001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkElementIndex; 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.base.Preconditions.checkPositionIndexes; 021import static java.lang.Double.NEGATIVE_INFINITY; 022import static java.lang.Double.POSITIVE_INFINITY; 023 024import com.google.common.annotations.Beta; 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.base.Converter; 028import java.io.Serializable; 029import java.util.AbstractList; 030import java.util.Arrays; 031import java.util.Collection; 032import java.util.Collections; 033import java.util.Comparator; 034import java.util.List; 035import java.util.RandomAccess; 036import java.util.regex.Pattern; 037import javax.annotation.CheckForNull; 038import javax.annotation.Nullable; 039 040/** 041 * Static utility methods pertaining to {@code double} primitives, that are not already found in 042 * either {@link Double} or {@link Arrays}. 043 * 044 * <p>See the Guava User Guide article on 045 * <a href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 046 * 047 * @author Kevin Bourrillion 048 * @since 1.0 049 */ 050@GwtCompatible(emulated = true) 051public final class Doubles { 052 private Doubles() {} 053 054 /** 055 * The number of bytes required to represent a primitive {@code double} value. 056 * 057 * <p><b>Java 8 users:</b> use {@link Double#BYTES} instead. 058 * 059 * @since 10.0 060 */ 061 public static final int BYTES = Double.SIZE / Byte.SIZE; 062 063 /** 064 * Returns a hash code for {@code value}; equal to the result of invoking 065 * {@code ((Double) value).hashCode()}. 066 * 067 * <p><b>Java 8 users:</b> use {@link Double#hashCode(double)} instead. 068 * 069 * @param value a primitive {@code double} value 070 * @return a hash code for the value 071 */ 072 public static int hashCode(double value) { 073 return ((Double) value).hashCode(); 074 // TODO(kevinb): do it this way when we can (GWT problem): 075 // long bits = Double.doubleToLongBits(value); 076 // return (int) (bits ^ (bits >>> 32)); 077 } 078 079 /** 080 * Compares the two specified {@code double} values. The sign of the value returned is the same as 081 * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that 082 * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}. 083 * 084 * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is 085 * provided for consistency with the other primitive types, whose compare methods were not added 086 * to the JDK until JDK 7. 087 * 088 * @param a the first {@code double} to compare 089 * @param b the second {@code double} to compare 090 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 091 * greater than {@code b}; or zero if they are equal 092 */ 093 public static int compare(double a, double b) { 094 return Double.compare(a, b); 095 } 096 097 /** 098 * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not 099 * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}. 100 * 101 * <p><b>Java 8 users:</b> use {@link Double#isFinite(double)} instead. 102 * 103 * @since 10.0 104 */ 105 public static boolean isFinite(double value) { 106 return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY; 107 } 108 109 /** 110 * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note 111 * that this always returns {@code false} when {@code target} is {@code NaN}. 112 * 113 * @param array an array of {@code double} values, possibly empty 114 * @param target a primitive {@code double} value 115 * @return {@code true} if {@code array[i] == target} for some value of {@code 116 * i} 117 */ 118 public static boolean contains(double[] array, double target) { 119 for (double value : array) { 120 if (value == target) { 121 return true; 122 } 123 } 124 return false; 125 } 126 127 /** 128 * Returns the index of the first appearance of the value {@code target} in {@code array}. Note 129 * that this always returns {@code -1} when {@code target} is {@code NaN}. 130 * 131 * @param array an array of {@code double} values, possibly empty 132 * @param target a primitive {@code double} value 133 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 134 * such index exists. 135 */ 136 public static int indexOf(double[] array, double target) { 137 return indexOf(array, target, 0, array.length); 138 } 139 140 // TODO(kevinb): consider making this public 141 private static int indexOf(double[] array, double target, int start, int end) { 142 for (int i = start; i < end; i++) { 143 if (array[i] == target) { 144 return i; 145 } 146 } 147 return -1; 148 } 149 150 /** 151 * Returns the start position of the first occurrence of the specified {@code 152 * target} within {@code array}, or {@code -1} if there is no such occurrence. 153 * 154 * <p>More formally, returns the lowest index {@code i} such that 155 * {@code Arrays.copyOfRange(array, i, i + target.length)} contains exactly the same elements as 156 * {@code target}. 157 * 158 * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}. 159 * 160 * @param array the array to search for the sequence {@code target} 161 * @param target the array to search for as a sub-sequence of {@code array} 162 */ 163 public static int indexOf(double[] array, double[] target) { 164 checkNotNull(array, "array"); 165 checkNotNull(target, "target"); 166 if (target.length == 0) { 167 return 0; 168 } 169 170 outer: 171 for (int i = 0; i < array.length - target.length + 1; i++) { 172 for (int j = 0; j < target.length; j++) { 173 if (array[i + j] != target[j]) { 174 continue outer; 175 } 176 } 177 return i; 178 } 179 return -1; 180 } 181 182 /** 183 * Returns the index of the last appearance of the value {@code target} in {@code array}. Note 184 * that this always returns {@code -1} when {@code target} is {@code NaN}. 185 * 186 * @param array an array of {@code double} values, possibly empty 187 * @param target a primitive {@code double} value 188 * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no 189 * such index exists. 190 */ 191 public static int lastIndexOf(double[] array, double target) { 192 return lastIndexOf(array, target, 0, array.length); 193 } 194 195 // TODO(kevinb): consider making this public 196 private static int lastIndexOf(double[] array, double target, int start, int end) { 197 for (int i = end - 1; i >= start; i--) { 198 if (array[i] == target) { 199 return i; 200 } 201 } 202 return -1; 203 } 204 205 /** 206 * Returns the least value present in {@code array}, using the same rules of comparison as 207 * {@link Math#min(double, double)}. 208 * 209 * @param array a <i>nonempty</i> array of {@code double} values 210 * @return the value present in {@code array} that is less than or equal to every other value in 211 * the array 212 * @throws IllegalArgumentException if {@code array} is empty 213 */ 214 public static double min(double... array) { 215 checkArgument(array.length > 0); 216 double min = array[0]; 217 for (int i = 1; i < array.length; i++) { 218 min = Math.min(min, array[i]); 219 } 220 return min; 221 } 222 223 /** 224 * Returns the greatest value present in {@code array}, using the same rules of comparison as 225 * {@link Math#max(double, double)}. 226 * 227 * @param array a <i>nonempty</i> array of {@code double} values 228 * @return the value present in {@code array} that is greater than or equal to every other value 229 * in the array 230 * @throws IllegalArgumentException if {@code array} is empty 231 */ 232 public static double max(double... array) { 233 checkArgument(array.length > 0); 234 double max = array[0]; 235 for (int i = 1; i < array.length; i++) { 236 max = Math.max(max, array[i]); 237 } 238 return max; 239 } 240 241 /** 242 * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. 243 * 244 * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned 245 * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if 246 * {@code value} is greater than {@code max}, {@code max} is returned. 247 * 248 * @param value the {@code double} value to constrain 249 * @param min the lower bound (inclusive) of the range to constrain {@code value} to 250 * @param max the upper bound (inclusive) of the range to constrain {@code value} to 251 * @throws IllegalArgumentException if {@code min > max} 252 * @since 21.0 253 */ 254 @Beta 255 public static double constrainToRange(double value, double min, double max) { 256 checkArgument(min <= max, "min (%s) must be less than or equal to max (%s)", min, max); 257 return Math.min(Math.max(value, min), max); 258 } 259 260 /** 261 * Returns the values from each provided array combined into a single array. For example, 262 * {@code concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array 263 * {@code {a, b, c}}. 264 * 265 * @param arrays zero or more {@code double} arrays 266 * @return a single array containing all the values from the source arrays, in order 267 */ 268 public static double[] concat(double[]... arrays) { 269 int length = 0; 270 for (double[] array : arrays) { 271 length += array.length; 272 } 273 double[] result = new double[length]; 274 int pos = 0; 275 for (double[] array : arrays) { 276 System.arraycopy(array, 0, result, pos, array.length); 277 pos += array.length; 278 } 279 return result; 280 } 281 282 private static final class DoubleConverter extends Converter<String, Double> 283 implements Serializable { 284 static final DoubleConverter INSTANCE = new DoubleConverter(); 285 286 @Override 287 protected Double doForward(String value) { 288 return Double.valueOf(value); 289 } 290 291 @Override 292 protected String doBackward(Double value) { 293 return value.toString(); 294 } 295 296 @Override 297 public String toString() { 298 return "Doubles.stringConverter()"; 299 } 300 301 private Object readResolve() { 302 return INSTANCE; 303 } 304 305 private static final long serialVersionUID = 1; 306 } 307 308 /** 309 * Returns a serializable converter object that converts between strings and doubles using 310 * {@link Double#valueOf} and {@link Double#toString()}. 311 * 312 * @since 16.0 313 */ 314 @Beta 315 public static Converter<String, Double> stringConverter() { 316 return DoubleConverter.INSTANCE; 317 } 318 319 /** 320 * Returns an array containing the same values as {@code array}, but guaranteed to be of a 321 * specified minimum length. If {@code array} already has a length of at least {@code minLength}, 322 * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is 323 * returned, containing the values of {@code array}, and zeroes in the remaining places. 324 * 325 * @param array the source array 326 * @param minLength the minimum length the returned array must guarantee 327 * @param padding an extra amount to "grow" the array by if growth is necessary 328 * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative 329 * @return an array containing the values of {@code array}, with guaranteed minimum length 330 * {@code minLength} 331 */ 332 public static double[] ensureCapacity(double[] array, int minLength, int padding) { 333 checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); 334 checkArgument(padding >= 0, "Invalid padding: %s", padding); 335 return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; 336 } 337 338 /** 339 * Returns a string containing the supplied {@code double} values, converted to strings as 340 * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example, 341 * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}. 342 * 343 * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT 344 * sometimes. In the previous example, it returns the string {@code "1-2-3"}. 345 * 346 * @param separator the text that should appear between consecutive values in the resulting string 347 * (but not at the start or end) 348 * @param array an array of {@code double} values, possibly empty 349 */ 350 public static String join(String separator, double... array) { 351 checkNotNull(separator); 352 if (array.length == 0) { 353 return ""; 354 } 355 356 // For pre-sizing a builder, just get the right order of magnitude 357 StringBuilder builder = new StringBuilder(array.length * 12); 358 builder.append(array[0]); 359 for (int i = 1; i < array.length; i++) { 360 builder.append(separator).append(array[i]); 361 } 362 return builder.toString(); 363 } 364 365 /** 366 * Returns a comparator that compares two {@code double} arrays <a 367 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 368 * compares, using {@link #compare(double, double)}), the first pair of values that follow any 369 * common prefix, or when one array is a prefix of the other, treats the shorter array as the 370 * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}. 371 * 372 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 373 * support only identity equality), but it is consistent with 374 * {@link Arrays#equals(double[], double[])}. 375 * 376 * @since 2.0 377 */ 378 public static Comparator<double[]> lexicographicalComparator() { 379 return LexicographicalComparator.INSTANCE; 380 } 381 382 private enum LexicographicalComparator implements Comparator<double[]> { 383 INSTANCE; 384 385 @Override 386 public int compare(double[] left, double[] right) { 387 int minLength = Math.min(left.length, right.length); 388 for (int i = 0; i < minLength; i++) { 389 int result = Double.compare(left[i], right[i]); 390 if (result != 0) { 391 return result; 392 } 393 } 394 return left.length - right.length; 395 } 396 397 @Override 398 public String toString() { 399 return "Doubles.lexicographicalComparator()"; 400 } 401 } 402 403 /** 404 * Sorts the elements of {@code array} in descending order. 405 * 406 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 407 * all NaN values as equal and 0.0 as greater than -0.0. 408 * 409 * @since 23.1 410 */ 411 public static void sortDescending(double[] array) { 412 checkNotNull(array); 413 sortDescending(array, 0, array.length); 414 } 415 416 /** 417 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 418 * exclusive in descending order. 419 * 420 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 421 * all NaN values as equal and 0.0 as greater than -0.0. 422 * 423 * @since 23.1 424 */ 425 public static void sortDescending(double[] array, int fromIndex, int toIndex) { 426 checkNotNull(array); 427 checkPositionIndexes(fromIndex, toIndex, array.length); 428 Arrays.sort(array, fromIndex, toIndex); 429 reverse(array, fromIndex, toIndex); 430 } 431 432 /** 433 * Reverses the elements of {@code array}. This is equivalent to {@code 434 * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient. 435 * 436 * @since 23.1 437 */ 438 public static void reverse(double[] array) { 439 checkNotNull(array); 440 reverse(array, 0, array.length); 441 } 442 443 /** 444 * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 445 * exclusive. This is equivalent to {@code 446 * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be 447 * more efficient. 448 * 449 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 450 * {@code toIndex > fromIndex} 451 * @since 23.1 452 */ 453 public static void reverse(double[] array, int fromIndex, int toIndex) { 454 checkNotNull(array); 455 checkPositionIndexes(fromIndex, toIndex, array.length); 456 for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { 457 double tmp = array[i]; 458 array[i] = array[j]; 459 array[j] = tmp; 460 } 461 } 462 463 /** 464 * Returns an array containing each value of {@code collection}, converted to a {@code double} 465 * value in the manner of {@link Number#doubleValue}. 466 * 467 * <p>Elements are copied from the argument collection as if by {@code 468 * collection.toArray()}. Calling this method is as thread-safe as calling that method. 469 * 470 * @param collection a collection of {@code Number} instances 471 * @return an array containing the same values as {@code collection}, in the same order, converted 472 * to primitives 473 * @throws NullPointerException if {@code collection} or any of its elements is null 474 * @since 1.0 (parameter was {@code Collection<Double>} before 12.0) 475 */ 476 public static double[] toArray(Collection<? extends Number> collection) { 477 if (collection instanceof DoubleArrayAsList) { 478 return ((DoubleArrayAsList) collection).toDoubleArray(); 479 } 480 481 Object[] boxedArray = collection.toArray(); 482 int len = boxedArray.length; 483 double[] array = new double[len]; 484 for (int i = 0; i < len; i++) { 485 // checkNotNull for GWT (do not optimize) 486 array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue(); 487 } 488 return array; 489 } 490 491 /** 492 * Returns a fixed-size list backed by the specified array, similar to {@link 493 * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to 494 * set a value to {@code null} will result in a {@link NullPointerException}. 495 * 496 * <p>The returned list maintains the values, but not the identities, of {@code Double} objects 497 * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for 498 * the returned list is unspecified. 499 * 500 * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} 501 * is used as a parameter to any of its methods. 502 * 503 * <p><b>Note:</b> when possible, you should represent your data as an {@link 504 * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view. 505 * 506 * @param backingArray the array to back the list 507 * @return a list view of the array 508 */ 509 public static List<Double> asList(double... backingArray) { 510 if (backingArray.length == 0) { 511 return Collections.emptyList(); 512 } 513 return new DoubleArrayAsList(backingArray); 514 } 515 516 @GwtCompatible 517 private static class DoubleArrayAsList extends AbstractList<Double> 518 implements RandomAccess, Serializable { 519 final double[] array; 520 final int start; 521 final int end; 522 523 DoubleArrayAsList(double[] array) { 524 this(array, 0, array.length); 525 } 526 527 DoubleArrayAsList(double[] array, int start, int end) { 528 this.array = array; 529 this.start = start; 530 this.end = end; 531 } 532 533 @Override 534 public int size() { 535 return end - start; 536 } 537 538 @Override 539 public boolean isEmpty() { 540 return false; 541 } 542 543 @Override 544 public Double get(int index) { 545 checkElementIndex(index, size()); 546 return array[start + index]; 547 } 548 549 @Override 550 public boolean contains(Object target) { 551 // Overridden to prevent a ton of boxing 552 return (target instanceof Double) 553 && Doubles.indexOf(array, (Double) target, start, end) != -1; 554 } 555 556 @Override 557 public int indexOf(Object target) { 558 // Overridden to prevent a ton of boxing 559 if (target instanceof Double) { 560 int i = Doubles.indexOf(array, (Double) target, start, end); 561 if (i >= 0) { 562 return i - start; 563 } 564 } 565 return -1; 566 } 567 568 @Override 569 public int lastIndexOf(Object target) { 570 // Overridden to prevent a ton of boxing 571 if (target instanceof Double) { 572 int i = Doubles.lastIndexOf(array, (Double) target, start, end); 573 if (i >= 0) { 574 return i - start; 575 } 576 } 577 return -1; 578 } 579 580 @Override 581 public Double set(int index, Double element) { 582 checkElementIndex(index, size()); 583 double oldValue = array[start + index]; 584 // checkNotNull for GWT (do not optimize) 585 array[start + index] = checkNotNull(element); 586 return oldValue; 587 } 588 589 @Override 590 public List<Double> subList(int fromIndex, int toIndex) { 591 int size = size(); 592 checkPositionIndexes(fromIndex, toIndex, size); 593 if (fromIndex == toIndex) { 594 return Collections.emptyList(); 595 } 596 return new DoubleArrayAsList(array, start + fromIndex, start + toIndex); 597 } 598 599 @Override 600 public boolean equals(@Nullable Object object) { 601 if (object == this) { 602 return true; 603 } 604 if (object instanceof DoubleArrayAsList) { 605 DoubleArrayAsList that = (DoubleArrayAsList) object; 606 int size = size(); 607 if (that.size() != size) { 608 return false; 609 } 610 for (int i = 0; i < size; i++) { 611 if (array[start + i] != that.array[that.start + i]) { 612 return false; 613 } 614 } 615 return true; 616 } 617 return super.equals(object); 618 } 619 620 @Override 621 public int hashCode() { 622 int result = 1; 623 for (int i = start; i < end; i++) { 624 result = 31 * result + Doubles.hashCode(array[i]); 625 } 626 return result; 627 } 628 629 @Override 630 public String toString() { 631 StringBuilder builder = new StringBuilder(size() * 12); 632 builder.append('[').append(array[start]); 633 for (int i = start + 1; i < end; i++) { 634 builder.append(", ").append(array[i]); 635 } 636 return builder.append(']').toString(); 637 } 638 639 double[] toDoubleArray() { 640 return Arrays.copyOfRange(array, start, end); 641 } 642 643 private static final long serialVersionUID = 0; 644 } 645 646 /** 647 * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating 648 * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs 649 * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug. 650 */ 651 @GwtIncompatible // regular expressions 652 static final Pattern FLOATING_POINT_PATTERN = fpPattern(); 653 654 @GwtIncompatible // regular expressions 655 private static Pattern fpPattern() { 656 String decimal = "(?:\\d++(?:\\.\\d*+)?|\\.\\d++)"; 657 String completeDec = decimal + "(?:[eE][+-]?\\d++)?[fFdD]?"; 658 String hex = "(?:\\p{XDigit}++(?:\\.\\p{XDigit}*+)?|\\.\\p{XDigit}++)"; 659 String completeHex = "0[xX]" + hex + "[pP][+-]?\\d++[fFdD]?"; 660 String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")"; 661 return Pattern.compile(fpPattern); 662 } 663 664 /** 665 * Parses the specified string as a double-precision floating point value. The ASCII character 666 * {@code '-'} (<code>'\u002D'</code>) is recognized as the minus sign. 667 * 668 * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of 669 * throwing an exception if parsing fails. Valid inputs are exactly those accepted by 670 * {@link Double#valueOf(String)}, except that leading and trailing whitespace is not permitted. 671 * 672 * <p>This implementation is likely to be faster than {@code 673 * Double.parseDouble} if many failures are expected. 674 * 675 * @param string the string representation of a {@code double} value 676 * @return the floating point value represented by {@code string}, or {@code null} if 677 * {@code string} has a length of zero or cannot be parsed as a {@code double} value 678 * @since 14.0 679 */ 680 @Beta 681 @Nullable 682 @CheckForNull 683 @GwtIncompatible // regular expressions 684 public static Double tryParse(String string) { 685 if (FLOATING_POINT_PATTERN.matcher(string).matches()) { 686 // TODO(lowasser): could be potentially optimized, but only with 687 // extensive testing 688 try { 689 return Double.parseDouble(string); 690 } catch (NumberFormatException e) { 691 // Double.parseDouble has changed specs several times, so fall through 692 // gracefully 693 } 694 } 695 return null; 696 } 697}