001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.collect.Collections2.FilteredCollection;
029import com.google.common.math.IntMath;
030import com.google.errorprone.annotations.CanIgnoreReturnValue;
031import java.io.Serializable;
032import java.util.AbstractSet;
033import java.util.Arrays;
034import java.util.BitSet;
035import java.util.Collection;
036import java.util.Collections;
037import java.util.Comparator;
038import java.util.EnumSet;
039import java.util.HashSet;
040import java.util.Iterator;
041import java.util.LinkedHashSet;
042import java.util.List;
043import java.util.Map;
044import java.util.NavigableSet;
045import java.util.NoSuchElementException;
046import java.util.Set;
047import java.util.SortedSet;
048import java.util.TreeSet;
049import java.util.concurrent.ConcurrentHashMap;
050import java.util.concurrent.CopyOnWriteArraySet;
051import javax.annotation.Nullable;
052
053/**
054 * Static utility methods pertaining to {@link Set} instances. Also see this
055 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}.
056 *
057 * <p>See the Guava User Guide article on <a href=
058 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">
059 * {@code Sets}</a>.
060 *
061 * @author Kevin Bourrillion
062 * @author Jared Levy
063 * @author Chris Povirk
064 * @since 2.0
065 */
066@GwtCompatible(emulated = true)
067public final class Sets {
068  private Sets() {}
069
070  /**
071   * {@link AbstractSet} substitute without the potentially-quadratic
072   * {@code removeAll} implementation.
073   */
074  abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
075    @Override
076    public boolean removeAll(Collection<?> c) {
077      return removeAllImpl(this, c);
078    }
079
080    @Override
081    public boolean retainAll(Collection<?> c) {
082      return super.retainAll(checkNotNull(c)); // GWT compatibility
083    }
084  }
085
086  /**
087   * Returns an immutable set instance containing the given enum elements.
088   * Internally, the returned set will be backed by an {@link EnumSet}.
089   *
090   * <p>The iteration order of the returned set follows the enum's iteration
091   * order, not the order in which the elements are provided to the method.
092   *
093   * @param anElement one of the elements the set should contain
094   * @param otherElements the rest of the elements the set should contain
095   * @return an immutable set containing those elements, minus duplicates
096   */
097  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
098  @GwtCompatible(serializable = true)
099  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
100      E anElement, E... otherElements) {
101    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
102  }
103
104  /**
105   * Returns an immutable set instance containing the given enum elements.
106   * Internally, the returned set will be backed by an {@link EnumSet}.
107   *
108   * <p>The iteration order of the returned set follows the enum's iteration
109   * order, not the order in which the elements appear in the given collection.
110   *
111   * @param elements the elements, all of the same {@code enum} type, that the
112   *     set should contain
113   * @return an immutable set containing those elements, minus duplicates
114   */
115  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
116  @GwtCompatible(serializable = true)
117  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
118    if (elements instanceof ImmutableEnumSet) {
119      return (ImmutableEnumSet<E>) elements;
120    } else if (elements instanceof Collection) {
121      Collection<E> collection = (Collection<E>) elements;
122      if (collection.isEmpty()) {
123        return ImmutableSet.of();
124      } else {
125        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
126      }
127    } else {
128      Iterator<E> itr = elements.iterator();
129      if (itr.hasNext()) {
130        EnumSet<E> enumSet = EnumSet.of(itr.next());
131        Iterators.addAll(enumSet, itr);
132        return ImmutableEnumSet.asImmutable(enumSet);
133      } else {
134        return ImmutableSet.of();
135      }
136    }
137  }
138
139  /**
140   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
141   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
142   * accepts non-{@code Collection} iterables and empty iterables.
143   */
144  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
145      Iterable<E> iterable, Class<E> elementType) {
146    EnumSet<E> set = EnumSet.noneOf(elementType);
147    Iterables.addAll(set, iterable);
148    return set;
149  }
150
151  // HashSet
152
153  /**
154   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
155   *
156   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If
157   * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly
158   * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to
159   * get deterministic iteration behavior.
160   *
161   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
162   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
163   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
164   */
165  public static <E> HashSet<E> newHashSet() {
166    return new HashSet<E>();
167  }
168
169  /**
170   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
171   *
172   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
173   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
174   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
175   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
176   * deterministic iteration behavior.
177   *
178   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
179   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
180   * This method is not actually very useful and will likely be deprecated in the future.
181   */
182  public static <E> HashSet<E> newHashSet(E... elements) {
183    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
184    Collections.addAll(set, elements);
185    return set;
186  }
187
188  /**
189   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
190   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
191   * is what most users want and expect it to do.
192   *
193   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
194   *
195   * @param expectedSize the number of elements you expect to add to the returned set
196   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
197   *     without resizing
198   * @throws IllegalArgumentException if {@code expectedSize} is negative
199   */
200  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
201    return new HashSet<E>(Maps.capacity(expectedSize));
202  }
203
204  /**
205   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
206   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
207   * Iterables#addAll}.
208   *
209   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
210   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
211   * FluentIterable} and call {@code elements.toSet()}.)
212   *
213   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
214   * instead.
215   *
216   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
217   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
218   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
219   *
220   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
221   */
222  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
223    return (elements instanceof Collection)
224        ? new HashSet<E>(Collections2.cast(elements))
225        : newHashSet(elements.iterator());
226  }
227
228  /**
229   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
230   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
231   *
232   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
233   * ImmutableSet#copyOf(Iterator)} instead.
234   *
235   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
236   * instead.
237   *
238   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
239   */
240  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
241    HashSet<E> set = newHashSet();
242    Iterators.addAll(set, elements);
243    return set;
244  }
245
246  /**
247   * Creates a thread-safe set backed by a hash map. The set is backed by a
248   * {@link ConcurrentHashMap} instance, and thus carries the same concurrency
249   * guarantees.
250   *
251   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be
252   * used as an element. The set is serializable.
253   *
254   * @return a new, empty thread-safe {@code Set}
255   * @since 15.0
256   */
257  public static <E> Set<E> newConcurrentHashSet() {
258    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
259  }
260
261  /**
262   * Creates a thread-safe set backed by a hash map and containing the given
263   * elements. The set is backed by a {@link ConcurrentHashMap} instance, and
264   * thus carries the same concurrency guarantees.
265   *
266   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be
267   * used as an element. The set is serializable.
268   *
269   * @param elements the elements that the set should contain
270   * @return a new thread-safe set containing those elements (minus duplicates)
271   * @throws NullPointerException if {@code elements} or any of its contents is
272   *      null
273   * @since 15.0
274   */
275  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
276    Set<E> set = newConcurrentHashSet();
277    Iterables.addAll(set, elements);
278    return set;
279  }
280
281  // LinkedHashSet
282
283  /**
284   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
285   *
286   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
287   *
288   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
289   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
290   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
291   *
292   * @return a new, empty {@code LinkedHashSet}
293   */
294  public static <E> LinkedHashSet<E> newLinkedHashSet() {
295    return new LinkedHashSet<E>();
296  }
297
298  /**
299   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
300   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
301   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
302   * that the method isn't inadvertently <i>oversizing</i> the returned set.
303   *
304   * @param expectedSize the number of elements you expect to add to the returned set
305   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
306   *         elements without resizing
307   * @throws IllegalArgumentException if {@code expectedSize} is negative
308   * @since 11.0
309   */
310  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
311    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
312  }
313
314  /**
315   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
316   *
317   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
318   * ImmutableSet#copyOf(Iterable)} instead.
319   *
320   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
321   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
322   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
323   *
324   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
325   *
326   * @param elements the elements that the set should contain, in order
327   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
328   */
329  public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
330    if (elements instanceof Collection) {
331      return new LinkedHashSet<E>(Collections2.cast(elements));
332    }
333    LinkedHashSet<E> set = newLinkedHashSet();
334    Iterables.addAll(set, elements);
335    return set;
336  }
337
338  // TreeSet
339
340  /**
341   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
342   * its elements.
343   *
344   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
345   *
346   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
347   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
348   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
349   *
350   * @return a new, empty {@code TreeSet}
351   */
352  public static <E extends Comparable> TreeSet<E> newTreeSet() {
353    return new TreeSet<E>();
354  }
355
356  /**
357   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
358   * natural ordering.
359   *
360   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
361   * instead.
362   *
363   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
364   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
365   * TreeSet} with that comparator.
366   *
367   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
368   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
369   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
370   *
371   * <p>This method is just a small convenience for creating an empty set and then calling {@link
372   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
373   *
374   * @param elements the elements that the set should contain
375   * @return a new {@code TreeSet} containing those elements (minus duplicates)
376   */
377  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
378    TreeSet<E> set = newTreeSet();
379    Iterables.addAll(set, elements);
380    return set;
381  }
382
383  /**
384   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
385   *
386   * <p><b>Note:</b> if mutability is not required, use {@code
387   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
388   *
389   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
390   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
391   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
392   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
393   * factory rejects null. Clean your code accordingly.
394   *
395   * @param comparator the comparator to use to sort the set
396   * @return a new, empty {@code TreeSet}
397   * @throws NullPointerException if {@code comparator} is null
398   */
399  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
400    return new TreeSet<E>(checkNotNull(comparator));
401  }
402
403  /**
404   * Creates an empty {@code Set} that uses identity to determine equality. It
405   * compares object references, instead of calling {@code equals}, to
406   * determine whether a provided object matches an element in the set. For
407   * example, {@code contains} returns {@code false} when passed an object that
408   * equals a set member, but isn't the same instance. This behavior is similar
409   * to the way {@code IdentityHashMap} handles key lookups.
410   *
411   * @since 8.0
412   */
413  public static <E> Set<E> newIdentityHashSet() {
414    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
415  }
416
417  /**
418   * Creates an empty {@code CopyOnWriteArraySet} instance.
419   *
420   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use
421   * {@link Collections#emptySet} instead.
422   *
423   * @return a new, empty {@code CopyOnWriteArraySet}
424   * @since 12.0
425   */
426  @GwtIncompatible // CopyOnWriteArraySet
427  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
428    return new CopyOnWriteArraySet<E>();
429  }
430
431  /**
432   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
433   *
434   * @param elements the elements that the set should contain, in order
435   * @return a new {@code CopyOnWriteArraySet} containing those elements
436   * @since 12.0
437   */
438  @GwtIncompatible // CopyOnWriteArraySet
439  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
440    // We copy elements to an ArrayList first, rather than incurring the
441    // quadratic cost of adding them to the COWAS directly.
442    Collection<? extends E> elementsCollection =
443        (elements instanceof Collection)
444            ? Collections2.cast(elements)
445            : Lists.newArrayList(elements);
446    return new CopyOnWriteArraySet<E>(elementsCollection);
447  }
448
449  /**
450   * Creates an {@code EnumSet} consisting of all enum values that are not in
451   * the specified collection. If the collection is an {@link EnumSet}, this
452   * method has the same behavior as {@link EnumSet#complementOf}. Otherwise,
453   * the specified collection must contain at least one element, in order to
454   * determine the element type. If the collection could be empty, use
455   * {@link #complementOf(Collection, Class)} instead of this method.
456   *
457   * @param collection the collection whose complement should be stored in the
458   *     enum set
459   * @return a new, modifiable {@code EnumSet} containing all values of the enum
460   *     that aren't present in the given collection
461   * @throws IllegalArgumentException if {@code collection} is not an
462   *     {@code EnumSet} instance and contains no elements
463   */
464  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
465    if (collection instanceof EnumSet) {
466      return EnumSet.complementOf((EnumSet<E>) collection);
467    }
468    checkArgument(
469        !collection.isEmpty(), "collection is empty; use the other version of this method");
470    Class<E> type = collection.iterator().next().getDeclaringClass();
471    return makeComplementByHand(collection, type);
472  }
473
474  /**
475   * Creates an {@code EnumSet} consisting of all enum values that are not in
476   * the specified collection. This is equivalent to
477   * {@link EnumSet#complementOf}, but can act on any input collection, as long
478   * as the elements are of enum type.
479   *
480   * @param collection the collection whose complement should be stored in the
481   *     {@code EnumSet}
482   * @param type the type of the elements in the set
483   * @return a new, modifiable {@code EnumSet} initially containing all the
484   *     values of the enum not present in the given collection
485   */
486  public static <E extends Enum<E>> EnumSet<E> complementOf(
487      Collection<E> collection, Class<E> type) {
488    checkNotNull(collection);
489    return (collection instanceof EnumSet)
490        ? EnumSet.complementOf((EnumSet<E>) collection)
491        : makeComplementByHand(collection, type);
492  }
493
494  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
495      Collection<E> collection, Class<E> type) {
496    EnumSet<E> result = EnumSet.allOf(type);
497    result.removeAll(collection);
498    return result;
499  }
500
501  /**
502   * Returns a set backed by the specified map. The resulting set displays
503   * the same ordering, concurrency, and performance characteristics as the
504   * backing map. In essence, this factory method provides a {@link Set}
505   * implementation corresponding to any {@link Map} implementation. There is no
506   * need to use this method on a {@link Map} implementation that already has a
507   * corresponding {@link Set} implementation (such as {@link java.util.HashMap}
508   * or {@link java.util.TreeMap}).
509   *
510   * <p>Each method invocation on the set returned by this method results in
511   * exactly one method invocation on the backing map or its {@code keySet}
512   * view, with one exception. The {@code addAll} method is implemented as a
513   * sequence of {@code put} invocations on the backing map.
514   *
515   * <p>The specified map must be empty at the time this method is invoked,
516   * and should not be accessed directly after this method returns. These
517   * conditions are ensured if the map is created empty, passed directly
518   * to this method, and no reference to the map is retained, as illustrated
519   * in the following code fragment: <pre>  {@code
520   *
521   *   Set<Object> identityHashSet = Sets.newSetFromMap(
522   *       new IdentityHashMap<Object, Boolean>());}</pre>
523   *
524   * <p>The returned set is serializable if the backing map is.
525   *
526   * @param map the backing map
527   * @return the set backed by the map
528   * @throws IllegalArgumentException if {@code map} is not empty
529   * @deprecated Use {@link Collections#newSetFromMap} instead.
530   */
531  @Deprecated
532  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
533    return Collections.newSetFromMap(map);
534  }
535
536  /**
537   * An unmodifiable view of a set which may be backed by other sets; this view
538   * will change as the backing sets do. Contains methods to copy the data into
539   * a new set which will then remain stable. There is usually no reason to
540   * retain a reference of type {@code SetView}; typically, you either use it
541   * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
542   * {@link #copyInto} and forget the {@code SetView} itself.
543   *
544   * @since 2.0
545   */
546  public abstract static class SetView<E> extends AbstractSet<E> {
547    private SetView() {} // no subclasses but our own
548
549    /**
550     * Returns an immutable copy of the current contents of this set view.
551     * Does not support null elements.
552     *
553     * <p><b>Warning:</b> this may have unexpected results if a backing set of
554     * this view uses a nonstandard notion of equivalence, for example if it is
555     * a {@link TreeSet} using a comparator that is inconsistent with {@link
556     * Object#equals(Object)}.
557     */
558    public ImmutableSet<E> immutableCopy() {
559      return ImmutableSet.copyOf(this);
560    }
561
562    /**
563     * Copies the current contents of this set view into an existing set. This
564     * method has equivalent behavior to {@code set.addAll(this)}, assuming that
565     * all the sets involved are based on the same notion of equivalence.
566     *
567     * @return a reference to {@code set}, for convenience
568     */
569    // Note: S should logically extend Set<? super E> but can't due to either
570    // some javac bug or some weirdness in the spec, not sure which.
571    @CanIgnoreReturnValue
572    public <S extends Set<E>> S copyInto(S set) {
573      set.addAll(this);
574      return set;
575    }
576
577    /**
578     * Guaranteed to throw an exception and leave the collection unmodified.
579     *
580     * @throws UnsupportedOperationException always
581     * @deprecated Unsupported operation.
582     */
583    @CanIgnoreReturnValue
584    @Deprecated
585    @Override
586    public final boolean add(E e) {
587      throw new UnsupportedOperationException();
588    }
589
590    /**
591     * Guaranteed to throw an exception and leave the collection unmodified.
592     *
593     * @throws UnsupportedOperationException always
594     * @deprecated Unsupported operation.
595     */
596    @CanIgnoreReturnValue
597    @Deprecated
598    @Override
599    public final boolean remove(Object object) {
600      throw new UnsupportedOperationException();
601    }
602
603    /**
604     * Guaranteed to throw an exception and leave the collection unmodified.
605     *
606     * @throws UnsupportedOperationException always
607     * @deprecated Unsupported operation.
608     */
609    @CanIgnoreReturnValue
610    @Deprecated
611    @Override
612    public final boolean addAll(Collection<? extends E> newElements) {
613      throw new UnsupportedOperationException();
614    }
615
616    /**
617     * Guaranteed to throw an exception and leave the collection unmodified.
618     *
619     * @throws UnsupportedOperationException always
620     * @deprecated Unsupported operation.
621     */
622    @CanIgnoreReturnValue
623    @Deprecated
624    @Override
625    public final boolean removeAll(Collection<?> oldElements) {
626      throw new UnsupportedOperationException();
627    }
628
629    /**
630     * Guaranteed to throw an exception and leave the collection unmodified.
631     *
632     * @throws UnsupportedOperationException always
633     * @deprecated Unsupported operation.
634     */
635    @CanIgnoreReturnValue
636    @Deprecated
637    @Override
638    public final boolean retainAll(Collection<?> elementsToKeep) {
639      throw new UnsupportedOperationException();
640    }
641
642    /**
643     * Guaranteed to throw an exception and leave the collection unmodified.
644     *
645     * @throws UnsupportedOperationException always
646     * @deprecated Unsupported operation.
647     */
648    @Deprecated
649    @Override
650    public final void clear() {
651      throw new UnsupportedOperationException();
652    }
653
654    /**
655     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
656     *
657     * @since 20.0 (present with return type {@link Iterator} since 2.0)
658     */
659    @Override
660    public abstract UnmodifiableIterator<E> iterator();
661  }
662
663  /**
664   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned
665   * set contains all elements that are contained in either backing set.
666   * Iterating over the returned set iterates first over all the elements of
667   * {@code set1}, then over each element of {@code set2}, in order, that is not
668   * contained in {@code set1}.
669   *
670   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on
671   * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and
672   * the {@link Map#keySet} of an {@code IdentityHashMap} all are).
673   */
674  public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
675    checkNotNull(set1, "set1");
676    checkNotNull(set2, "set2");
677
678    return new SetView<E>() {
679      @Override
680      public int size() {
681        int size = set1.size();
682        for (E e : set2) {
683          if (!set1.contains(e)) {
684            size++;
685          }
686        }
687        return size;
688      }
689
690      @Override
691      public boolean isEmpty() {
692        return set1.isEmpty() && set2.isEmpty();
693      }
694
695      @Override
696      public UnmodifiableIterator<E> iterator() {
697        return new AbstractIterator<E>() {
698          final Iterator<? extends E> itr1 = set1.iterator();
699          final Iterator<? extends E> itr2 = set2.iterator();
700
701          @Override
702          protected E computeNext() {
703            if (itr1.hasNext()) {
704              return itr1.next();
705            }
706            while (itr2.hasNext()) {
707              E e = itr2.next();
708              if (!set1.contains(e)) {
709                return e;
710              }
711            }
712            return endOfData();
713          }
714        };
715      }
716
717      @Override
718      public boolean contains(Object object) {
719        return set1.contains(object) || set2.contains(object);
720      }
721
722      @Override
723      public <S extends Set<E>> S copyInto(S set) {
724        set.addAll(set1);
725        set.addAll(set2);
726        return set;
727      }
728
729      @Override
730      public ImmutableSet<E> immutableCopy() {
731        return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
732      }
733    };
734  }
735
736  /**
737   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The
738   * returned set contains all elements that are contained by both backing sets.
739   * The iteration order of the returned set matches that of {@code set1}.
740   *
741   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
742   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
743   * and the keySet of an {@code IdentityHashMap} all are).
744   *
745   * <p><b>Note:</b> The returned view performs slightly better when {@code
746   * set1} is the smaller of the two sets. If you have reason to believe one of
747   * your sets will generally be smaller than the other, pass it first.
748   * Unfortunately, since this method sets the generic type of the returned set
749   * based on the type of the first set passed, this could in rare cases force
750   * you to make a cast, for example: <pre>   {@code
751   *
752   *   Set<Object> aFewBadObjects = ...
753   *   Set<String> manyBadStrings = ...
754   *
755   *   // impossible for a non-String to be in the intersection
756   *   SuppressWarnings("unchecked")
757   *   Set<String> badStrings = (Set) Sets.intersection(
758   *       aFewBadObjects, manyBadStrings);}</pre>
759   *
760   * <p>This is unfortunate, but should come up only very rarely.
761   */
762  public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
763    checkNotNull(set1, "set1");
764    checkNotNull(set2, "set2");
765
766    return new SetView<E>() {
767      @Override
768      public UnmodifiableIterator<E> iterator() {
769        return new AbstractIterator<E>() {
770          final Iterator<E> itr = set1.iterator();
771
772          @Override
773          protected E computeNext() {
774            while (itr.hasNext()) {
775              E e = itr.next();
776              if (set2.contains(e)) {
777                return e;
778              }
779            }
780            return endOfData();
781          }
782        };
783      }
784
785      @Override
786      public int size() {
787        int size = 0;
788        for (E e : set1) {
789          if (set2.contains(e)) {
790            size++;
791          }
792        }
793        return size;
794      }
795
796      @Override
797      public boolean isEmpty() {
798        return Collections.disjoint(set1, set2);
799      }
800
801      @Override
802      public boolean contains(Object object) {
803        return set1.contains(object) && set2.contains(object);
804      }
805
806      @Override
807      public boolean containsAll(Collection<?> collection) {
808        return set1.containsAll(collection) && set2.containsAll(collection);
809      }
810    };
811  }
812
813  /**
814   * Returns an unmodifiable <b>view</b> of the difference of two sets. The
815   * returned set contains all elements that are contained by {@code set1} and
816   * not contained by {@code set2}. {@code set2} may also contain elements not
817   * present in {@code set1}; these are simply ignored. The iteration order of
818   * the returned set matches that of {@code set1}.
819   *
820   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
821   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
822   * and the keySet of an {@code IdentityHashMap} all are).
823   */
824  public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
825    checkNotNull(set1, "set1");
826    checkNotNull(set2, "set2");
827
828    return new SetView<E>() {
829      @Override
830      public UnmodifiableIterator<E> iterator() {
831        return new AbstractIterator<E>(){
832          final Iterator<E> itr = set1.iterator();
833          @Override
834          protected E computeNext() {
835            while (itr.hasNext()) {
836              E e = itr.next();
837              if (!set2.contains(e)) {
838                return e;
839              }
840            }
841            return endOfData();
842          }
843        };
844      }
845
846      @Override
847      public int size() {
848        int size = 0;
849        for (E e : set1) {
850          if (!set2.contains(e)) {
851            size++;
852          }
853        }
854        return size;
855      }
856
857      @Override
858      public boolean isEmpty() {
859        return set2.containsAll(set1);
860      }
861
862      @Override
863      public boolean contains(Object element) {
864        return set1.contains(element) && !set2.contains(element);
865      }
866    };
867  }
868
869  /**
870   * Returns an unmodifiable <b>view</b> of the symmetric difference of two
871   * sets. The returned set contains all elements that are contained in either
872   * {@code set1} or {@code set2} but not in both. The iteration order of the
873   * returned set is undefined.
874   *
875   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
876   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
877   * and the keySet of an {@code IdentityHashMap} all are).
878   *
879   * @since 3.0
880   */
881  public static <E> SetView<E> symmetricDifference(
882      final Set<? extends E> set1, final Set<? extends E> set2) {
883    checkNotNull(set1, "set1");
884    checkNotNull(set2, "set2");
885
886    return new SetView<E>() {
887      @Override
888      public UnmodifiableIterator<E> iterator() {
889        final Iterator<? extends E> itr1 = set1.iterator();
890        final Iterator<? extends E> itr2 = set2.iterator();
891        return new AbstractIterator<E>() {
892          @Override
893          public E computeNext() {
894            while (itr1.hasNext()) {
895              E elem1 = itr1.next();
896              if (!set2.contains(elem1)) {
897                return elem1;
898              }
899            }
900            while (itr2.hasNext()) {
901              E elem2 = itr2.next();
902              if (!set1.contains(elem2)) {
903                return elem2;
904              }
905            }
906            return endOfData();
907          }
908        };
909      }
910
911      @Override
912      public int size() {
913        int size = 0;
914        for (E e : set1) {
915          if (!set2.contains(e)) {
916            size++;
917          }
918        }
919        for (E e : set2) {
920          if (!set1.contains(e)) {
921            size++;
922          }
923        }
924        return size;
925      }
926
927      @Override
928      public boolean isEmpty() {
929        return set1.equals(set2);
930      }
931
932      @Override
933      public boolean contains(Object element) {
934        return set1.contains(element) ^ set2.contains(element);
935      }
936    };
937  }
938
939  /**
940   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
941   * returned set is a live view of {@code unfiltered}; changes to one affect
942   * the other.
943   *
944   * <p>The resulting set's iterator does not support {@code remove()}, but all
945   * other set methods are supported. When given an element that doesn't satisfy
946   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
947   * an {@link IllegalArgumentException}. When methods such as {@code
948   * removeAll()} and {@code clear()} are called on the filtered set, only
949   * elements that satisfy the filter will be removed from the underlying set.
950   *
951   * <p>The returned set isn't threadsafe or serializable, even if
952   * {@code unfiltered} is.
953   *
954   * <p>Many of the filtered set's methods, such as {@code size()}, iterate
955   * across every element in the underlying set and determine which elements
956   * satisfy the filter. When a live view is <i>not</i> needed, it may be faster
957   * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy.
958   *
959   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
960   * as documented at {@link Predicate#apply}. Do not provide a predicate such
961   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
962   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
963   * functionality.)
964   *
965   * <p><b>Java 8 users:</b> many use cases for this method are better
966   * addressed by {@link java.util.stream.Stream#filter}. This method is not
967   * being deprecated, but we gently encourage you to migrate to streams.
968   */
969  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
970  public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
971    if (unfiltered instanceof SortedSet) {
972      return filter((SortedSet<E>) unfiltered, predicate);
973    }
974    if (unfiltered instanceof FilteredSet) {
975      // Support clear(), removeAll(), and retainAll() when filtering a filtered
976      // collection.
977      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
978      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
979      return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
980    }
981
982    return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
983  }
984
985  private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
986    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
987      super(unfiltered, predicate);
988    }
989
990    @Override
991    public boolean equals(@Nullable Object object) {
992      return equalsImpl(this, object);
993    }
994
995    @Override
996    public int hashCode() {
997      return hashCodeImpl(this);
998    }
999  }
1000
1001  /**
1002   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that
1003   * satisfy a predicate. The returned set is a live view of {@code unfiltered};
1004   * changes to one affect the other.
1005   *
1006   * <p>The resulting set's iterator does not support {@code remove()}, but all
1007   * other set methods are supported. When given an element that doesn't satisfy
1008   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
1009   * an {@link IllegalArgumentException}. When methods such as
1010   * {@code removeAll()} and {@code clear()} are called on the filtered set,
1011   * only elements that satisfy the filter will be removed from the underlying
1012   * set.
1013   *
1014   * <p>The returned set isn't threadsafe or serializable, even if
1015   * {@code unfiltered} is.
1016   *
1017   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across
1018   * every element in the underlying set and determine which elements satisfy
1019   * the filter. When a live view is <i>not</i> needed, it may be faster to copy
1020   * {@code Iterables.filter(unfiltered, predicate)} and use the copy.
1021   *
1022   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
1023   * as documented at {@link Predicate#apply}. Do not provide a predicate such as
1024   * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
1025   * equals. (See {@link Iterables#filter(Iterable, Class)} for related
1026   * functionality.)
1027   *
1028   * @since 11.0
1029   */
1030  public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1031    if (unfiltered instanceof FilteredSet) {
1032      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1033      // collection.
1034      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1035      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1036      return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1037    }
1038
1039    return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1040  }
1041
1042  private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
1043
1044    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1045      super(unfiltered, predicate);
1046    }
1047
1048    @Override
1049    public Comparator<? super E> comparator() {
1050      return ((SortedSet<E>) unfiltered).comparator();
1051    }
1052
1053    @Override
1054    public SortedSet<E> subSet(E fromElement, E toElement) {
1055      return new FilteredSortedSet<E>(
1056          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1057    }
1058
1059    @Override
1060    public SortedSet<E> headSet(E toElement) {
1061      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1062    }
1063
1064    @Override
1065    public SortedSet<E> tailSet(E fromElement) {
1066      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1067    }
1068
1069    @Override
1070    public E first() {
1071      return Iterators.find(unfiltered.iterator(), predicate);
1072    }
1073
1074    @Override
1075    public E last() {
1076      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1077      while (true) {
1078        E element = sortedUnfiltered.last();
1079        if (predicate.apply(element)) {
1080          return element;
1081        }
1082        sortedUnfiltered = sortedUnfiltered.headSet(element);
1083      }
1084    }
1085  }
1086
1087  /**
1088   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that
1089   * satisfy a predicate. The returned set is a live view of {@code unfiltered};
1090   * changes to one affect the other.
1091   *
1092   * <p>The resulting set's iterator does not support {@code remove()}, but all
1093   * other set methods are supported. When given an element that doesn't satisfy
1094   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
1095   * an {@link IllegalArgumentException}. When methods such as
1096   * {@code removeAll()} and {@code clear()} are called on the filtered set,
1097   * only elements that satisfy the filter will be removed from the underlying
1098   * set.
1099   *
1100   * <p>The returned set isn't threadsafe or serializable, even if
1101   * {@code unfiltered} is.
1102   *
1103   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across
1104   * every element in the underlying set and determine which elements satisfy
1105   * the filter. When a live view is <i>not</i> needed, it may be faster to copy
1106   * {@code Iterables.filter(unfiltered, predicate)} and use the copy.
1107   *
1108   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
1109   * as documented at {@link Predicate#apply}. Do not provide a predicate such as
1110   * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
1111   * equals. (See {@link Iterables#filter(Iterable, Class)} for related
1112   * functionality.)
1113   *
1114   * @since 14.0
1115   */
1116  @GwtIncompatible // NavigableSet
1117  @SuppressWarnings("unchecked")
1118  public static <E> NavigableSet<E> filter(
1119      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1120    if (unfiltered instanceof FilteredSet) {
1121      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1122      // collection.
1123      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1124      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1125      return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1126    }
1127
1128    return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1129  }
1130
1131  @GwtIncompatible // NavigableSet
1132  private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
1133      implements NavigableSet<E> {
1134    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1135      super(unfiltered, predicate);
1136    }
1137
1138    NavigableSet<E> unfiltered() {
1139      return (NavigableSet<E>) unfiltered;
1140    }
1141
1142    @Override
1143    @Nullable
1144    public E lower(E e) {
1145      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1146    }
1147
1148    @Override
1149    @Nullable
1150    public E floor(E e) {
1151      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1152    }
1153
1154    @Override
1155    public E ceiling(E e) {
1156      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1157    }
1158
1159    @Override
1160    public E higher(E e) {
1161      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1162    }
1163
1164    @Override
1165    public E pollFirst() {
1166      return Iterables.removeFirstMatching(unfiltered(), predicate);
1167    }
1168
1169    @Override
1170    public E pollLast() {
1171      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1172    }
1173
1174    @Override
1175    public NavigableSet<E> descendingSet() {
1176      return Sets.filter(unfiltered().descendingSet(), predicate);
1177    }
1178
1179    @Override
1180    public Iterator<E> descendingIterator() {
1181      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1182    }
1183
1184    @Override
1185    public E last() {
1186      return Iterators.find(unfiltered().descendingIterator(), predicate);
1187    }
1188
1189    @Override
1190    public NavigableSet<E> subSet(
1191        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1192      return filter(
1193          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1194    }
1195
1196    @Override
1197    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1198      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1199    }
1200
1201    @Override
1202    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1203      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1204    }
1205  }
1206
1207  /**
1208   * Returns every possible list that can be formed by choosing one element
1209   * from each of the given sets in order; the "n-ary
1210   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1211   * product</a>" of the sets. For example: <pre>   {@code
1212   *
1213   *   Sets.cartesianProduct(ImmutableList.of(
1214   *       ImmutableSet.of(1, 2),
1215   *       ImmutableSet.of("A", "B", "C")))}</pre>
1216   *
1217   * <p>returns a set containing six lists:
1218   *
1219   * <ul>
1220   * <li>{@code ImmutableList.of(1, "A")}
1221   * <li>{@code ImmutableList.of(1, "B")}
1222   * <li>{@code ImmutableList.of(1, "C")}
1223   * <li>{@code ImmutableList.of(2, "A")}
1224   * <li>{@code ImmutableList.of(2, "B")}
1225   * <li>{@code ImmutableList.of(2, "C")}
1226   * </ul>
1227   *
1228   * <p>The result is guaranteed to be in the "traditional", lexicographical
1229   * order for Cartesian products that you would get from nesting for loops:
1230   * <pre>   {@code
1231   *
1232   *   for (B b0 : sets.get(0)) {
1233   *     for (B b1 : sets.get(1)) {
1234   *       ...
1235   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1236   *       // operate on tuple
1237   *     }
1238   *   }}</pre>
1239   *
1240   * <p>Note that if any input set is empty, the Cartesian product will also be
1241   * empty. If no sets at all are provided (an empty list), the resulting
1242   * Cartesian product has one element, an empty list (counter-intuitive, but
1243   * mathematically consistent).
1244   *
1245   * <p><i>Performance notes:</i> while the cartesian product of sets of size
1246   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
1247   * consumption is much smaller. When the cartesian set is constructed, the
1248   * input sets are merely copied. Only as the resulting set is iterated are the
1249   * individual lists created, and these are not retained after iteration.
1250   *
1251   * @param sets the sets to choose elements from, in the order that
1252   *     the elements chosen from those sets should appear in the resulting
1253   *     lists
1254   * @param <B> any common base class shared by all axes (often just {@link
1255   *     Object})
1256   * @return the Cartesian product, as an immutable set containing immutable
1257   *     lists
1258   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
1259   *     or any element of a provided set is null
1260   * @since 2.0
1261   */
1262  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1263    return CartesianSet.create(sets);
1264  }
1265
1266  /**
1267   * Returns every possible list that can be formed by choosing one element
1268   * from each of the given sets in order; the "n-ary
1269   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1270   * product</a>" of the sets. For example: <pre>   {@code
1271   *
1272   *   Sets.cartesianProduct(
1273   *       ImmutableSet.of(1, 2),
1274   *       ImmutableSet.of("A", "B", "C"))}</pre>
1275   *
1276   * <p>returns a set containing six lists:
1277   *
1278   * <ul>
1279   * <li>{@code ImmutableList.of(1, "A")}
1280   * <li>{@code ImmutableList.of(1, "B")}
1281   * <li>{@code ImmutableList.of(1, "C")}
1282   * <li>{@code ImmutableList.of(2, "A")}
1283   * <li>{@code ImmutableList.of(2, "B")}
1284   * <li>{@code ImmutableList.of(2, "C")}
1285   * </ul>
1286   *
1287   * <p>The result is guaranteed to be in the "traditional", lexicographical
1288   * order for Cartesian products that you would get from nesting for loops:
1289   * <pre>   {@code
1290   *
1291   *   for (B b0 : sets.get(0)) {
1292   *     for (B b1 : sets.get(1)) {
1293   *       ...
1294   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1295   *       // operate on tuple
1296   *     }
1297   *   }}</pre>
1298   *
1299   * <p>Note that if any input set is empty, the Cartesian product will also be
1300   * empty. If no sets at all are provided (an empty list), the resulting
1301   * Cartesian product has one element, an empty list (counter-intuitive, but
1302   * mathematically consistent).
1303   *
1304   * <p><i>Performance notes:</i> while the cartesian product of sets of size
1305   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
1306   * consumption is much smaller. When the cartesian set is constructed, the
1307   * input sets are merely copied. Only as the resulting set is iterated are the
1308   * individual lists created, and these are not retained after iteration.
1309   *
1310   * @param sets the sets to choose elements from, in the order that
1311   *     the elements chosen from those sets should appear in the resulting
1312   *     lists
1313   * @param <B> any common base class shared by all axes (often just {@link
1314   *     Object})
1315   * @return the Cartesian product, as an immutable set containing immutable
1316   *     lists
1317   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
1318   *     or any element of a provided set is null
1319   * @since 2.0
1320   */
1321  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1322    return cartesianProduct(Arrays.asList(sets));
1323  }
1324
1325  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1326      implements Set<List<E>> {
1327    private final transient ImmutableList<ImmutableSet<E>> axes;
1328    private final transient CartesianList<E> delegate;
1329
1330    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1331      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1332      for (Set<? extends E> set : sets) {
1333        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1334        if (copy.isEmpty()) {
1335          return ImmutableSet.of();
1336        }
1337        axesBuilder.add(copy);
1338      }
1339      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1340      ImmutableList<List<E>> listAxes =
1341          new ImmutableList<List<E>>() {
1342            @Override
1343            public int size() {
1344              return axes.size();
1345            }
1346
1347            @Override
1348            public List<E> get(int index) {
1349              return axes.get(index).asList();
1350            }
1351
1352            @Override
1353            boolean isPartialView() {
1354              return true;
1355            }
1356          };
1357      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1358    }
1359
1360    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1361      this.axes = axes;
1362      this.delegate = delegate;
1363    }
1364
1365    @Override
1366    protected Collection<List<E>> delegate() {
1367      return delegate;
1368    }
1369
1370    @Override
1371    public boolean equals(@Nullable Object object) {
1372      // Warning: this is broken if size() == 0, so it is critical that we
1373      // substitute an empty ImmutableSet to the user in place of this
1374      if (object instanceof CartesianSet) {
1375        CartesianSet<?> that = (CartesianSet<?>) object;
1376        return this.axes.equals(that.axes);
1377      }
1378      return super.equals(object);
1379    }
1380
1381    @Override
1382    public int hashCode() {
1383      // Warning: this is broken if size() == 0, so it is critical that we
1384      // substitute an empty ImmutableSet to the user in place of this
1385
1386      // It's a weird formula, but tests prove it works.
1387      int adjust = size() - 1;
1388      for (int i = 0; i < axes.size(); i++) {
1389        adjust *= 31;
1390        adjust = ~~adjust;
1391        // in GWT, we have to deal with integer overflow carefully
1392      }
1393      int hash = 1;
1394      for (Set<E> axis : axes) {
1395        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1396
1397        hash = ~~hash;
1398      }
1399      hash += adjust;
1400      return ~~hash;
1401    }
1402  }
1403
1404  /**
1405   * Returns the set of all possible subsets of {@code set}. For example,
1406   * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{},
1407   * {1}, {2}, {1, 2}}}.
1408   *
1409   * <p>Elements appear in these subsets in the same iteration order as they
1410   * appeared in the input set. The order in which these subsets appear in the
1411   * outer set is undefined. Note that the power set of the empty set is not the
1412   * empty set, but a one-element set containing the empty set.
1413   *
1414   * <p>The returned set and its constituent sets use {@code equals} to decide
1415   * whether two elements are identical, even if the input set uses a different
1416   * concept of equivalence.
1417   *
1418   * <p><i>Performance notes:</i> while the power set of a set with size {@code
1419   * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the
1420   * power set is constructed, the input set is merely copied. Only as the
1421   * power set is iterated are the individual subsets created, and these subsets
1422   * themselves occupy only a small constant amount of memory.
1423   *
1424   * @param set the set of elements to construct a power set from
1425   * @return the power set, as an immutable set of immutable sets
1426   * @throws IllegalArgumentException if {@code set} has more than 30 unique
1427   *     elements (causing the power set size to exceed the {@code int} range)
1428   * @throws NullPointerException if {@code set} is or contains {@code null}
1429   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at
1430   *      Wikipedia</a>
1431   * @since 4.0
1432   */
1433  @GwtCompatible(serializable = false)
1434  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1435    return new PowerSet<E>(set);
1436  }
1437
1438  private static final class SubSet<E> extends AbstractSet<E> {
1439    private final ImmutableMap<E, Integer> inputSet;
1440    private final int mask;
1441
1442    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1443      this.inputSet = inputSet;
1444      this.mask = mask;
1445    }
1446
1447    @Override
1448    public Iterator<E> iterator() {
1449      return new UnmodifiableIterator<E>() {
1450        final ImmutableList<E> elements = inputSet.keySet().asList();
1451        int remainingSetBits = mask;
1452
1453        @Override
1454        public boolean hasNext() {
1455          return remainingSetBits != 0;
1456        }
1457
1458        @Override
1459        public E next() {
1460          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1461          if (index == 32) {
1462            throw new NoSuchElementException();
1463          }
1464          remainingSetBits &= ~(1 << index);
1465          return elements.get(index);
1466        }
1467      };
1468    }
1469
1470    @Override
1471    public int size() {
1472      return Integer.bitCount(mask);
1473    }
1474
1475    @Override
1476    public boolean contains(@Nullable Object o) {
1477      Integer index = inputSet.get(o);
1478      return index != null && (mask & (1 << index)) != 0;
1479    }
1480  }
1481
1482  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1483    final ImmutableMap<E, Integer> inputSet;
1484
1485    PowerSet(Set<E> input) {
1486      this.inputSet = Maps.indexMap(input);
1487      checkArgument(
1488          inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size());
1489    }
1490
1491    @Override
1492    public int size() {
1493      return 1 << inputSet.size();
1494    }
1495
1496    @Override
1497    public boolean isEmpty() {
1498      return false;
1499    }
1500
1501    @Override
1502    public Iterator<Set<E>> iterator() {
1503      return new AbstractIndexedListIterator<Set<E>>(size()) {
1504        @Override
1505        protected Set<E> get(final int setBits) {
1506          return new SubSet<E>(inputSet, setBits);
1507        }
1508      };
1509    }
1510
1511    @Override
1512    public boolean contains(@Nullable Object obj) {
1513      if (obj instanceof Set) {
1514        Set<?> set = (Set<?>) obj;
1515        return inputSet.keySet().containsAll(set);
1516      }
1517      return false;
1518    }
1519
1520    @Override
1521    public boolean equals(@Nullable Object obj) {
1522      if (obj instanceof PowerSet) {
1523        PowerSet<?> that = (PowerSet<?>) obj;
1524        return inputSet.equals(that.inputSet);
1525      }
1526      return super.equals(obj);
1527    }
1528
1529    @Override
1530    public int hashCode() {
1531      /*
1532       * The sum of the sums of the hash codes in each subset is just the sum of
1533       * each input element's hash code times the number of sets that element
1534       * appears in. Each element appears in exactly half of the 2^n sets, so:
1535       */
1536      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1537    }
1538
1539    @Override
1540    public String toString() {
1541      return "powerSet(" + inputSet + ")";
1542    }
1543  }
1544
1545  /**
1546   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1547   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1548   *
1549   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1550   * set. The order in which these subsets appear in the outer set is undefined.
1551   *
1552   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1553   * are identical, even if the input set uses a different concept of equivalence.
1554   *
1555   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1556   * the result set is constructed, the input set is merely copied. Only as the result set is
1557   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1558   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1559   * {@code combinations} does not retain the individual subsets.
1560   *
1561   * @param set the set of elements to take combinations of
1562   * @param size the number of elements per combination
1563   * @return the set of all combinations of {@code size} elements from {@code set}
1564   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1565   *     inclusive
1566   * @throws NullPointerException if {@code set} is or contains {@code null}
1567   * @since 23.0
1568   */
1569  @Beta
1570  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1571    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1572    checkNonnegative(size, "size");
1573    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1574    if (size == 0) {
1575      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1576    } else if (size == index.size()) {
1577      return ImmutableSet.<Set<E>>of(index.keySet());
1578    }
1579    return new AbstractSet<Set<E>>() {
1580      @Override
1581      public boolean contains(@Nullable Object o) {
1582        if (o instanceof Set) {
1583          Set<?> s = (Set<?>) o;
1584          return s.size() == size && index.keySet().containsAll(s);
1585        }
1586        return false;
1587      }
1588
1589      @Override
1590      public Iterator<Set<E>> iterator() {
1591        return new AbstractIterator<Set<E>>() {
1592          final BitSet bits = new BitSet(index.size());
1593
1594          @Override
1595          protected Set<E> computeNext() {
1596            if (bits.isEmpty()) {
1597              bits.set(0, size);
1598            } else {
1599              int firstSetBit = bits.nextSetBit(0);
1600              int bitToFlip = bits.nextClearBit(firstSetBit);
1601
1602              if (bitToFlip == index.size()) {
1603                return endOfData();
1604              }
1605              /*
1606               * The current set in sorted order looks like
1607               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1608               * where it does *not* contain bitToFlip.
1609               *
1610               * The next combination is
1611               *
1612               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1613               *
1614               * This is lexicographically next if you look at the combinations in descending order
1615               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1616               */
1617
1618              bits.set(0, bitToFlip - firstSetBit - 1);
1619              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1620              bits.set(bitToFlip);
1621            }
1622            final BitSet copy = (BitSet) bits.clone();
1623            return new AbstractSet<E>() {
1624              @Override
1625              public boolean contains(@Nullable Object o) {
1626                Integer i = index.get(o);
1627                return i != null && copy.get(i);
1628              }
1629
1630              @Override
1631              public Iterator<E> iterator() {
1632                return new AbstractIterator<E>() {
1633                  int i = -1;
1634
1635                  @Override
1636                  protected E computeNext() {
1637                    i = copy.nextSetBit(i + 1);
1638                    if (i == -1) {
1639                      return endOfData();
1640                    }
1641                    return index.keySet().asList().get(i);
1642                  }
1643                };
1644              }
1645
1646              @Override
1647              public int size() {
1648                return size;
1649              }
1650            };
1651          }
1652        };
1653      }
1654
1655      @Override
1656      public int size() {
1657        return IntMath.binomial(index.size(), size);
1658      }
1659
1660      @Override
1661      public String toString() {
1662        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1663      }
1664    };
1665  }
1666
1667  /**
1668   * An implementation for {@link Set#hashCode()}.
1669   */
1670  static int hashCodeImpl(Set<?> s) {
1671    int hashCode = 0;
1672    for (Object o : s) {
1673      hashCode += o != null ? o.hashCode() : 0;
1674
1675      hashCode = ~~hashCode;
1676      // Needed to deal with unusual integer overflow in GWT.
1677    }
1678    return hashCode;
1679  }
1680
1681  /**
1682   * An implementation for {@link Set#equals(Object)}.
1683   */
1684  static boolean equalsImpl(Set<?> s, @Nullable Object object) {
1685    if (s == object) {
1686      return true;
1687    }
1688    if (object instanceof Set) {
1689      Set<?> o = (Set<?>) object;
1690
1691      try {
1692        return s.size() == o.size() && s.containsAll(o);
1693      } catch (NullPointerException | ClassCastException ignored) {
1694        return false;
1695      }
1696    }
1697    return false;
1698  }
1699
1700  /**
1701   * Returns an unmodifiable view of the specified navigable set. This method
1702   * allows modules to provide users with "read-only" access to internal
1703   * navigable sets. Query operations on the returned set "read through" to the
1704   * specified set, and attempts to modify the returned set, whether direct or
1705   * via its collection views, result in an
1706   * {@code UnsupportedOperationException}.
1707   *
1708   * <p>The returned navigable set will be serializable if the specified
1709   * navigable set is serializable.
1710   *
1711   * @param set the navigable set for which an unmodifiable view is to be
1712   *        returned
1713   * @return an unmodifiable view of the specified navigable set
1714   * @since 12.0
1715   */
1716  public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
1717    if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) {
1718      return set;
1719    }
1720    return new UnmodifiableNavigableSet<E>(set);
1721  }
1722
1723  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
1724      implements NavigableSet<E>, Serializable {
1725    private final NavigableSet<E> delegate;
1726    private final SortedSet<E> unmodifiableDelegate;
1727
1728    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1729      this.delegate = checkNotNull(delegate);
1730      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1731    }
1732
1733    @Override
1734    protected SortedSet<E> delegate() {
1735      return unmodifiableDelegate;
1736    }
1737
1738    @Override
1739    public E lower(E e) {
1740      return delegate.lower(e);
1741    }
1742
1743    @Override
1744    public E floor(E e) {
1745      return delegate.floor(e);
1746    }
1747
1748    @Override
1749    public E ceiling(E e) {
1750      return delegate.ceiling(e);
1751    }
1752
1753    @Override
1754    public E higher(E e) {
1755      return delegate.higher(e);
1756    }
1757
1758    @Override
1759    public E pollFirst() {
1760      throw new UnsupportedOperationException();
1761    }
1762
1763    @Override
1764    public E pollLast() {
1765      throw new UnsupportedOperationException();
1766    }
1767
1768    private transient UnmodifiableNavigableSet<E> descendingSet;
1769
1770    @Override
1771    public NavigableSet<E> descendingSet() {
1772      UnmodifiableNavigableSet<E> result = descendingSet;
1773      if (result == null) {
1774        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
1775        result.descendingSet = this;
1776      }
1777      return result;
1778    }
1779
1780    @Override
1781    public Iterator<E> descendingIterator() {
1782      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1783    }
1784
1785    @Override
1786    public NavigableSet<E> subSet(
1787        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1788      return unmodifiableNavigableSet(
1789          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1790    }
1791
1792    @Override
1793    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1794      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1795    }
1796
1797    @Override
1798    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1799      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1800    }
1801
1802    private static final long serialVersionUID = 0;
1803  }
1804
1805  /**
1806   * Returns a synchronized (thread-safe) navigable set backed by the specified
1807   * navigable set.  In order to guarantee serial access, it is critical that
1808   * <b>all</b> access to the backing navigable set is accomplished
1809   * through the returned navigable set (or its views).
1810   *
1811   * <p>It is imperative that the user manually synchronize on the returned
1812   * sorted set when iterating over it or any of its {@code descendingSet},
1813   * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre>   {@code
1814   *
1815   *   NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1816   *    ...
1817   *   synchronized (set) {
1818   *     // Must be in the synchronized block
1819   *     Iterator<E> it = set.iterator();
1820   *     while (it.hasNext()) {
1821   *       foo(it.next());
1822   *     }
1823   *   }}</pre>
1824   *
1825   * <p>or: <pre>   {@code
1826   *
1827   *   NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1828   *   NavigableSet<E> set2 = set.descendingSet().headSet(foo);
1829   *    ...
1830   *   synchronized (set) { // Note: set, not set2!!!
1831   *     // Must be in the synchronized block
1832   *     Iterator<E> it = set2.descendingIterator();
1833   *     while (it.hasNext())
1834   *       foo(it.next());
1835   *     }
1836   *   }}</pre>
1837   *
1838   * <p>Failure to follow this advice may result in non-deterministic behavior.
1839   *
1840   * <p>The returned navigable set will be serializable if the specified
1841   * navigable set is serializable.
1842   *
1843   * @param navigableSet the navigable set to be "wrapped" in a synchronized
1844   *    navigable set.
1845   * @return a synchronized view of the specified navigable set.
1846   * @since 13.0
1847   */
1848  @GwtIncompatible // NavigableSet
1849  public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
1850    return Synchronized.navigableSet(navigableSet);
1851  }
1852
1853  /**
1854   * Remove each element in an iterable from a set.
1855   */
1856  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
1857    boolean changed = false;
1858    while (iterator.hasNext()) {
1859      changed |= set.remove(iterator.next());
1860    }
1861    return changed;
1862  }
1863
1864  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
1865    checkNotNull(collection); // for GWT
1866    if (collection instanceof Multiset) {
1867      collection = ((Multiset<?>) collection).elementSet();
1868    }
1869    /*
1870     * AbstractSet.removeAll(List) has quadratic behavior if the list size
1871     * is just more than the set's size.  We augment the test by
1872     * assuming that sets have fast contains() performance, and other
1873     * collections don't.  See
1874     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
1875     */
1876    if (collection instanceof Set && collection.size() > set.size()) {
1877      return Iterators.removeAll(set.iterator(), collection);
1878    } else {
1879      return removeAllImpl(set, collection.iterator());
1880    }
1881  }
1882
1883  @GwtIncompatible // NavigableSet
1884  static class DescendingSet<E> extends ForwardingNavigableSet<E> {
1885    private final NavigableSet<E> forward;
1886
1887    DescendingSet(NavigableSet<E> forward) {
1888      this.forward = forward;
1889    }
1890
1891    @Override
1892    protected NavigableSet<E> delegate() {
1893      return forward;
1894    }
1895
1896    @Override
1897    public E lower(E e) {
1898      return forward.higher(e);
1899    }
1900
1901    @Override
1902    public E floor(E e) {
1903      return forward.ceiling(e);
1904    }
1905
1906    @Override
1907    public E ceiling(E e) {
1908      return forward.floor(e);
1909    }
1910
1911    @Override
1912    public E higher(E e) {
1913      return forward.lower(e);
1914    }
1915
1916    @Override
1917    public E pollFirst() {
1918      return forward.pollLast();
1919    }
1920
1921    @Override
1922    public E pollLast() {
1923      return forward.pollFirst();
1924    }
1925
1926    @Override
1927    public NavigableSet<E> descendingSet() {
1928      return forward;
1929    }
1930
1931    @Override
1932    public Iterator<E> descendingIterator() {
1933      return forward.iterator();
1934    }
1935
1936    @Override
1937    public NavigableSet<E> subSet(
1938        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1939      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
1940    }
1941
1942    @Override
1943    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1944      return forward.tailSet(toElement, inclusive).descendingSet();
1945    }
1946
1947    @Override
1948    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1949      return forward.headSet(fromElement, inclusive).descendingSet();
1950    }
1951
1952    @SuppressWarnings("unchecked")
1953    @Override
1954    public Comparator<? super E> comparator() {
1955      Comparator<? super E> forwardComparator = forward.comparator();
1956      if (forwardComparator == null) {
1957        return (Comparator) Ordering.natural().reverse();
1958      } else {
1959        return reverse(forwardComparator);
1960      }
1961    }
1962
1963    // If we inline this, we get a javac error.
1964    private static <T> Ordering<T> reverse(Comparator<T> forward) {
1965      return Ordering.from(forward).reverse();
1966    }
1967
1968    @Override
1969    public E first() {
1970      return forward.last();
1971    }
1972
1973    @Override
1974    public SortedSet<E> headSet(E toElement) {
1975      return standardHeadSet(toElement);
1976    }
1977
1978    @Override
1979    public E last() {
1980      return forward.first();
1981    }
1982
1983    @Override
1984    public SortedSet<E> subSet(E fromElement, E toElement) {
1985      return standardSubSet(fromElement, toElement);
1986    }
1987
1988    @Override
1989    public SortedSet<E> tailSet(E fromElement) {
1990      return standardTailSet(fromElement);
1991    }
1992
1993    @Override
1994    public Iterator<E> iterator() {
1995      return forward.descendingIterator();
1996    }
1997
1998    @Override
1999    public Object[] toArray() {
2000      return standardToArray();
2001    }
2002
2003    @Override
2004    public <T> T[] toArray(T[] array) {
2005      return standardToArray(array);
2006    }
2007
2008    @Override
2009    public String toString() {
2010      return standardToString();
2011    }
2012  }
2013
2014  /**
2015   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
2016   *
2017   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely
2018   * {@link NavigableSet#subSet(Object, boolean, Object, boolean) subSet()},
2019   * {@link NavigableSet#tailSet(Object, boolean) tailSet()}, and
2020   * {@link NavigableSet#headSet(Object, boolean) headSet()}) to actually construct the view.
2021   * Consult these methods for a full description of the returned view's behavior.
2022   *
2023   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
2024   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a
2025   * {@link Comparator}, which can violate the natural ordering. Using this method (or in general
2026   * using {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined
2027   * behavior.
2028   *
2029   * @since 20.0
2030   */
2031  @Beta
2032  @GwtIncompatible // NavigableSet
2033  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
2034      NavigableSet<K> set, Range<K> range) {
2035    if (set.comparator() != null
2036        && set.comparator() != Ordering.natural()
2037        && range.hasLowerBound()
2038        && range.hasUpperBound()) {
2039      checkArgument(
2040          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
2041          "set is using a custom comparator which is inconsistent with the natural ordering.");
2042    }
2043    if (range.hasLowerBound() && range.hasUpperBound()) {
2044      return set.subSet(
2045          range.lowerEndpoint(),
2046          range.lowerBoundType() == BoundType.CLOSED,
2047          range.upperEndpoint(),
2048          range.upperBoundType() == BoundType.CLOSED);
2049    } else if (range.hasLowerBound()) {
2050      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2051    } else if (range.hasUpperBound()) {
2052      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2053    }
2054    return checkNotNull(set);
2055  }
2056}