001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.base.Objects; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.Maps; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.util.ArrayDeque; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.HashSet; 031import java.util.LinkedHashSet; 032import java.util.Map; 033import java.util.Queue; 034import java.util.Set; 035import javax.annotation.Nullable; 036 037/** 038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 039 * 040 * @author James Sexton 041 * @author Joshua O'Madadhain 042 * @since 20.0 043 */ 044@Beta 045public final class Graphs { 046 047 private Graphs() {} 048 049 // Graph query methods 050 051 /** 052 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 053 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 054 * and ending with the same node. 055 * 056 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 057 */ 058 public static <N> boolean hasCycle(Graph<N> graph) { 059 int numEdges = graph.edges().size(); 060 if (numEdges == 0) { 061 return false; // An edge-free graph is acyclic by definition. 062 } 063 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 064 return true; // Optimization for the undirected case: at least one cycle must exist. 065 } 066 067 Map<Object, NodeVisitState> visitedNodes = 068 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 069 for (N node : graph.nodes()) { 070 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 071 return true; 072 } 073 } 074 return false; 075 } 076 077 /** 078 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 079 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 080 * starting and ending with the same node. 081 * 082 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 083 */ 084 public static boolean hasCycle(Network<?, ?> network) { 085 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 086 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 087 if (!network.isDirected() 088 && network.allowsParallelEdges() 089 && network.edges().size() > network.asGraph().edges().size()) { 090 return true; 091 } 092 return hasCycle(network.asGraph()); 093 } 094 095 /** 096 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 097 * already visited (following only outgoing edges and without reusing edges), we know there's a 098 * cycle in the graph. 099 */ 100 private static <N> boolean subgraphHasCycle( 101 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N node, @Nullable N previousNode) { 102 NodeVisitState state = visitedNodes.get(node); 103 if (state == NodeVisitState.COMPLETE) { 104 return false; 105 } 106 if (state == NodeVisitState.PENDING) { 107 return true; 108 } 109 110 visitedNodes.put(node, NodeVisitState.PENDING); 111 for (N nextNode : graph.successors(node)) { 112 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 113 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 114 return true; 115 } 116 } 117 visitedNodes.put(node, NodeVisitState.COMPLETE); 118 return false; 119 } 120 121 /** 122 * Determines whether an edge has already been used during traversal. In the directed case a cycle 123 * is always detected before reusing an edge, so no special logic is required. In the undirected 124 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 125 * from B to A). 126 */ 127 private static boolean canTraverseWithoutReusingEdge( 128 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 129 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 130 return true; 131 } 132 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 133 // edges, so this traversal would require reusing the undirected AB edge. 134 return false; 135 } 136 137 /** 138 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 139 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 140 * Object) reachable} from node A. 141 * 142 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 143 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 144 * be updated after modifications to {@code graph}. 145 */ 146 // TODO(b/31438252): Consider potential optimizations for this algorithm. 147 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 148 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 149 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 150 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 151 152 if (graph.isDirected()) { 153 // Note: works for both directed and undirected graphs, but we only use in the directed case. 154 for (N node : graph.nodes()) { 155 for (N reachableNode : reachableNodes(graph, node)) { 156 transitiveClosure.putEdge(node, reachableNode); 157 } 158 } 159 } else { 160 // An optimization for the undirected case: for every node B reachable from node A, 161 // node A and node B have the same reachability set. 162 Set<N> visitedNodes = new HashSet<N>(); 163 for (N node : graph.nodes()) { 164 if (!visitedNodes.contains(node)) { 165 Set<N> reachableNodes = reachableNodes(graph, node); 166 visitedNodes.addAll(reachableNodes); 167 int pairwiseMatch = 1; // start at 1 to include self-loops 168 for (N nodeU : reachableNodes) { 169 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 170 transitiveClosure.putEdge(nodeU, nodeV); 171 } 172 } 173 } 174 } 175 } 176 177 return transitiveClosure; 178 } 179 180 /** 181 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 182 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 183 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 184 * 185 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 186 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 187 * not be updated after modifications to {@code graph}. 188 * 189 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 190 */ 191 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 192 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 193 Set<N> visitedNodes = new LinkedHashSet<N>(); 194 Queue<N> queuedNodes = new ArrayDeque<N>(); 195 visitedNodes.add(node); 196 queuedNodes.add(node); 197 // Perform a breadth-first traversal rooted at the input node. 198 while (!queuedNodes.isEmpty()) { 199 N currentNode = queuedNodes.remove(); 200 for (N successor : graph.successors(currentNode)) { 201 if (visitedNodes.add(successor)) { 202 queuedNodes.add(successor); 203 } 204 } 205 } 206 return Collections.unmodifiableSet(visitedNodes); 207 } 208 209 /** 210 * @deprecated Use {@link Graph#equals(Object)} instead. This method will be removed in late 2017. 211 */ 212 // TODO(user): Delete this method. 213 @Deprecated 214 public static boolean equivalent(@Nullable Graph<?> graphA, @Nullable Graph<?> graphB) { 215 return Objects.equal(graphA, graphB); 216 } 217 218 /** 219 * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method will be removed in late 220 * 2017. 221 */ 222 // TODO(user): Delete this method. 223 @Deprecated 224 public static boolean equivalent( 225 @Nullable ValueGraph<?, ?> graphA, @Nullable ValueGraph<?, ?> graphB) { 226 return Objects.equal(graphA, graphB); 227 } 228 229 /** 230 * @deprecated Use {@link Network#equals(Object)} instead. This method will be removed in late 231 * 2017. 232 */ 233 // TODO(user): Delete this method. 234 @Deprecated 235 public static boolean equivalent( 236 @Nullable Network<?, ?> networkA, @Nullable Network<?, ?> networkB) { 237 return Objects.equal(networkA, networkB); 238 } 239 240 // Graph mutation methods 241 242 // Graph view methods 243 244 /** 245 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 246 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 247 */ 248 public static <N> Graph<N> transpose(Graph<N> graph) { 249 if (!graph.isDirected()) { 250 return graph; // the transpose of an undirected graph is an identical graph 251 } 252 253 if (graph instanceof TransposedGraph) { 254 return ((TransposedGraph<N>) graph).graph; 255 } 256 257 return new TransposedGraph<N>(graph); 258 } 259 260 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 261 // AbstractGraph) derives its behavior from calling successors(). 262 private static class TransposedGraph<N> extends ForwardingGraph<N> { 263 private final Graph<N> graph; 264 265 TransposedGraph(Graph<N> graph) { 266 this.graph = graph; 267 } 268 269 @Override 270 protected Graph<N> delegate() { 271 return graph; 272 } 273 274 @Override 275 public Set<N> predecessors(N node) { 276 return delegate().successors(node); // transpose 277 } 278 279 @Override 280 public Set<N> successors(N node) { 281 return delegate().predecessors(node); // transpose 282 } 283 284 @Override 285 public int inDegree(N node) { 286 return delegate().outDegree(node); // transpose 287 } 288 289 @Override 290 public int outDegree(N node) { 291 return delegate().inDegree(node); // transpose 292 } 293 294 @Override 295 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 296 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 297 } 298 } 299 300 /** 301 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 302 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 303 */ 304 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 305 if (!graph.isDirected()) { 306 return graph; // the transpose of an undirected graph is an identical graph 307 } 308 309 if (graph instanceof TransposedValueGraph) { 310 return ((TransposedValueGraph<N, V>) graph).graph; 311 } 312 313 return new TransposedValueGraph<>(graph); 314 } 315 316 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 317 // AbstractValueGraph) derives its behavior from calling successors(). 318 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 319 private final ValueGraph<N, V> graph; 320 321 TransposedValueGraph(ValueGraph<N, V> graph) { 322 this.graph = graph; 323 } 324 325 @Override 326 protected ValueGraph<N, V> delegate() { 327 return graph; 328 } 329 330 @Override 331 public Set<N> predecessors(N node) { 332 return delegate().successors(node); // transpose 333 } 334 335 @Override 336 public Set<N> successors(N node) { 337 return delegate().predecessors(node); // transpose 338 } 339 340 @Override 341 public int inDegree(N node) { 342 return delegate().outDegree(node); // transpose 343 } 344 345 @Override 346 public int outDegree(N node) { 347 return delegate().inDegree(node); // transpose 348 } 349 350 @Override 351 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 352 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 353 } 354 355 @Override 356 @Nullable 357 public V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) { 358 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 359 } 360 } 361 362 /** 363 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 364 * properties remain intact, and further updates to {@code network} will be reflected in the view. 365 */ 366 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 367 if (!network.isDirected()) { 368 return network; // the transpose of an undirected network is an identical network 369 } 370 371 if (network instanceof TransposedNetwork) { 372 return ((TransposedNetwork<N, E>) network).network; 373 } 374 375 return new TransposedNetwork<>(network); 376 } 377 378 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 379 private final Network<N, E> network; 380 381 TransposedNetwork(Network<N, E> network) { 382 this.network = network; 383 } 384 385 @Override 386 protected Network<N, E> delegate() { 387 return network; 388 } 389 390 @Override 391 public Set<N> predecessors(N node) { 392 return delegate().successors(node); // transpose 393 } 394 395 @Override 396 public Set<N> successors(N node) { 397 return delegate().predecessors(node); // transpose 398 } 399 400 @Override 401 public int inDegree(N node) { 402 return delegate().outDegree(node); // transpose 403 } 404 405 @Override 406 public int outDegree(N node) { 407 return delegate().inDegree(node); // transpose 408 } 409 410 @Override 411 public Set<E> inEdges(N node) { 412 return delegate().outEdges(node); // transpose 413 } 414 415 @Override 416 public Set<E> outEdges(N node) { 417 return delegate().inEdges(node); // transpose 418 } 419 420 @Override 421 public EndpointPair<N> incidentNodes(E edge) { 422 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 423 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 424 } 425 426 @Override 427 public Set<E> edgesConnecting(N nodeU, N nodeV) { 428 return delegate().edgesConnecting(nodeV, nodeU); // transpose 429 } 430 431 @Override 432 public E edgeConnectingOrNull(N nodeU, N nodeV) { 433 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 434 } 435 436 @Override 437 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 438 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 439 } 440 } 441 442 // Graph copy methods 443 444 /** 445 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 446 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 447 * from {@code graph} for which both nodes are contained by {@code nodes}. 448 * 449 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 450 */ 451 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 452 MutableGraph<N> subgraph = (nodes instanceof Collection) 453 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 454 : GraphBuilder.from(graph).build(); 455 for (N node : nodes) { 456 subgraph.addNode(node); 457 } 458 for (N node : subgraph.nodes()) { 459 for (N successorNode : graph.successors(node)) { 460 if (subgraph.nodes().contains(successorNode)) { 461 subgraph.putEdge(node, successorNode); 462 } 463 } 464 } 465 return subgraph; 466 } 467 468 /** 469 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 470 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 471 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 472 * nodes}. 473 * 474 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 475 */ 476 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 477 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 478 MutableValueGraph<N, V> subgraph = (nodes instanceof Collection) 479 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 480 : ValueGraphBuilder.from(graph).build(); 481 for (N node : nodes) { 482 subgraph.addNode(node); 483 } 484 for (N node : subgraph.nodes()) { 485 for (N successorNode : graph.successors(node)) { 486 if (subgraph.nodes().contains(successorNode)) { 487 subgraph.putEdgeValue( 488 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 489 } 490 } 491 } 492 return subgraph; 493 } 494 495 /** 496 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 497 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 498 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 499 * both contained by {@code nodes}. 500 * 501 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 502 */ 503 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 504 Network<N, E> network, Iterable<? extends N> nodes) { 505 MutableNetwork<N, E> subgraph = (nodes instanceof Collection) 506 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 507 : NetworkBuilder.from(network).build(); 508 for (N node : nodes) { 509 subgraph.addNode(node); 510 } 511 for (N node : subgraph.nodes()) { 512 for (E edge : network.outEdges(node)) { 513 N successorNode = network.incidentNodes(edge).adjacentNode(node); 514 if (subgraph.nodes().contains(successorNode)) { 515 subgraph.addEdge(node, successorNode, edge); 516 } 517 } 518 } 519 return subgraph; 520 } 521 522 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 523 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 524 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 525 for (N node : graph.nodes()) { 526 copy.addNode(node); 527 } 528 for (EndpointPair<N> edge : graph.edges()) { 529 copy.putEdge(edge.nodeU(), edge.nodeV()); 530 } 531 return copy; 532 } 533 534 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 535 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 536 MutableValueGraph<N, V> copy = 537 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 538 for (N node : graph.nodes()) { 539 copy.addNode(node); 540 } 541 for (EndpointPair<N> edge : graph.edges()) { 542 copy.putEdgeValue( 543 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 544 } 545 return copy; 546 } 547 548 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 549 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 550 MutableNetwork<N, E> copy = 551 NetworkBuilder.from(network) 552 .expectedNodeCount(network.nodes().size()) 553 .expectedEdgeCount(network.edges().size()) 554 .build(); 555 for (N node : network.nodes()) { 556 copy.addNode(node); 557 } 558 for (E edge : network.edges()) { 559 EndpointPair<N> endpointPair = network.incidentNodes(edge); 560 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 561 } 562 return copy; 563 } 564 565 @CanIgnoreReturnValue 566 static int checkNonNegative(int value) { 567 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 568 return value; 569 } 570 571 @CanIgnoreReturnValue 572 static int checkPositive(int value) { 573 checkArgument(value > 0, "Not true that %s is positive.", value); 574 return value; 575 } 576 577 @CanIgnoreReturnValue 578 static long checkNonNegative(long value) { 579 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 580 return value; 581 } 582 583 @CanIgnoreReturnValue 584 static long checkPositive(long value) { 585 checkArgument(value > 0, "Not true that %s is positive.", value); 586 return value; 587 } 588 589 /** 590 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 591 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 592 * been already explored. Any node that has not been explored will not have a state at all. 593 */ 594 private enum NodeVisitState { 595 PENDING, 596 COMPLETE 597 } 598}