001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.hash;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019
020import com.google.common.annotations.Beta;
021import com.google.common.base.Supplier;
022import java.security.Key;
023import java.util.ArrayList;
024import java.util.Arrays;
025import java.util.Iterator;
026import java.util.List;
027import java.util.zip.Adler32;
028import java.util.zip.CRC32;
029import java.util.zip.Checksum;
030import javax.annotation.Nullable;
031import javax.crypto.spec.SecretKeySpec;
032
033/**
034 * Static methods to obtain {@link HashFunction} instances, and other static hashing-related
035 * utilities.
036 *
037 * <p>A comparison of the various hash functions can be found
038 * <a href="http://goo.gl/jS7HH">here</a>.
039 *
040 * @author Kevin Bourrillion
041 * @author Dimitris Andreou
042 * @author Kurt Alfred Kluever
043 * @since 11.0
044 */
045@Beta
046public final class Hashing {
047  /**
048   * Returns a general-purpose, <b>temporary-use</b>, non-cryptographic hash function. The algorithm
049   * the returned function implements is unspecified and subject to change without notice.
050   *
051   * <p><b>Warning:</b> a new random seed for these functions is chosen each time the {@code
052   * Hashing} class is loaded. <b>Do not use this method</b> if hash codes may escape the current
053   * process in any way, for example being sent over RPC, or saved to disk. For a general-purpose,
054   * non-cryptographic hash function that will never change behavior, we suggest {@link
055   * #murmur3_128}.
056   *
057   * <p>Repeated calls to this method on the same loaded {@code Hashing} class, using the same value
058   * for {@code minimumBits}, will return identically-behaving {@link HashFunction} instances.
059   *
060   * @param minimumBits a positive integer (can be arbitrarily large)
061   * @return a hash function, described above, that produces hash codes of length {@code
062   *     minimumBits} or greater
063   */
064  public static HashFunction goodFastHash(int minimumBits) {
065    int bits = checkPositiveAndMakeMultipleOf32(minimumBits);
066
067    if (bits == 32) {
068      return Murmur3_32HashFunction.GOOD_FAST_HASH_32;
069    }
070    if (bits <= 128) {
071      return Murmur3_128HashFunction.GOOD_FAST_HASH_128;
072    }
073
074    // Otherwise, join together some 128-bit murmur3s
075    int hashFunctionsNeeded = (bits + 127) / 128;
076    HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded];
077    hashFunctions[0] = Murmur3_128HashFunction.GOOD_FAST_HASH_128;
078    int seed = GOOD_FAST_HASH_SEED;
079    for (int i = 1; i < hashFunctionsNeeded; i++) {
080      seed += 1500450271; // a prime; shouldn't matter
081      hashFunctions[i] = murmur3_128(seed);
082    }
083    return new ConcatenatedHashFunction(hashFunctions);
084  }
085
086  /**
087   * Used to randomize {@link #goodFastHash} instances, so that programs which persist anything
088   * dependent on the hash codes they produce will fail sooner.
089   */
090  static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis();
091
092  /**
093   * Returns a hash function implementing the
094   * <a href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3
095   * algorithm, x86 variant</a> (little-endian variant), using the given seed value.
096   *
097   * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A).
098   */
099  public static HashFunction murmur3_32(int seed) {
100    return new Murmur3_32HashFunction(seed);
101  }
102
103  /**
104   * Returns a hash function implementing the
105   * <a href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3
106   * algorithm, x86 variant</a> (little-endian variant), using a seed value of zero.
107   *
108   * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A).
109   */
110  public static HashFunction murmur3_32() {
111    return Murmur3_32HashFunction.MURMUR3_32;
112  }
113
114  /**
115   * Returns a hash function implementing the
116   * <a href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">128-bit murmur3
117   * algorithm, x64 variant</a> (little-endian variant), using the given seed value.
118   *
119   * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F).
120   */
121  public static HashFunction murmur3_128(int seed) {
122    return new Murmur3_128HashFunction(seed);
123  }
124
125  /**
126   * Returns a hash function implementing the
127   * <a href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">128-bit murmur3
128   * algorithm, x64 variant</a> (little-endian variant), using a seed value of zero.
129   *
130   * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F).
131   */
132  public static HashFunction murmur3_128() {
133    return Murmur3_128HashFunction.MURMUR3_128;
134  }
135
136  /**
137   * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit
138   * SipHash-2-4 algorithm</a> using a seed value of {@code k = 00 01 02 ...}.
139   *
140   * @since 15.0
141   */
142  public static HashFunction sipHash24() {
143    return SipHashFunction.SIP_HASH_24;
144  }
145
146  /**
147   * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit
148   * SipHash-2-4 algorithm</a> using the given seed.
149   *
150   * @since 15.0
151   */
152  public static HashFunction sipHash24(long k0, long k1) {
153    return new SipHashFunction(2, 4, k0, k1);
154  }
155
156  /**
157   * Returns a hash function implementing the MD5 hash algorithm (128 hash bits).
158   *
159   * @deprecated If you must interoperate with a system that requires MD5, then use this method,
160   *     despite its deprecation. But if you can choose your hash function, avoid MD5, which is
161   *     neither fast nor secure. As of January 2017, we suggest:
162   *     <ul>
163   *       <li>For security:
164   *           {@link Hashing#sha256} or a higher-level API.
165   *       <li>For speed: {@link Hashing#goodFastHash}, though see its docs for caveats.
166   *     </ul>
167   */
168  @Deprecated
169  public static HashFunction md5() {
170    return Md5Holder.MD5;
171  }
172
173  private static class Md5Holder {
174    static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()");
175  }
176
177  /**
178   * Returns a hash function implementing the SHA-1 algorithm (160 hash bits).
179   *
180   * @deprecated If you must interoperate with a system that requires SHA-1, then use this method,
181   *     despite its deprecation. But if you can choose your hash function, avoid SHA-1, which is
182   *     neither fast nor secure. As of January 2017, we suggest:
183   *     <ul>
184   *       <li>For security:
185   *           {@link Hashing#sha256} or a higher-level API.
186   *       <li>For speed: {@link Hashing#goodFastHash}, though see its docs for caveats.
187   *     </ul>
188   */
189  @Deprecated
190  public static HashFunction sha1() {
191    return Sha1Holder.SHA_1;
192  }
193
194  private static class Sha1Holder {
195    static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()");
196  }
197
198  /** Returns a hash function implementing the SHA-256 algorithm (256 hash bits). */
199  public static HashFunction sha256() {
200    return Sha256Holder.SHA_256;
201  }
202
203  private static class Sha256Holder {
204    static final HashFunction SHA_256 =
205        new MessageDigestHashFunction("SHA-256", "Hashing.sha256()");
206  }
207
208  /**
209   * Returns a hash function implementing the SHA-384 algorithm (384 hash bits).
210   *
211   * @since 19.0
212   */
213  public static HashFunction sha384() {
214    return Sha384Holder.SHA_384;
215  }
216
217  private static class Sha384Holder {
218    static final HashFunction SHA_384 =
219        new MessageDigestHashFunction("SHA-384", "Hashing.sha384()");
220  }
221
222  /** Returns a hash function implementing the SHA-512 algorithm (512 hash bits). */
223  public static HashFunction sha512() {
224    return Sha512Holder.SHA_512;
225  }
226
227  private static class Sha512Holder {
228    static final HashFunction SHA_512 =
229        new MessageDigestHashFunction("SHA-512", "Hashing.sha512()");
230  }
231
232  /**
233   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
234   * MD5 (128 hash bits) hash function and the given secret key.
235   *
236   *
237   * @param key the secret key
238   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
239   * @since 20.0
240   */
241  public static HashFunction hmacMd5(Key key) {
242    return new MacHashFunction("HmacMD5", key, hmacToString("hmacMd5", key));
243  }
244
245  /**
246   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
247   * MD5 (128 hash bits) hash function and a {@link SecretKeySpec} created from the given byte array
248   * and the MD5 algorithm.
249   *
250   *
251   * @param key the key material of the secret key
252   * @since 20.0
253   */
254  public static HashFunction hmacMd5(byte[] key) {
255    return hmacMd5(new SecretKeySpec(checkNotNull(key), "HmacMD5"));
256  }
257
258  /**
259   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
260   * SHA-1 (160 hash bits) hash function and the given secret key.
261   *
262   *
263   * @param key the secret key
264   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
265   * @since 20.0
266   */
267  public static HashFunction hmacSha1(Key key) {
268    return new MacHashFunction("HmacSHA1", key, hmacToString("hmacSha1", key));
269  }
270
271  /**
272   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
273   * SHA-1 (160 hash bits) hash function and a {@link SecretKeySpec} created from the given byte
274   * array and the SHA-1 algorithm.
275   *
276   *
277   * @param key the key material of the secret key
278   * @since 20.0
279   */
280  public static HashFunction hmacSha1(byte[] key) {
281    return hmacSha1(new SecretKeySpec(checkNotNull(key), "HmacSHA1"));
282  }
283
284  /**
285   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
286   * SHA-256 (256 hash bits) hash function and the given secret key.
287   *
288   *
289   * @param key the secret key
290   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
291   * @since 20.0
292   */
293  public static HashFunction hmacSha256(Key key) {
294    return new MacHashFunction("HmacSHA256", key, hmacToString("hmacSha256", key));
295  }
296
297  /**
298   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
299   * SHA-256 (256 hash bits) hash function and a {@link SecretKeySpec} created from the given byte
300   * array and the SHA-256 algorithm.
301   *
302   *
303   * @param key the key material of the secret key
304   * @since 20.0
305   */
306  public static HashFunction hmacSha256(byte[] key) {
307    return hmacSha256(new SecretKeySpec(checkNotNull(key), "HmacSHA256"));
308  }
309
310  /**
311   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
312   * SHA-512 (512 hash bits) hash function and the given secret key.
313   *
314   *
315   * @param key the secret key
316   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
317   * @since 20.0
318   */
319  public static HashFunction hmacSha512(Key key) {
320    return new MacHashFunction("HmacSHA512", key, hmacToString("hmacSha512", key));
321  }
322
323  /**
324   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
325   * SHA-512 (512 hash bits) hash function and a {@link SecretKeySpec} created from the given byte
326   * array and the SHA-512 algorithm.
327   *
328   *
329   * @param key the key material of the secret key
330   * @since 20.0
331   */
332  public static HashFunction hmacSha512(byte[] key) {
333    return hmacSha512(new SecretKeySpec(checkNotNull(key), "HmacSHA512"));
334  }
335
336  private static String hmacToString(String methodName, Key key) {
337    return String.format(
338        "Hashing.%s(Key[algorithm=%s, format=%s])",
339        methodName,
340        key.getAlgorithm(),
341        key.getFormat());
342  }
343
344  /**
345   * Returns a hash function implementing the CRC32C checksum algorithm (32 hash bits) as described
346   * by RFC 3720, Section 12.1.
347   *
348   * <p>This function is best understood as a <a
349   * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a
350   * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>.
351   *
352   * @since 18.0
353   */
354  public static HashFunction crc32c() {
355    return Crc32cHashFunction.CRC_32_C;
356  }
357
358  /**
359   * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash bits).
360   *
361   * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code
362   * HashCode} produced by this function, use {@link HashCode#padToLong()}.
363   *
364   * <p>This function is best understood as a <a
365   * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a
366   * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>.
367   *
368   * @since 14.0
369   */
370  public static HashFunction crc32() {
371    return ChecksumType.CRC_32.hashFunction;
372  }
373
374  /**
375   * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash bits).
376   *
377   * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code
378   * HashCode} produced by this function, use {@link HashCode#padToLong()}.
379   *
380   * <p>This function is best understood as a <a
381   * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a
382   * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>.
383   *
384   * @since 14.0
385   */
386  public static HashFunction adler32() {
387    return ChecksumType.ADLER_32.hashFunction;
388  }
389
390  enum ChecksumType implements Supplier<Checksum> {
391    CRC_32("Hashing.crc32()") {
392      @Override
393      public Checksum get() {
394        return new CRC32();
395      }
396    },
397    ADLER_32("Hashing.adler32()") {
398      @Override
399      public Checksum get() {
400        return new Adler32();
401      }
402    };
403
404    public final HashFunction hashFunction;
405
406    ChecksumType(String toString) {
407      this.hashFunction = new ChecksumHashFunction(this, 32, toString);
408    }
409  }
410
411  /**
412   * Returns a hash function implementing FarmHash's Fingerprint64, an open-source algorithm.
413   *
414   * <p>This is designed for generating persistent fingerprints of strings. It isn't
415   * cryptographically secure, but it produces a high-quality hash with fewer collisions than some
416   * alternatives we've used in the past. FarmHashFingerprints generated using this are byte-wise
417   * identical to those created using the C++ version, but note that this uses unsigned integers
418   * (see {@link com.google.common.primitives.UnsignedInts}). Comparisons between the two should
419   * take this into account.
420   *
421   * <p>This function is best understood as a <a
422   * href="https://en.wikipedia.org/wiki/Fingerprint_(computing)">fingerprint</a> rather than a true
423   * <a href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>.
424   *
425   * @since 20.0
426   */
427  public static HashFunction farmHashFingerprint64() {
428    return FarmHashFingerprint64.FARMHASH_FINGERPRINT_64;
429  }
430
431  /**
432   * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in a uniform manner
433   * that minimizes the need for remapping as {@code buckets} grows. That is, {@code
434   * consistentHash(h, n)} equals:
435   *
436   * <ul>
437   * <li>{@code n - 1}, with approximate probability {@code 1/n}
438   * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n})
439   * </ul>
440   *
441   * <p>This method is suitable for the common use case of dividing work among buckets that meet the
442   * following conditions:
443   *
444   * <ul>
445   * <li>You want to assign the same fraction of inputs to each bucket.
446   * <li>When you reduce the number of buckets, you can accept that the most recently added buckets
447   * will be removed first. More concretely, if you are dividing traffic among tasks, you can
448   * decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and {@code
449   * consistentHash} will handle it. If, however, you are dividing traffic among servers {@code
450   * alpha}, {@code bravo}, and {@code charlie} and you occasionally need to take each of the
451   * servers offline, {@code consistentHash} will be a poor fit: It provides no way for you to
452   * specify which of the three buckets is disappearing. Thus, if your buckets change from {@code
453   * [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will assign all the old {@code alpha}
454   * traffic to {@code bravo} and all the old {@code bravo} traffic to {@code charlie}, rather than
455   * letting {@code bravo} keep its traffic.
456   * </ul>
457   *
458   *
459   * <p>See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">Wikipedia article on
460   * consistent hashing</a> for more information.
461   */
462  public static int consistentHash(HashCode hashCode, int buckets) {
463    return consistentHash(hashCode.padToLong(), buckets);
464  }
465
466  /**
467   * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a uniform manner that
468   * minimizes the need for remapping as {@code buckets} grows. That is, {@code consistentHash(h,
469   * n)} equals:
470   *
471   * <ul>
472   * <li>{@code n - 1}, with approximate probability {@code 1/n}
473   * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n})
474   * </ul>
475   *
476   * <p>This method is suitable for the common use case of dividing work among buckets that meet the
477   * following conditions:
478   *
479   * <ul>
480   * <li>You want to assign the same fraction of inputs to each bucket.
481   * <li>When you reduce the number of buckets, you can accept that the most recently added buckets
482   * will be removed first. More concretely, if you are dividing traffic among tasks, you can
483   * decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and {@code
484   * consistentHash} will handle it. If, however, you are dividing traffic among servers {@code
485   * alpha}, {@code bravo}, and {@code charlie} and you occasionally need to take each of the
486   * servers offline, {@code consistentHash} will be a poor fit: It provides no way for you to
487   * specify which of the three buckets is disappearing. Thus, if your buckets change from {@code
488   * [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will assign all the old {@code alpha}
489   * traffic to {@code bravo} and all the old {@code bravo} traffic to {@code charlie}, rather than
490   * letting {@code bravo} keep its traffic.
491   * </ul>
492   *
493   *
494   * <p>See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">Wikipedia article on
495   * consistent hashing</a> for more information.
496   */
497  public static int consistentHash(long input, int buckets) {
498    checkArgument(buckets > 0, "buckets must be positive: %s", buckets);
499    LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input);
500    int candidate = 0;
501    int next;
502
503    // Jump from bucket to bucket until we go out of range
504    while (true) {
505      next = (int) ((candidate + 1) / generator.nextDouble());
506      if (next >= 0 && next < buckets) {
507        candidate = next;
508      } else {
509        return candidate;
510      }
511    }
512  }
513
514  /**
515   * Returns a hash code, having the same bit length as each of the input hash codes, that combines
516   * the information of these hash codes in an ordered fashion. That is, whenever two equal hash
517   * codes are produced by two calls to this method, it is <i>as likely as possible</i> that each
518   * was computed from the <i>same</i> input hash codes in the <i>same</i> order.
519   *
520   * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all
521   *     have the same bit length
522   */
523  public static HashCode combineOrdered(Iterable<HashCode> hashCodes) {
524    Iterator<HashCode> iterator = hashCodes.iterator();
525    checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine.");
526    int bits = iterator.next().bits();
527    byte[] resultBytes = new byte[bits / 8];
528    for (HashCode hashCode : hashCodes) {
529      byte[] nextBytes = hashCode.asBytes();
530      checkArgument(
531          nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length.");
532      for (int i = 0; i < nextBytes.length; i++) {
533        resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]);
534      }
535    }
536    return HashCode.fromBytesNoCopy(resultBytes);
537  }
538
539  /**
540   * Returns a hash code, having the same bit length as each of the input hash codes, that combines
541   * the information of these hash codes in an unordered fashion. That is, whenever two equal hash
542   * codes are produced by two calls to this method, it is <i>as likely as possible</i> that each
543   * was computed from the <i>same</i> input hash codes in <i>some</i> order.
544   *
545   * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all
546   *     have the same bit length
547   */
548  public static HashCode combineUnordered(Iterable<HashCode> hashCodes) {
549    Iterator<HashCode> iterator = hashCodes.iterator();
550    checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine.");
551    byte[] resultBytes = new byte[iterator.next().bits() / 8];
552    for (HashCode hashCode : hashCodes) {
553      byte[] nextBytes = hashCode.asBytes();
554      checkArgument(
555          nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length.");
556      for (int i = 0; i < nextBytes.length; i++) {
557        resultBytes[i] += nextBytes[i];
558      }
559    }
560    return HashCode.fromBytesNoCopy(resultBytes);
561  }
562
563  /**
564   * Checks that the passed argument is positive, and ceils it to a multiple of 32.
565   */
566  static int checkPositiveAndMakeMultipleOf32(int bits) {
567    checkArgument(bits > 0, "Number of bits must be positive");
568    return (bits + 31) & ~31;
569  }
570
571  /**
572   * Returns a hash function which computes its hash code by concatenating the hash codes of the
573   * underlying hash functions together. This can be useful if you need to generate hash codes of a
574   * specific length.
575   *
576   * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash
577   * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}.
578   *
579   * @since 19.0
580   */
581  public static HashFunction concatenating(
582      HashFunction first, HashFunction second, HashFunction... rest) {
583    // We can't use Lists.asList() here because there's no hash->collect dependency
584    List<HashFunction> list = new ArrayList<>();
585    list.add(first);
586    list.add(second);
587    list.addAll(Arrays.asList(rest));
588    return new ConcatenatedHashFunction(list.toArray(new HashFunction[0]));
589  }
590
591  /**
592   * Returns a hash function which computes its hash code by concatenating the hash codes of the
593   * underlying hash functions together. This can be useful if you need to generate hash codes of a
594   * specific length.
595   *
596   * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash
597   * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}.
598   *
599   * @since 19.0
600   */
601  public static HashFunction concatenating(Iterable<HashFunction> hashFunctions) {
602    checkNotNull(hashFunctions);
603    // We can't use Iterables.toArray() here because there's no hash->collect dependency
604    List<HashFunction> list = new ArrayList<>();
605    for (HashFunction hashFunction : hashFunctions) {
606      list.add(hashFunction);
607    }
608    checkArgument(list.size() > 0, "number of hash functions (%s) must be > 0", list.size());
609    return new ConcatenatedHashFunction(list.toArray(new HashFunction[0]));
610  }
611
612  private static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction {
613    private final int bits;
614
615    private ConcatenatedHashFunction(HashFunction... functions) {
616      super(functions);
617      int bitSum = 0;
618      for (HashFunction function : functions) {
619        bitSum += function.bits();
620        checkArgument(
621            function.bits() % 8 == 0,
622            "the number of bits (%s) in hashFunction (%s) must be divisible by 8",
623            function.bits(),
624            function);
625      }
626      this.bits = bitSum;
627    }
628
629    @Override
630    HashCode makeHash(Hasher[] hashers) {
631      byte[] bytes = new byte[bits / 8];
632      int i = 0;
633      for (Hasher hasher : hashers) {
634        HashCode newHash = hasher.hash();
635        i += newHash.writeBytesTo(bytes, i, newHash.bits() / 8);
636      }
637      return HashCode.fromBytesNoCopy(bytes);
638    }
639
640    @Override
641    public int bits() {
642      return bits;
643    }
644
645    @Override
646    public boolean equals(@Nullable Object object) {
647      if (object instanceof ConcatenatedHashFunction) {
648        ConcatenatedHashFunction other = (ConcatenatedHashFunction) object;
649        return Arrays.equals(functions, other.functions);
650      }
651      return false;
652    }
653
654    @Override
655    public int hashCode() {
656      return Arrays.hashCode(functions) * 31 + bits;
657    }
658  }
659
660  /**
661   * Linear CongruentialGenerator to use for consistent hashing. See
662   * http://en.wikipedia.org/wiki/Linear_congruential_generator
663   */
664  private static final class LinearCongruentialGenerator {
665    private long state;
666
667    public LinearCongruentialGenerator(long seed) {
668      this.state = seed;
669    }
670
671    public double nextDouble() {
672      state = 2862933555777941757L * state + 1;
673      return ((double) ((int) (state >>> 33) + 1)) / (0x1.0p31);
674    }
675  }
676
677  private Hashing() {}
678}