001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkNonnegative; 026import static com.google.common.collect.CollectPreconditions.checkRemove; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.base.Function; 033import com.google.common.base.Objects; 034import com.google.common.math.IntMath; 035import com.google.common.primitives.Ints; 036import com.google.errorprone.annotations.CanIgnoreReturnValue; 037import java.io.Serializable; 038import java.math.RoundingMode; 039import java.util.AbstractList; 040import java.util.AbstractSequentialList; 041import java.util.ArrayList; 042import java.util.Arrays; 043import java.util.Collection; 044import java.util.Collections; 045import java.util.Iterator; 046import java.util.LinkedList; 047import java.util.List; 048import java.util.ListIterator; 049import java.util.NoSuchElementException; 050import java.util.RandomAccess; 051import java.util.concurrent.CopyOnWriteArrayList; 052import javax.annotation.Nullable; 053 054/** 055 * Static utility methods pertaining to {@link List} instances. Also see this 056 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}. 057 * 058 * <p>See the Guava User Guide article on <a href= 059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> 060 * {@code Lists}</a>. 061 * 062 * @author Kevin Bourrillion 063 * @author Mike Bostock 064 * @author Louis Wasserman 065 * @since 2.0 066 */ 067@GwtCompatible(emulated = true) 068public final class Lists { 069 private Lists() {} 070 071 // ArrayList 072 073 /** 074 * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and 075 * earlier). 076 * 077 * <p><b>Note:</b> if mutability is not required, use {@link 078 * ImmutableList#of()} instead. 079 * 080 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 081 * should be treated as deprecated. Instead, use the {@code ArrayList} 082 * {@linkplain ArrayList#ArrayList() constructor} directly, taking advantage 083 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 084 */ 085 @GwtCompatible(serializable = true) 086 public static <E> ArrayList<E> newArrayList() { 087 return new ArrayList<>(); 088 } 089 090 /** 091 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 092 * elements. 093 * 094 * <p><b>Note:</b> essentially the only reason to use this method is when you 095 * will need to add or remove elements later. Otherwise, for non-null elements 096 * use {@link ImmutableList#of()} (for varargs) or {@link 097 * ImmutableList#copyOf(Object[])} (for an array) instead. If any elements 098 * might be null, or you need support for {@link List#set(int, Object)}, use 099 * {@link Arrays#asList}. 100 * 101 * <p>Note that even when you do need the ability to add or remove, this method 102 * provides only a tiny bit of syntactic sugar for {@code newArrayList(}{@link 103 * Arrays#asList asList}{@code (...))}, or for creating an empty list then 104 * calling {@link Collections#addAll}. This method is not actually very useful 105 * and will likely be deprecated in the future. 106 */ 107 @SafeVarargs 108 @CanIgnoreReturnValue // TODO(kak): Remove this 109 @GwtCompatible(serializable = true) 110 public static <E> ArrayList<E> newArrayList(E... elements) { 111 checkNotNull(elements); // for GWT 112 // Avoid integer overflow when a large array is passed in 113 int capacity = computeArrayListCapacity(elements.length); 114 ArrayList<E> list = new ArrayList<>(capacity); 115 Collections.addAll(list, elements); 116 return list; 117 } 118 119 @VisibleForTesting 120 static int computeArrayListCapacity(int arraySize) { 121 checkNonnegative(arraySize, "arraySize"); 122 123 // TODO(kevinb): Figure out the right behavior, and document it 124 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 125 } 126 127 /** 128 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 129 * elements; a very thin shortcut for creating an empty list then calling 130 * {@link Iterables#addAll}. 131 * 132 * <p><b>Note:</b> if mutability is not required and the elements are 133 * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change 134 * {@code elements} to be a {@link FluentIterable} and call 135 * {@code elements.toList()}.) 136 * 137 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link 138 * Collection}, you don't need this method. Use the {@code ArrayList} 139 * {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking 140 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 141 */ 142 @CanIgnoreReturnValue // TODO(kak): Remove this 143 @GwtCompatible(serializable = true) 144 public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { 145 checkNotNull(elements); // for GWT 146 // Let ArrayList's sizing logic work, if possible 147 return (elements instanceof Collection) 148 ? new ArrayList<>(Collections2.cast(elements)) 149 : newArrayList(elements.iterator()); 150 } 151 152 /** 153 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given 154 * elements; a very thin shortcut for creating an empty list and then calling 155 * {@link Iterators#addAll}. 156 * 157 * <p><b>Note:</b> if mutability is not required and the elements are 158 * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. 159 */ 160 @CanIgnoreReturnValue // TODO(kak): Remove this 161 @GwtCompatible(serializable = true) 162 public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { 163 ArrayList<E> list = newArrayList(); 164 Iterators.addAll(list, elements); 165 return list; 166 } 167 168 /** 169 * Creates an {@code ArrayList} instance backed by an array with the specified 170 * initial size; simply delegates to {@link ArrayList#ArrayList(int)}. 171 * 172 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 173 * should be treated as deprecated. Instead, use {@code new }{@link 174 * ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking 175 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 176 * (Unlike here, there is no risk of overload ambiguity, since the {@code 177 * ArrayList} constructors very wisely did not accept varargs.) 178 * 179 * @param initialArraySize the exact size of the initial backing array for 180 * the returned array list ({@code ArrayList} documentation calls this 181 * value the "capacity") 182 * @return a new, empty {@code ArrayList} which is guaranteed not to resize 183 * itself unless its size reaches {@code initialArraySize + 1} 184 * @throws IllegalArgumentException if {@code initialArraySize} is negative 185 */ 186 @GwtCompatible(serializable = true) 187 public static <E> ArrayList<E> newArrayListWithCapacity(int initialArraySize) { 188 checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. 189 return new ArrayList<>(initialArraySize); 190 } 191 192 /** 193 * Creates an {@code ArrayList} instance to hold {@code estimatedSize} 194 * elements, <i>plus</i> an unspecified amount of padding; you almost 195 * certainly mean to call {@link #newArrayListWithCapacity} (see that method 196 * for further advice on usage). 197 * 198 * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case 199 * that you do want some amount of padding, it's best if you choose your 200 * desired amount explicitly. 201 * 202 * @param estimatedSize an estimate of the eventual {@link List#size()} of 203 * the new list 204 * @return a new, empty {@code ArrayList}, sized appropriately to hold the 205 * estimated number of elements 206 * @throws IllegalArgumentException if {@code estimatedSize} is negative 207 */ 208 @GwtCompatible(serializable = true) 209 public static <E> ArrayList<E> newArrayListWithExpectedSize(int estimatedSize) { 210 return new ArrayList<>(computeArrayListCapacity(estimatedSize)); 211 } 212 213 // LinkedList 214 215 /** 216 * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and 217 * earlier). 218 * 219 * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link 220 * ImmutableList#of()} instead. 221 * 222 * <p><b>Performance note:</b> {@link ArrayList} and {@link 223 * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in 224 * certain rare and specific situations. Unless you have spent a lot of time 225 * benchmarking your specific needs, use one of those instead. 226 * 227 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and 228 * should be treated as deprecated. Instead, use the {@code LinkedList} 229 * {@linkplain LinkedList#LinkedList() constructor} directly, taking advantage 230 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 231 */ 232 @GwtCompatible(serializable = true) 233 public static <E> LinkedList<E> newLinkedList() { 234 return new LinkedList<>(); 235 } 236 237 /** 238 * Creates a <i>mutable</i> {@code LinkedList} instance containing the given 239 * elements; a very thin shortcut for creating an empty list then calling 240 * {@link Iterables#addAll}. 241 * 242 * <p><b>Note:</b> if mutability is not required and the elements are 243 * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change 244 * {@code elements} to be a {@link FluentIterable} and call 245 * {@code elements.toList()}.) 246 * 247 * <p><b>Performance note:</b> {@link ArrayList} and {@link 248 * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in 249 * certain rare and specific situations. Unless you have spent a lot of time 250 * benchmarking your specific needs, use one of those instead. 251 * 252 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link 253 * Collection}, you don't need this method. Use the {@code LinkedList} 254 * {@linkplain LinkedList#LinkedList(Collection) constructor} directly, taking 255 * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 256 */ 257 @GwtCompatible(serializable = true) 258 public static <E> LinkedList<E> newLinkedList(Iterable<? extends E> elements) { 259 LinkedList<E> list = newLinkedList(); 260 Iterables.addAll(list, elements); 261 return list; 262 } 263 264 /** 265 * Creates an empty {@code CopyOnWriteArrayList} instance. 266 * 267 * <p><b>Note:</b> if you need an immutable empty {@link List}, use 268 * {@link Collections#emptyList} instead. 269 * 270 * @return a new, empty {@code CopyOnWriteArrayList} 271 * @since 12.0 272 */ 273 @GwtIncompatible // CopyOnWriteArrayList 274 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 275 return new CopyOnWriteArrayList<>(); 276 } 277 278 /** 279 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 280 * 281 * @param elements the elements that the list should contain, in order 282 * @return a new {@code CopyOnWriteArrayList} containing those elements 283 * @since 12.0 284 */ 285 @GwtIncompatible // CopyOnWriteArrayList 286 public static <E> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 287 Iterable<? extends E> elements) { 288 // We copy elements to an ArrayList first, rather than incurring the 289 // quadratic cost of adding them to the COWAL directly. 290 Collection<? extends E> elementsCollection = 291 (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements); 292 return new CopyOnWriteArrayList<>(elementsCollection); 293 } 294 295 /** 296 * Returns an unmodifiable list containing the specified first element and 297 * backed by the specified array of additional elements. Changes to the {@code 298 * rest} array will be reflected in the returned list. Unlike {@link 299 * Arrays#asList}, the returned list is unmodifiable. 300 * 301 * <p>This is useful when a varargs method needs to use a signature such as 302 * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload 303 * ambiguity or to enforce a minimum argument count. 304 * 305 * <p>The returned list is serializable and implements {@link RandomAccess}. 306 * 307 * @param first the first element 308 * @param rest an array of additional elements, possibly empty 309 * @return an unmodifiable list containing the specified elements 310 */ 311 public static <E> List<E> asList(@Nullable E first, E[] rest) { 312 return new OnePlusArrayList<>(first, rest); 313 } 314 315 /** @see Lists#asList(Object, Object[]) */ 316 private static class OnePlusArrayList<E> extends AbstractList<E> 317 implements Serializable, RandomAccess { 318 final E first; 319 final E[] rest; 320 321 OnePlusArrayList(@Nullable E first, E[] rest) { 322 this.first = first; 323 this.rest = checkNotNull(rest); 324 } 325 326 @Override 327 public int size() { 328 return IntMath.saturatedAdd(rest.length, 1); 329 } 330 331 @Override 332 public E get(int index) { 333 // check explicitly so the IOOBE will have the right message 334 checkElementIndex(index, size()); 335 return (index == 0) ? first : rest[index - 1]; 336 } 337 338 private static final long serialVersionUID = 0; 339 } 340 341 /** 342 * Returns an unmodifiable list containing the specified first and second 343 * element, and backed by the specified array of additional elements. Changes 344 * to the {@code rest} array will be reflected in the returned list. Unlike 345 * {@link Arrays#asList}, the returned list is unmodifiable. 346 * 347 * <p>This is useful when a varargs method needs to use a signature such as 348 * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid 349 * overload ambiguity or to enforce a minimum argument count. 350 * 351 * <p>The returned list is serializable and implements {@link RandomAccess}. 352 * 353 * @param first the first element 354 * @param second the second element 355 * @param rest an array of additional elements, possibly empty 356 * @return an unmodifiable list containing the specified elements 357 */ 358 public static <E> List<E> asList(@Nullable E first, @Nullable E second, E[] rest) { 359 return new TwoPlusArrayList<>(first, second, rest); 360 } 361 362 /** @see Lists#asList(Object, Object, Object[]) */ 363 private static class TwoPlusArrayList<E> extends AbstractList<E> 364 implements Serializable, RandomAccess { 365 final E first; 366 final E second; 367 final E[] rest; 368 369 TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { 370 this.first = first; 371 this.second = second; 372 this.rest = checkNotNull(rest); 373 } 374 375 @Override 376 public int size() { 377 return IntMath.saturatedAdd(rest.length, 2); 378 } 379 380 @Override 381 public E get(int index) { 382 switch (index) { 383 case 0: 384 return first; 385 case 1: 386 return second; 387 default: 388 // check explicitly so the IOOBE will have the right message 389 checkElementIndex(index, size()); 390 return rest[index - 2]; 391 } 392 } 393 394 private static final long serialVersionUID = 0; 395 } 396 397 /** 398 * Returns every possible list that can be formed by choosing one element 399 * from each of the given lists in order; the "n-ary 400 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 401 * product</a>" of the lists. For example: <pre> {@code 402 * 403 * Lists.cartesianProduct(ImmutableList.of( 404 * ImmutableList.of(1, 2), 405 * ImmutableList.of("A", "B", "C")))}</pre> 406 * 407 * <p>returns a list containing six lists in the following order: 408 * 409 * <ul> 410 * <li>{@code ImmutableList.of(1, "A")} 411 * <li>{@code ImmutableList.of(1, "B")} 412 * <li>{@code ImmutableList.of(1, "C")} 413 * <li>{@code ImmutableList.of(2, "A")} 414 * <li>{@code ImmutableList.of(2, "B")} 415 * <li>{@code ImmutableList.of(2, "C")} 416 * </ul> 417 * 418 * <p>The result is guaranteed to be in the "traditional", lexicographical 419 * order for Cartesian products that you would get from nesting for loops: 420 * <pre> {@code 421 * 422 * for (B b0 : lists.get(0)) { 423 * for (B b1 : lists.get(1)) { 424 * ... 425 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 426 * // operate on tuple 427 * } 428 * }}</pre> 429 * 430 * <p>Note that if any input list is empty, the Cartesian product will also be 431 * empty. If no lists at all are provided (an empty list), the resulting 432 * Cartesian product has one element, an empty list (counter-intuitive, but 433 * mathematically consistent). 434 * 435 * <p><i>Performance notes:</i> while the cartesian product of lists of size 436 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 437 * consumption is much smaller. When the cartesian product is constructed, the 438 * input lists are merely copied. Only as the resulting list is iterated are 439 * the individual lists created, and these are not retained after iteration. 440 * 441 * @param lists the lists to choose elements from, in the order that 442 * the elements chosen from those lists should appear in the resulting 443 * lists 444 * @param <B> any common base class shared by all axes (often just {@link 445 * Object}) 446 * @return the Cartesian product, as an immutable list containing immutable 447 * lists 448 * @throws IllegalArgumentException if the size of the cartesian product would 449 * be greater than {@link Integer#MAX_VALUE} 450 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, 451 * or any element of a provided list is null 452 * @since 19.0 453 */ 454 public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) { 455 return CartesianList.create(lists); 456 } 457 458 /** 459 * Returns every possible list that can be formed by choosing one element 460 * from each of the given lists in order; the "n-ary 461 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 462 * product</a>" of the lists. For example: <pre> {@code 463 * 464 * Lists.cartesianProduct(ImmutableList.of( 465 * ImmutableList.of(1, 2), 466 * ImmutableList.of("A", "B", "C")))}</pre> 467 * 468 * <p>returns a list containing six lists in the following order: 469 * 470 * <ul> 471 * <li>{@code ImmutableList.of(1, "A")} 472 * <li>{@code ImmutableList.of(1, "B")} 473 * <li>{@code ImmutableList.of(1, "C")} 474 * <li>{@code ImmutableList.of(2, "A")} 475 * <li>{@code ImmutableList.of(2, "B")} 476 * <li>{@code ImmutableList.of(2, "C")} 477 * </ul> 478 * 479 * <p>The result is guaranteed to be in the "traditional", lexicographical 480 * order for Cartesian products that you would get from nesting for loops: 481 * <pre> {@code 482 * 483 * for (B b0 : lists.get(0)) { 484 * for (B b1 : lists.get(1)) { 485 * ... 486 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 487 * // operate on tuple 488 * } 489 * }}</pre> 490 * 491 * <p>Note that if any input list is empty, the Cartesian product will also be 492 * empty. If no lists at all are provided (an empty list), the resulting 493 * Cartesian product has one element, an empty list (counter-intuitive, but 494 * mathematically consistent). 495 * 496 * <p><i>Performance notes:</i> while the cartesian product of lists of size 497 * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory 498 * consumption is much smaller. When the cartesian product is constructed, the 499 * input lists are merely copied. Only as the resulting list is iterated are 500 * the individual lists created, and these are not retained after iteration. 501 * 502 * @param lists the lists to choose elements from, in the order that 503 * the elements chosen from those lists should appear in the resulting 504 * lists 505 * @param <B> any common base class shared by all axes (often just {@link 506 * Object}) 507 * @return the Cartesian product, as an immutable list containing immutable 508 * lists 509 * @throws IllegalArgumentException if the size of the cartesian product would 510 * be greater than {@link Integer#MAX_VALUE} 511 * @throws NullPointerException if {@code lists}, any one of the 512 * {@code lists}, or any element of a provided list is null 513 * @since 19.0 514 */ 515 @SafeVarargs 516 public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) { 517 return cartesianProduct(Arrays.asList(lists)); 518 } 519 520 /** 521 * Returns a list that applies {@code function} to each element of {@code 522 * fromList}. The returned list is a transformed view of {@code fromList}; 523 * changes to {@code fromList} will be reflected in the returned list and vice 524 * versa. 525 * 526 * <p>Since functions are not reversible, the transform is one-way and new 527 * items cannot be stored in the returned list. The {@code add}, 528 * {@code addAll} and {@code set} methods are unsupported in the returned 529 * list. 530 * 531 * <p>The function is applied lazily, invoked when needed. This is necessary 532 * for the returned list to be a view, but it means that the function will be 533 * applied many times for bulk operations like {@link List#contains} and 534 * {@link List#hashCode}. For this to perform well, {@code function} should be 535 * fast. To avoid lazy evaluation when the returned list doesn't need to be a 536 * view, copy the returned list into a new list of your choosing. 537 * 538 * <p>If {@code fromList} implements {@link RandomAccess}, so will the 539 * returned list. The returned list is threadsafe if the supplied list and 540 * function are. 541 * 542 * <p>If only a {@code Collection} or {@code Iterable} input is available, use 543 * {@link Collections2#transform} or {@link Iterables#transform}. 544 * 545 * <p><b>Note:</b> serializing the returned list is implemented by serializing 546 * {@code fromList}, its contents, and {@code function} -- <i>not</i> by 547 * serializing the transformed values. This can lead to surprising behavior, 548 * so serializing the returned list is <b>not recommended</b>. Instead, 549 * copy the list using {@link ImmutableList#copyOf(Collection)} (for example), 550 * then serialize the copy. Other methods similar to this do not implement 551 * serialization at all for this reason. 552 * 553 * <p><b>Java 8 users:</b> many use cases for this method are better addressed 554 * by {@link java.util.stream.Stream#map}. This method is not being 555 * deprecated, but we gently encourage you to migrate to streams. 556 */ 557 public static <F, T> List<T> transform( 558 List<F> fromList, Function<? super F, ? extends T> function) { 559 return (fromList instanceof RandomAccess) 560 ? new TransformingRandomAccessList<>(fromList, function) 561 : new TransformingSequentialList<>(fromList, function); 562 } 563 564 /** 565 * Implementation of a sequential transforming list. 566 * 567 * @see Lists#transform 568 */ 569 private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T> 570 implements Serializable { 571 final List<F> fromList; 572 final Function<? super F, ? extends T> function; 573 574 TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) { 575 this.fromList = checkNotNull(fromList); 576 this.function = checkNotNull(function); 577 } 578 /** 579 * The default implementation inherited is based on iteration and removal of 580 * each element which can be overkill. That's why we forward this call 581 * directly to the backing list. 582 */ 583 @Override 584 public void clear() { 585 fromList.clear(); 586 } 587 588 @Override 589 public int size() { 590 return fromList.size(); 591 } 592 593 @Override 594 public ListIterator<T> listIterator(final int index) { 595 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 596 @Override 597 T transform(F from) { 598 return function.apply(from); 599 } 600 }; 601 } 602 603 private static final long serialVersionUID = 0; 604 } 605 606 /** 607 * Implementation of a transforming random access list. We try to make as many 608 * of these methods pass-through to the source list as possible so that the 609 * performance characteristics of the source list and transformed list are 610 * similar. 611 * 612 * @see Lists#transform 613 */ 614 private static class TransformingRandomAccessList<F, T> extends AbstractList<T> 615 implements RandomAccess, Serializable { 616 final List<F> fromList; 617 final Function<? super F, ? extends T> function; 618 619 TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) { 620 this.fromList = checkNotNull(fromList); 621 this.function = checkNotNull(function); 622 } 623 624 @Override 625 public void clear() { 626 fromList.clear(); 627 } 628 629 @Override 630 public T get(int index) { 631 return function.apply(fromList.get(index)); 632 } 633 634 @Override 635 public Iterator<T> iterator() { 636 return listIterator(); 637 } 638 639 @Override 640 public ListIterator<T> listIterator(int index) { 641 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 642 @Override 643 T transform(F from) { 644 return function.apply(from); 645 } 646 }; 647 } 648 649 @Override 650 public boolean isEmpty() { 651 return fromList.isEmpty(); 652 } 653 654 @Override 655 public T remove(int index) { 656 return function.apply(fromList.remove(index)); 657 } 658 659 @Override 660 public int size() { 661 return fromList.size(); 662 } 663 664 private static final long serialVersionUID = 0; 665 } 666 667 /** 668 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, 669 * each of the same size (the final list may be smaller). For example, 670 * partitioning a list containing {@code [a, b, c, d, e]} with a partition 671 * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing 672 * two inner lists of three and two elements, all in the original order. 673 * 674 * <p>The outer list is unmodifiable, but reflects the latest state of the 675 * source list. The inner lists are sublist views of the original list, 676 * produced on demand using {@link List#subList(int, int)}, and are subject 677 * to all the usual caveats about modification as explained in that API. 678 * 679 * @param list the list to return consecutive sublists of 680 * @param size the desired size of each sublist (the last may be 681 * smaller) 682 * @return a list of consecutive sublists 683 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 684 */ 685 public static <T> List<List<T>> partition(List<T> list, int size) { 686 checkNotNull(list); 687 checkArgument(size > 0); 688 return (list instanceof RandomAccess) 689 ? new RandomAccessPartition<>(list, size) 690 : new Partition<>(list, size); 691 } 692 693 private static class Partition<T> extends AbstractList<List<T>> { 694 final List<T> list; 695 final int size; 696 697 Partition(List<T> list, int size) { 698 this.list = list; 699 this.size = size; 700 } 701 702 @Override 703 public List<T> get(int index) { 704 checkElementIndex(index, size()); 705 int start = index * size; 706 int end = Math.min(start + size, list.size()); 707 return list.subList(start, end); 708 } 709 710 @Override 711 public int size() { 712 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 713 } 714 715 @Override 716 public boolean isEmpty() { 717 return list.isEmpty(); 718 } 719 } 720 721 private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess { 722 RandomAccessPartition(List<T> list, int size) { 723 super(list, size); 724 } 725 } 726 727 /** 728 * Returns a view of the specified string as an immutable list of {@code 729 * Character} values. 730 * 731 * @since 7.0 732 */ 733 public static ImmutableList<Character> charactersOf(String string) { 734 return new StringAsImmutableList(checkNotNull(string)); 735 } 736 737 @SuppressWarnings("serial") // serialized using ImmutableList serialization 738 private static final class StringAsImmutableList extends ImmutableList<Character> { 739 740 private final String string; 741 742 StringAsImmutableList(String string) { 743 this.string = string; 744 } 745 746 @Override 747 public int indexOf(@Nullable Object object) { 748 return (object instanceof Character) ? string.indexOf((Character) object) : -1; 749 } 750 751 @Override 752 public int lastIndexOf(@Nullable Object object) { 753 return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1; 754 } 755 756 @Override 757 public ImmutableList<Character> subList(int fromIndex, int toIndex) { 758 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 759 return charactersOf(string.substring(fromIndex, toIndex)); 760 } 761 762 @Override 763 boolean isPartialView() { 764 return false; 765 } 766 767 @Override 768 public Character get(int index) { 769 checkElementIndex(index, size()); // for GWT 770 return string.charAt(index); 771 } 772 773 @Override 774 public int size() { 775 return string.length(); 776 } 777 } 778 779 /** 780 * Returns a view of the specified {@code CharSequence} as a {@code 781 * List<Character>}, viewing {@code sequence} as a sequence of Unicode code 782 * units. The view does not support any modification operations, but reflects 783 * any changes to the underlying character sequence. 784 * 785 * @param sequence the character sequence to view as a {@code List} of 786 * characters 787 * @return an {@code List<Character>} view of the character sequence 788 * @since 7.0 789 */ 790 @Beta 791 public static List<Character> charactersOf(CharSequence sequence) { 792 return new CharSequenceAsList(checkNotNull(sequence)); 793 } 794 795 private static final class CharSequenceAsList extends AbstractList<Character> { 796 private final CharSequence sequence; 797 798 CharSequenceAsList(CharSequence sequence) { 799 this.sequence = sequence; 800 } 801 802 @Override 803 public Character get(int index) { 804 checkElementIndex(index, size()); // for GWT 805 return sequence.charAt(index); 806 } 807 808 @Override 809 public int size() { 810 return sequence.length(); 811 } 812 } 813 814 /** 815 * Returns a reversed view of the specified list. For example, {@code 816 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 817 * 2, 1}. The returned list is backed by this list, so changes in the returned 818 * list are reflected in this list, and vice-versa. The returned list supports 819 * all of the optional list operations supported by this list. 820 * 821 * <p>The returned list is random-access if the specified list is random 822 * access. 823 * 824 * @since 7.0 825 */ 826 public static <T> List<T> reverse(List<T> list) { 827 if (list instanceof ImmutableList) { 828 return ((ImmutableList<T>) list).reverse(); 829 } else if (list instanceof ReverseList) { 830 return ((ReverseList<T>) list).getForwardList(); 831 } else if (list instanceof RandomAccess) { 832 return new RandomAccessReverseList<>(list); 833 } else { 834 return new ReverseList<>(list); 835 } 836 } 837 838 private static class ReverseList<T> extends AbstractList<T> { 839 private final List<T> forwardList; 840 841 ReverseList(List<T> forwardList) { 842 this.forwardList = checkNotNull(forwardList); 843 } 844 845 List<T> getForwardList() { 846 return forwardList; 847 } 848 849 private int reverseIndex(int index) { 850 int size = size(); 851 checkElementIndex(index, size); 852 return (size - 1) - index; 853 } 854 855 private int reversePosition(int index) { 856 int size = size(); 857 checkPositionIndex(index, size); 858 return size - index; 859 } 860 861 @Override 862 public void add(int index, @Nullable T element) { 863 forwardList.add(reversePosition(index), element); 864 } 865 866 @Override 867 public void clear() { 868 forwardList.clear(); 869 } 870 871 @Override 872 public T remove(int index) { 873 return forwardList.remove(reverseIndex(index)); 874 } 875 876 @Override 877 protected void removeRange(int fromIndex, int toIndex) { 878 subList(fromIndex, toIndex).clear(); 879 } 880 881 @Override 882 public T set(int index, @Nullable T element) { 883 return forwardList.set(reverseIndex(index), element); 884 } 885 886 @Override 887 public T get(int index) { 888 return forwardList.get(reverseIndex(index)); 889 } 890 891 @Override 892 public int size() { 893 return forwardList.size(); 894 } 895 896 @Override 897 public List<T> subList(int fromIndex, int toIndex) { 898 checkPositionIndexes(fromIndex, toIndex, size()); 899 return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex))); 900 } 901 902 @Override 903 public Iterator<T> iterator() { 904 return listIterator(); 905 } 906 907 @Override 908 public ListIterator<T> listIterator(int index) { 909 int start = reversePosition(index); 910 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 911 return new ListIterator<T>() { 912 913 boolean canRemoveOrSet; 914 915 @Override 916 public void add(T e) { 917 forwardIterator.add(e); 918 forwardIterator.previous(); 919 canRemoveOrSet = false; 920 } 921 922 @Override 923 public boolean hasNext() { 924 return forwardIterator.hasPrevious(); 925 } 926 927 @Override 928 public boolean hasPrevious() { 929 return forwardIterator.hasNext(); 930 } 931 932 @Override 933 public T next() { 934 if (!hasNext()) { 935 throw new NoSuchElementException(); 936 } 937 canRemoveOrSet = true; 938 return forwardIterator.previous(); 939 } 940 941 @Override 942 public int nextIndex() { 943 return reversePosition(forwardIterator.nextIndex()); 944 } 945 946 @Override 947 public T previous() { 948 if (!hasPrevious()) { 949 throw new NoSuchElementException(); 950 } 951 canRemoveOrSet = true; 952 return forwardIterator.next(); 953 } 954 955 @Override 956 public int previousIndex() { 957 return nextIndex() - 1; 958 } 959 960 @Override 961 public void remove() { 962 checkRemove(canRemoveOrSet); 963 forwardIterator.remove(); 964 canRemoveOrSet = false; 965 } 966 967 @Override 968 public void set(T e) { 969 checkState(canRemoveOrSet); 970 forwardIterator.set(e); 971 } 972 }; 973 } 974 } 975 976 private static class RandomAccessReverseList<T> extends ReverseList<T> implements RandomAccess { 977 RandomAccessReverseList(List<T> forwardList) { 978 super(forwardList); 979 } 980 } 981 982 /** 983 * An implementation of {@link List#hashCode()}. 984 */ 985 static int hashCodeImpl(List<?> list) { 986 // TODO(lowasser): worth optimizing for RandomAccess? 987 int hashCode = 1; 988 for (Object o : list) { 989 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 990 991 hashCode = ~~hashCode; 992 // needed to deal with GWT integer overflow 993 } 994 return hashCode; 995 } 996 997 /** 998 * An implementation of {@link List#equals(Object)}. 999 */ 1000 static boolean equalsImpl(List<?> thisList, @Nullable Object other) { 1001 if (other == checkNotNull(thisList)) { 1002 return true; 1003 } 1004 if (!(other instanceof List)) { 1005 return false; 1006 } 1007 List<?> otherList = (List<?>) other; 1008 int size = thisList.size(); 1009 if (size != otherList.size()) { 1010 return false; 1011 } 1012 if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) { 1013 // avoid allocation and use the faster loop 1014 for (int i = 0; i < size; i++) { 1015 if (!Objects.equal(thisList.get(i), otherList.get(i))) { 1016 return false; 1017 } 1018 } 1019 return true; 1020 } else { 1021 return Iterators.elementsEqual(thisList.iterator(), otherList.iterator()); 1022 } 1023 } 1024 1025 /** 1026 * An implementation of {@link List#addAll(int, Collection)}. 1027 */ 1028 static <E> boolean addAllImpl(List<E> list, int index, Iterable<? extends E> elements) { 1029 boolean changed = false; 1030 ListIterator<E> listIterator = list.listIterator(index); 1031 for (E e : elements) { 1032 listIterator.add(e); 1033 changed = true; 1034 } 1035 return changed; 1036 } 1037 1038 /** 1039 * An implementation of {@link List#indexOf(Object)}. 1040 */ 1041 static int indexOfImpl(List<?> list, @Nullable Object element) { 1042 if (list instanceof RandomAccess) { 1043 return indexOfRandomAccess(list, element); 1044 } else { 1045 ListIterator<?> listIterator = list.listIterator(); 1046 while (listIterator.hasNext()) { 1047 if (Objects.equal(element, listIterator.next())) { 1048 return listIterator.previousIndex(); 1049 } 1050 } 1051 return -1; 1052 } 1053 } 1054 1055 private static int indexOfRandomAccess(List<?> list, @Nullable Object element) { 1056 int size = list.size(); 1057 if (element == null) { 1058 for (int i = 0; i < size; i++) { 1059 if (list.get(i) == null) { 1060 return i; 1061 } 1062 } 1063 } else { 1064 for (int i = 0; i < size; i++) { 1065 if (element.equals(list.get(i))) { 1066 return i; 1067 } 1068 } 1069 } 1070 return -1; 1071 } 1072 1073 /** 1074 * An implementation of {@link List#lastIndexOf(Object)}. 1075 */ 1076 static int lastIndexOfImpl(List<?> list, @Nullable Object element) { 1077 if (list instanceof RandomAccess) { 1078 return lastIndexOfRandomAccess(list, element); 1079 } else { 1080 ListIterator<?> listIterator = list.listIterator(list.size()); 1081 while (listIterator.hasPrevious()) { 1082 if (Objects.equal(element, listIterator.previous())) { 1083 return listIterator.nextIndex(); 1084 } 1085 } 1086 return -1; 1087 } 1088 } 1089 1090 private static int lastIndexOfRandomAccess(List<?> list, @Nullable Object element) { 1091 if (element == null) { 1092 for (int i = list.size() - 1; i >= 0; i--) { 1093 if (list.get(i) == null) { 1094 return i; 1095 } 1096 } 1097 } else { 1098 for (int i = list.size() - 1; i >= 0; i--) { 1099 if (element.equals(list.get(i))) { 1100 return i; 1101 } 1102 } 1103 } 1104 return -1; 1105 } 1106 1107 /** 1108 * Returns an implementation of {@link List#listIterator(int)}. 1109 */ 1110 static <E> ListIterator<E> listIteratorImpl(List<E> list, int index) { 1111 return new AbstractListWrapper<>(list).listIterator(index); 1112 } 1113 1114 /** 1115 * An implementation of {@link List#subList(int, int)}. 1116 */ 1117 static <E> List<E> subListImpl(final List<E> list, int fromIndex, int toIndex) { 1118 List<E> wrapper; 1119 if (list instanceof RandomAccess) { 1120 wrapper = 1121 new RandomAccessListWrapper<E>(list) { 1122 @Override 1123 public ListIterator<E> listIterator(int index) { 1124 return backingList.listIterator(index); 1125 } 1126 1127 private static final long serialVersionUID = 0; 1128 }; 1129 } else { 1130 wrapper = 1131 new AbstractListWrapper<E>(list) { 1132 @Override 1133 public ListIterator<E> listIterator(int index) { 1134 return backingList.listIterator(index); 1135 } 1136 1137 private static final long serialVersionUID = 0; 1138 }; 1139 } 1140 return wrapper.subList(fromIndex, toIndex); 1141 } 1142 1143 private static class AbstractListWrapper<E> extends AbstractList<E> { 1144 final List<E> backingList; 1145 1146 AbstractListWrapper(List<E> backingList) { 1147 this.backingList = checkNotNull(backingList); 1148 } 1149 1150 @Override 1151 public void add(int index, E element) { 1152 backingList.add(index, element); 1153 } 1154 1155 @Override 1156 public boolean addAll(int index, Collection<? extends E> c) { 1157 return backingList.addAll(index, c); 1158 } 1159 1160 @Override 1161 public E get(int index) { 1162 return backingList.get(index); 1163 } 1164 1165 @Override 1166 public E remove(int index) { 1167 return backingList.remove(index); 1168 } 1169 1170 @Override 1171 public E set(int index, E element) { 1172 return backingList.set(index, element); 1173 } 1174 1175 @Override 1176 public boolean contains(Object o) { 1177 return backingList.contains(o); 1178 } 1179 1180 @Override 1181 public int size() { 1182 return backingList.size(); 1183 } 1184 } 1185 1186 private static class RandomAccessListWrapper<E> extends AbstractListWrapper<E> 1187 implements RandomAccess { 1188 RandomAccessListWrapper(List<E> backingList) { 1189 super(backingList); 1190 } 1191 } 1192 1193 /** 1194 * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 1195 */ 1196 static <T> List<T> cast(Iterable<T> iterable) { 1197 return (List<T>) iterable; 1198 } 1199}