return the power set, as an immutable set of immutable sets 1521 * @throws IllegalArgumentException if {@code set} has more than 30 unique 1522 * elements (causing the power set size to exceed the {@code int} range) 1523 * @throws NullPointerException if {@code set} is or contains {@code null} 1524 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at 1525 * Wikipedia</a> 1526 * @since 4.0 1527 */ 1528 @GwtCompatible(serializable = false) 1529 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1530 return new PowerSet<E>(set); 1531 } 1532 1533 private static final class SubSet<E> extends AbstractSet<E> { 1534 private final ImmutableMap<E, Integer> inputSet; 1535 private final int mask; 1536 1537 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1538 this.inputSet = inputSet; 1539 this.mask = mask; 1540 } 1541 1542 @Override 1543 public Iterator<E> iterator() { 1544 return new UnmodifiableIterator<E>() { 1545 final ImmutableList<E> elements = inputSet.keySet().asList(); 1546 int remainingSetBits = mask; 1547 1548 @Override 1549 public boolean hasNext() { 1550 return remainingSetBits != 0; 1551 } 1552 1553 @Override 1554 public E next() { 1555 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1556 if (index == 32) { 1557 throw new NoSuchElementException(); 1558 } 1559 remainingSetBits &= ~(1 << index); 1560 return elements.get(index); 1561 } 1562 }; 1563 } 1564 1565 @Override 1566 public int size() { 1567 return Integer.bitCount(mask); 1568 } 1569 1570 @Override 1571 public boolean contains(@Nullable Object o) { 1572 Integer index = inputSet.get(o); 1573 return index != null && (mask & (1 << index)) != 0; 1574 } 1575 } 1576 1577 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1578 final ImmutableMap<E, Integer> inputSet; 1579 1580 PowerSet(Set<E> input) { 1581 this.inputSet = Maps.indexMap(input); 1582 checkArgument( 1583 inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size()); 1584 } 1585 1586 @Override 1587 public int size() { 1588 return 1 << inputSet.size(); 1589 } 1590 1591 @Override 1592 public boolean isEmpty() { 1593 return false; 1594 } 1595 1596 @Override 1597 public Iterator<Set<E>> iterator() { 1598 return new AbstractIndexedListIterator<Set<E>>(size()) { 1599 @Override 1600 protected Set<E> get(final int setBits) { 1601 return new SubSet<E>(inputSet, setBits); 1602 } 1603 }; 1604 } 1605 1606 @Override 1607 public boolean contains(@Nullable Object obj) { 1608 if (obj instanceof Set) { 1609 Set<?> set = (Set<?>) obj; 1610 return inputSet.keySet().containsAll(set); 1611 } 1612 return false; 1613 } 1614 1615 @Override 1616 public boolean equals(@Nullable Object obj) { 1617 if (obj instanceof PowerSet) { 1618 PowerSet<?> that = (PowerSet<?>) obj; 1619 return inputSet.equals(that.inputSet); 1620 } 1621 return super.equals(obj); 1622 } 1623 1624 @Override 1625 public int hashCode() { 1626 /* 1627 * The sum of the sums of the hash codes in each subset is just the sum of 1628 * each input element's hash code times the number of sets that element 1629 * appears in. Each element appears in exactly half of the 2^n sets, so: 1630 */ 1631 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1632 } 1633 1634 @Override 1635 public String toString() { 1636 return "powerSet(" + inputSet + ")"; 1637 } 1638 } 1639 1640 /** 1641 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1642 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1643 * 1644 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1645 * set. The order in which these subsets appear in the outer set is undefined. 1646 * 1647 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1648 * are identical, even if the input set uses a different concept of equivalence. 1649 * 1650 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1651 * the result set is constructed, the input set is merely copied. Only as the result set is 1652 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1653 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1654 * {@code combinations} does not retain the individual subsets. 1655 * 1656 * @param set the set of elements to take combinations of 1657 * @param size the number of elements per combination 1658 * @return the set of all combinations of {@code size} elements from {@code set} 1659 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1660 * inclusive 1661 * @throws NullPointerException if {@code set} is or contains {@code null} 1662 * @since 23.0 1663 */ 1664 @Beta 1665 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1666 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1667 checkNonnegative(size, "size"); 1668 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1669 if (size == 0) { 1670 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1671 } else if (size == index.size()) { 1672 return ImmutableSet.<Set<E>>of(index.keySet()); 1673 } 1674 return new AbstractSet<Set<E>>() { 1675 @Override 1676 public boolean contains(@Nullable Object o) { 1677 if (o instanceof Set) { 1678 Set<?> s = (Set<?>) o; 1679 return s.size() == size && index.keySet().containsAll(s); 1680 } 1681 return false; 1682 } 1683 1684 @Override 1685 public Iterator<Set<E>> iterator() { 1686 return new AbstractIterator<Set<E>>() { 1687 final BitSet bits = new BitSet(index.size()); 1688 1689 @Override 1690 protected Set<E> computeNext() { 1691 if (bits.isEmpty()) { 1692 bits.set(0, size); 1693 } else { 1694 int firstSetBit = bits.nextSetBit(0); 1695 int bitToFlip = bits.nextClearBit(firstSetBit); 1696 1697 if (bitToFlip == index.size()) { 1698 return endOfData(); 1699 } 1700 1701 /* 1702 * The current set in sorted order looks like 1703 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1704 * where it does *not* contain bitToFlip. 1705 * 1706 * The next combination is 1707 * 1708 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1709 * 1710 * This is lexicographically next if you look at the combinations in descending order 1711 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1712 */ 1713 1714 bits.set(0, bitToFlip - firstSetBit - 1); 1715 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1716 bits.set(bitToFlip); 1717 } 1718 final BitSet copy = (BitSet) bits.clone(); 1719 return new AbstractSet<E>() { 1720 @Override 1721 public boolean contains(@Nullable Object o) { 1722 Integer i = index.get(o); 1723 return i != null && copy.get(i); 1724 } 1725 1726 @Override 1727 public Iterator<E> iterator() { 1728 return new AbstractIterator<E>() { 1729 int i = -1; 1730 1731 @Override 1732 protected E computeNext() { 1733 i = copy.nextSetBit(i + 1); 1734 if (i == -1) { 1735 return endOfData(); 1736 } 1737 return index.keySet().asList().get(i); 1738 } 1739 }; 1740 } 1741 1742 @Override 1743 public int size() { 1744 return size; 1745 } 1746 }; 1747 } 1748 }; 1749 } 1750 1751 @Override 1752 public int size() { 1753 return IntMath.binomial(index.size(), size); 1754 } 1755 1756 @Override 1757 public String toString() { 1758 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1759 } 1760 }; 1761 } 1762 1763 /** 1764 * An implementation for {@link Set#hashCode()}. 1765 */ 1766 static int hashCodeImpl(Set<?> s) { 1767 int hashCode = 0; 1768 for (Object o : s) { 1769 hashCode += o != null ? o.hashCode() : 0; 1770 1771 hashCode = ~~hashCode; 1772 // Needed to deal with unusual integer overflow in GWT. 1773 } 1774 return hashCode; 1775 } 1776 1777 /** 1778 * An implementation for {@link Set#equals(Object)}. 1779 */ 1780 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1781 if (s == object) { 1782 return true; 1783 } 1784 if (object instanceof Set) { 1785 Set<?> o = (Set<?>) object; 1786 1787 try { 1788 return s.size() == o.size() && s.containsAll(o); 1789 } catch (NullPointerException | ClassCastException ignored) { 1790 return false; 1791 } 1792 } 1793 return false; 1794 } 1795 1796 /** 1797 * Returns an unmodifiable view of the specified navigable set. This method 1798 * allows modules to provide users with "read-only" access to internal 1799 * navigable sets. Query operations on the returned set "read through" to the 1800 * specified set, and attempts to modify the returned set, whether direct or 1801 * via its collection views, result in an 1802 * {@code UnsupportedOperationException}. 1803 * 1804 * <p>The returned navigable set will be serializable if the specified 1805 * navigable set is serializable. 1806 * 1807 * @param set the navigable set for which an unmodifiable view is to be 1808 * returned 1809 * @return an unmodifiable view of the specified navigable set 1810 * @since 12.0 1811 */ 1812 public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) { 1813 if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) { 1814 return set; 1815 } 1816 return new UnmodifiableNavigableSet<E>(set); 1817 } 1818 1819 static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E> 1820 implements NavigableSet<E>, Serializable { 1821 private final NavigableSet<E> delegate; 1822 private final SortedSet<E> unmodifiableDelegate; 1823 1824 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1825 this.delegate = checkNotNull(delegate); 1826 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1827 } 1828 1829 @Override 1830 protected SortedSet<E> delegate() { 1831 return unmodifiableDelegate; 1832 } 1833 1834 // default methods not forwarded by ForwardingSortedSet 1835 1836 @Override 1837 public boolean removeIf(java.util.function.Predicate<? super E> filter) { 1838 throw new UnsupportedOperationException(); 1839 } 1840 1841 @Override 1842 public Stream<E> stream() { 1843 return delegate.stream(); 1844 } 1845 1846 @Override 1847 public Stream<E> parallelStream() { 1848 return delegate.parallelStream(); 1849 } 1850 1851 @Override 1852 public void forEach(Consumer<? super E> action) { 1853 delegate.forEach(action); 1854 } 1855 1856 @Override 1857 public E lower(E e) { 1858 return delegate.lower(e); 1859 } 1860 1861 @Override 1862 public E floor(E e) { 1863 return delegate.floor(e); 1864 } 1865 1866 @Override 1867 public E ceiling(E e) { 1868 return delegate.ceiling(e); 1869 } 1870 1871 @Override 1872 public E higher(E e) { 1873 return delegate.higher(e); 1874 } 1875 1876 @Override 1877 public E pollFirst() { 1878 throw new UnsupportedOperationException(); 1879 } 1880 1881 @Override 1882 public E pollLast() { 1883 throw new UnsupportedOperationException(); 1884 } 1885 1886 private transient UnmodifiableNavigableSet<E> descendingSet; 1887 1888 @Override 1889 public NavigableSet<E> descendingSet() { 1890 UnmodifiableNavigableSet<E> result = descendingSet; 1891 if (result == null) { 1892 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1893 result.descendingSet = this; 1894 } 1895 return result; 1896 } 1897 1898 @Override 1899 public Iterator<E> descendingIterator() { 1900 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1901 } 1902 1903 @Override 1904 public NavigableSet<E> subSet( 1905 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1906 return unmodifiableNavigableSet( 1907 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1908 } 1909 1910 @Override 1911 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1912 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1913 } 1914 1915 @Override 1916 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1917 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1918 } 1919 1920 private static final long serialVersionUID = 0; 1921 } 1922 1923 /** 1924 * Returns a synchronized (thread-safe) navigable set backed by the specified 1925 * navigable set. In order to guarantee serial access, it is critical that 1926 * <b>all</b> access to the backing navigable set is accomplished 1927 * through the returned navigable set (or its views). 1928 * 1929 * <p>It is imperative that the user manually synchronize on the returned 1930 * sorted set when iterating over it or any of its {@code descendingSet}, 1931 * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre> {@code 1932 * 1933 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1934 * ... 1935 * synchronized (set) { 1936 * // Must be in the synchronized block 1937 * Iterator<E> it = set.iterator(); 1938 * while (it.hasNext()) { 1939 * foo(it.next()); 1940 * } 1941 * }}</pre> 1942 * 1943 * <p>or: <pre> {@code 1944 * 1945 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1946 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1947 * ... 1948 * synchronized (set) { // Note: set, not set2!!! 1949 * // Must be in the synchronized block 1950 * Iterator<E> it = set2.descendingIterator(); 1951 * while (it.hasNext()) 1952 * foo(it.next()); 1953 * } 1954 * }}</pre> 1955 * 1956 * <p>Failure to follow this advice may result in non-deterministic behavior. 1957 * 1958 * <p>The returned navigable set will be serializable if the specified 1959 * navigable set is serializable. 1960 * 1961 * @param navigableSet the navigable set to be "wrapped" in a synchronized 1962 * navigable set. 1963 * @return a synchronized view of the specified navigable set. 1964 * @since 13.0 1965 */ 1966 @GwtIncompatible // NavigableSet 1967 public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) { 1968 return Synchronized.navigableSet(navigableSet); 1969 } 1970 1971 /** 1972 * Remove each element in an iterable from a set. 1973 */ 1974 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1975 boolean changed = false; 1976 while (iterator.hasNext()) { 1977 changed |= set.remove(iterator.next()); 1978 } 1979 return changed; 1980 } 1981 1982 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1983 checkNotNull(collection); // for GWT 1984 if (collection instanceof Multiset) { 1985 collection = ((Multiset<?>) collection).elementSet(); 1986 } 1987 /* 1988 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1989 * is just more than the set's size. We augment the test by 1990 * assuming that sets have fast contains() performance, and other 1991 * collections don't. See 1992 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1993 */ 1994 if (collection instanceof Set && collection.size() > set.size()) { 1995 return Iterators.removeAll(set.iterator(), collection); 1996 } else { 1997 return removeAllImpl(set, collection.iterator()); 1998 } 1999 } 2000 2001 @GwtIncompatible // NavigableSet 2002 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 2003 private final NavigableSet<E> forward; 2004 2005 DescendingSet(NavigableSet<E> forward) { 2006 this.forward = forward; 2007 } 2008 2009 @Override 2010 protected NavigableSet<E> delegate() { 2011 return forward; 2012 } 2013 2014 @Override 2015 public E lower(E e) { 2016 return forward.higher(e); 2017 } 2018 2019 @Override 2020 public E floor(E e) { 2021 return forward.ceiling(e); 2022 } 2023 2024 @Override 2025 public E ceiling(E e) { 2026 return forward.floor(e); 2027 } 2028 2029 @Override 2030 public E higher(E e) { 2031 return forward.lower(e); 2032 } 2033 2034 @Override 2035 public E pollFirst() { 2036 return forward.pollLast(); 2037 } 2038 2039 @Override 2040 public E pollLast() { 2041 return forward.pollFirst(); 2042 } 2043 2044 @Override 2045 public NavigableSet<E> descendingSet() { 2046 return forward; 2047 } 2048 2049 @Override 2050 public Iterator<E> descendingIterator() { 2051 return forward.iterator(); 2052 } 2053 2054 @Override 2055 public NavigableSet<E> subSet( 2056 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 2057 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 2058 } 2059 2060 @Override 2061 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 2062 return forward.tailSet(toElement, inclusive).descendingSet(); 2063 } 2064 2065 @Override 2066 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 2067 return forward.headSet(fromElement, inclusive).descendingSet(); 2068 } 2069 2070 @SuppressWarnings("unchecked") 2071 @Override 2072 public Comparator<? super E> comparator() { 2073 Comparator<? super E> forwardComparator = forward.comparator(); 2074 if (forwardComparator == null) { 2075 return (Comparator) Ordering.natural().reverse(); 2076 } else { 2077 return reverse(forwardComparator); 2078 } 2079 } 2080 2081 // If we inline this, we get a javac error. 2082 private static <T> Ordering<T> reverse(Comparator<T> forward) { 2083 return Ordering.from(forward).reverse(); 2084 } 2085 2086 @Override 2087 public E first() { 2088 return forward.last(); 2089 } 2090 2091 @Override 2092 public SortedSet<E> headSet(E toElement) { 2093 return standardHeadSet(toElement); 2094 } 2095 2096 @Override 2097 public E last() { 2098 return forward.first(); 2099 } 2100 2101 @Override 2102 public SortedSet<E> subSet(E fromElement, E toElement) { 2103 return standardSubSet(fromElement, toElement); 2104 } 2105 2106 @Override 2107 public SortedSet<E> tailSet(E fromElement) { 2108 return standardTailSet(fromElement); 2109 } 2110 2111 @Override 2112 public Iterator<E> iterator() { 2113 return forward.descendingIterator(); 2114 } 2115 2116 @Override 2117 public Object[] toArray() { 2118 return standardToArray(); 2119 } 2120 2121 @Override 2122 public <T> T[] toArray(T[] array) { 2123 return standardToArray(array); 2124 } 2125 2126 @Override 2127 public String toString() { 2128 return standardToString(); 2129 } 2130 } 2131 2132 /** 2133 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2134 * 2135 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely 2136 * {@link NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, 2137 * {@link NavigableSet#tailSet(Object, boolean) tailSet()}, and 2138 * {@link NavigableSet#headSet(Object, boolean) headSet()}) to actually construct the view. 2139 * Consult these methods for a full description of the returned view's behavior. 2140 * 2141 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2142 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a 2143 * {@link Comparator}, which can violate the natural ordering. Using this method (or in general 2144 * using {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined 2145 * behavior. 2146 * 2147 * @since 20.0 2148 */ 2149 @Beta 2150 @GwtIncompatible // NavigableSet 2151 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2152 NavigableSet<K> set, Range<K> range) { 2153 if (set.comparator() != null 2154 && set.comparator() != Ordering.natural() 2155 && range.hasLowerBound() 2156 && range.hasUpperBound()) { 2157 checkArgument( 2158 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2159 "set is using a custom comparator which is inconsistent with the natural ordering."); 2160 } 2161 if (range.hasLowerBound() && range.hasUpperBound()) { 2162 return set.subSet( 2163 range.lowerEndpoint(), 2164 range.lowerBoundType() == BoundType.CLOSED, 2165 range.upperEndpoint(), 2166 range.upperBoundType() == BoundType.CLOSED); 2167 } else if (range.hasLowerBound()) { 2168 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2169 } else if (range.hasUpperBound()) { 2170 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2171 } 2172 return checkNotNull(set); 2173 } 2174}