001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 019import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 020import static com.google.common.math.DoubleUtils.getSignificand; 021import static com.google.common.math.DoubleUtils.isFinite; 022import static com.google.common.math.DoubleUtils.isNormal; 023import static com.google.common.math.DoubleUtils.scaleNormalize; 024import static com.google.common.math.MathPreconditions.checkInRange; 025import static com.google.common.math.MathPreconditions.checkNonNegative; 026import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 027import static java.lang.Math.abs; 028import static java.lang.Math.copySign; 029import static java.lang.Math.getExponent; 030import static java.lang.Math.log; 031import static java.lang.Math.rint; 032 033import com.google.common.annotations.GwtCompatible; 034import com.google.common.annotations.GwtIncompatible; 035import com.google.common.annotations.VisibleForTesting; 036import com.google.common.primitives.Booleans; 037import com.google.errorprone.annotations.CanIgnoreReturnValue; 038import java.math.BigInteger; 039import java.math.RoundingMode; 040import java.util.Iterator; 041 042/** 043 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 044 * 045 * @author Louis Wasserman 046 * @since 11.0 047 */ 048@GwtCompatible(emulated = true) 049public final class DoubleMath { 050 /* 051 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result as 052 * rounding x according to the specified mode. 053 */ 054 @GwtIncompatible // #isMathematicalInteger, com.google.common.math.DoubleUtils 055 static double roundIntermediate(double x, RoundingMode mode) { 056 if (!isFinite(x)) { 057 throw new ArithmeticException("input is infinite or NaN"); 058 } 059 switch (mode) { 060 case UNNECESSARY: 061 checkRoundingUnnecessary(isMathematicalInteger(x)); 062 return x; 063 064 case FLOOR: 065 if (x >= 0.0 || isMathematicalInteger(x)) { 066 return x; 067 } else { 068 return (long) x - 1; 069 } 070 071 case CEILING: 072 if (x <= 0.0 || isMathematicalInteger(x)) { 073 return x; 074 } else { 075 return (long) x + 1; 076 } 077 078 case DOWN: 079 return x; 080 081 case UP: 082 if (isMathematicalInteger(x)) { 083 return x; 084 } else { 085 return (long) x + (x > 0 ? 1 : -1); 086 } 087 088 case HALF_EVEN: 089 return rint(x); 090 091 case HALF_UP: 092 { 093 double z = rint(x); 094 if (abs(x - z) == 0.5) { 095 return x + copySign(0.5, x); 096 } else { 097 return z; 098 } 099 } 100 101 case HALF_DOWN: 102 { 103 double z = rint(x); 104 if (abs(x - z) == 0.5) { 105 return x; 106 } else { 107 return z; 108 } 109 } 110 111 default: 112 throw new AssertionError(); 113 } 114 } 115 116 /** 117 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 118 * mode, if possible. 119 * 120 * @throws ArithmeticException if 121 * <ul> 122 * <li>{@code x} is infinite or NaN 123 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 124 * mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 125 * Integer.MAX_VALUE} 126 * <li>{@code x} is not a mathematical integer and {@code mode} is 127 * {@link RoundingMode#UNNECESSARY} 128 * </ul> 129 */ 130 @GwtIncompatible // #roundIntermediate 131 public static int roundToInt(double x, RoundingMode mode) { 132 double z = roundIntermediate(x, mode); 133 checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0); 134 return (int) z; 135 } 136 137 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 138 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 139 140 /** 141 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 142 * mode, if possible. 143 * 144 * @throws ArithmeticException if 145 * <ul> 146 * <li>{@code x} is infinite or NaN 147 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 148 * mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 149 * Long.MAX_VALUE} 150 * <li>{@code x} is not a mathematical integer and {@code mode} is 151 * {@link RoundingMode#UNNECESSARY} 152 * </ul> 153 */ 154 @GwtIncompatible // #roundIntermediate 155 public static long roundToLong(double x, RoundingMode mode) { 156 double z = roundIntermediate(x, mode); 157 checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE); 158 return (long) z; 159 } 160 161 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 162 /* 163 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 164 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 165 */ 166 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 167 168 /** 169 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 170 * rounding mode, if possible. 171 * 172 * @throws ArithmeticException if 173 * <ul> 174 * <li>{@code x} is infinite or NaN 175 * <li>{@code x} is not a mathematical integer and {@code mode} is 176 * {@link RoundingMode#UNNECESSARY} 177 * </ul> 178 */ 179 // #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils 180 @GwtIncompatible 181 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 182 x = roundIntermediate(x, mode); 183 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 184 return BigInteger.valueOf((long) x); 185 } 186 int exponent = getExponent(x); 187 long significand = getSignificand(x); 188 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 189 return (x < 0) ? result.negate() : result; 190 } 191 192 /** 193 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 194 * {@code k}. 195 */ 196 @GwtIncompatible // com.google.common.math.DoubleUtils 197 public static boolean isPowerOfTwo(double x) { 198 if (x > 0.0 && isFinite(x)) { 199 long significand = getSignificand(x); 200 return (significand & (significand - 1)) == 0; 201 } 202 return false; 203 } 204 205 /** 206 * Returns the base 2 logarithm of a double value. 207 * 208 * <p>Special cases: 209 * <ul> 210 * <li>If {@code x} is NaN or less than zero, the result is NaN. 211 * <li>If {@code x} is positive infinity, the result is positive infinity. 212 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 213 * </ul> 214 * 215 * <p>The computed result is within 1 ulp of the exact result. 216 * 217 * <p>If the result of this method will be immediately rounded to an {@code int}, 218 * {@link #log2(double, RoundingMode)} is faster. 219 */ 220 public static double log2(double x) { 221 return log(x) / LN_2; // surprisingly within 1 ulp according to tests 222 } 223 224 private static final double LN_2 = log(2); 225 226 /** 227 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 228 * {@code int}. 229 * 230 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 231 * 232 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 233 * infinite 234 */ 235 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 236 @SuppressWarnings("fallthrough") 237 public static int log2(double x, RoundingMode mode) { 238 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 239 int exponent = getExponent(x); 240 if (!isNormal(x)) { 241 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 242 // Do the calculation on a normal value. 243 } 244 // x is positive, finite, and normal 245 boolean increment; 246 switch (mode) { 247 case UNNECESSARY: 248 checkRoundingUnnecessary(isPowerOfTwo(x)); 249 // fall through 250 case FLOOR: 251 increment = false; 252 break; 253 case CEILING: 254 increment = !isPowerOfTwo(x); 255 break; 256 case DOWN: 257 increment = exponent < 0 & !isPowerOfTwo(x); 258 break; 259 case UP: 260 increment = exponent >= 0 & !isPowerOfTwo(x); 261 break; 262 case HALF_DOWN: 263 case HALF_EVEN: 264 case HALF_UP: 265 double xScaled = scaleNormalize(x); 266 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 267 // so log2(x) is never exactly exponent + 0.5. 268 increment = (xScaled * xScaled) > 2.0; 269 break; 270 default: 271 throw new AssertionError(); 272 } 273 return increment ? exponent + 1 : exponent; 274 } 275 276 /** 277 * Returns {@code true} if {@code x} represents a mathematical integer. 278 * 279 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 280 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 281 */ 282 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 283 public static boolean isMathematicalInteger(double x) { 284 return isFinite(x) 285 && (x == 0.0 286 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 287 } 288 289 /** 290 * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if 291 * {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if 292 * {@code n! > Double.MAX_VALUE}. 293 * 294 * <p>The result is within 1 ulp of the true value. 295 * 296 * @throws IllegalArgumentException if {@code n < 0} 297 */ 298 public static double factorial(int n) { 299 checkNonNegative("n", n); 300 if (n > MAX_FACTORIAL) { 301 return Double.POSITIVE_INFINITY; 302 } else { 303 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 304 // result than multiplying by everySixteenthFactorial[n >> 4] directly. 305 double accum = 1.0; 306 for (int i = 1 + (n & ~0xf); i <= n; i++) { 307 accum *= i; 308 } 309 return accum * everySixteenthFactorial[n >> 4]; 310 } 311 } 312 313 @VisibleForTesting static final int MAX_FACTORIAL = 170; 314 315 @VisibleForTesting 316 static final double[] everySixteenthFactorial = { 317 0x1.0p0, 318 0x1.30777758p44, 319 0x1.956ad0aae33a4p117, 320 0x1.ee69a78d72cb6p202, 321 0x1.fe478ee34844ap295, 322 0x1.c619094edabffp394, 323 0x1.3638dd7bd6347p498, 324 0x1.7cac197cfe503p605, 325 0x1.1e5dfc140e1e5p716, 326 0x1.8ce85fadb707ep829, 327 0x1.95d5f3d928edep945 328 }; 329 330 /** 331 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 332 * 333 * <p>Technically speaking, this is equivalent to {@code Math.abs(a - b) <= tolerance || 334 * Double.valueOf(a).equals(Double.valueOf(b))}. 335 * 336 * <p>Notable special cases include: 337 * 338 * <ul> 339 * <li>All NaNs are fuzzily equal. 340 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 341 * <li>Positive and negative zero are always fuzzily equal. 342 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a} 343 * and {@code b} are fuzzily equal if and only if {@code a == b}. 344 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 345 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 346 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 347 * </ul> 348 * 349 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 350 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 351 * implementations. 352 * 353 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 354 * @since 13.0 355 */ 356 public static boolean fuzzyEquals(double a, double b, double tolerance) { 357 MathPreconditions.checkNonNegative("tolerance", tolerance); 358 return Math.copySign(a - b, 1.0) <= tolerance 359 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 360 || (a == b) // needed to ensure that infinities equal themselves 361 || (Double.isNaN(a) && Double.isNaN(b)); 362 } 363 364 /** 365 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 366 * 367 * <p>This method is equivalent to 368 * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like 369 * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all 370 * other values (including {@link Double#POSITIVE_INFINITY}). 371 * 372 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in 373 * {@link Comparable#compareTo} implementations. In particular, it is not transitive. 374 * 375 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 376 * @since 13.0 377 */ 378 public static int fuzzyCompare(double a, double b, double tolerance) { 379 if (fuzzyEquals(a, b, tolerance)) { 380 return 0; 381 } else if (a < b) { 382 return -1; 383 } else if (a > b) { 384 return 1; 385 } else { 386 return Booleans.compare(Double.isNaN(a), Double.isNaN(b)); 387 } 388 } 389 390 /** 391 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 392 * {@code values}. 393 * 394 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 395 * the arithmetic mean of the population. 396 * 397 * @param values a nonempty series of values 398 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 399 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 400 * values. This method will be removed in February 2018. 401 */ 402 @Deprecated 403 // com.google.common.math.DoubleUtils 404 @GwtIncompatible 405 public static double mean(double... values) { 406 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 407 long count = 1; 408 double mean = checkFinite(values[0]); 409 for (int index = 1; index < values.length; ++index) { 410 checkFinite(values[index]); 411 count++; 412 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 413 mean += (values[index] - mean) / count; 414 } 415 return mean; 416 } 417 418 /** 419 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 420 * {@code values}. 421 * 422 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 423 * the arithmetic mean of the population. 424 * 425 * @param values a nonempty series of values 426 * @throws IllegalArgumentException if {@code values} is empty 427 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 428 * values. This method will be removed in February 2018. 429 */ 430 @Deprecated 431 public static double mean(int... values) { 432 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 433 // The upper bound on the the length of an array and the bounds on the int values mean that, in 434 // this case only, we can compute the sum as a long without risking overflow or loss of 435 // precision. So we do that, as it's slightly quicker than the Knuth algorithm. 436 long sum = 0; 437 for (int index = 0; index < values.length; ++index) { 438 sum += values[index]; 439 } 440 return (double) sum / values.length; 441 } 442 443 /** 444 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 445 * {@code values}. 446 * 447 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 448 * the arithmetic mean of the population. 449 * 450 * @param values a nonempty series of values, which will be converted to {@code double} values 451 * (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15)) 452 * @throws IllegalArgumentException if {@code values} is empty 453 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 454 * values. This method will be removed in February 2018. 455 */ 456 @Deprecated 457 public static double mean(long... values) { 458 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 459 long count = 1; 460 double mean = values[0]; 461 for (int index = 1; index < values.length; ++index) { 462 count++; 463 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 464 mean += (values[index] - mean) / count; 465 } 466 return mean; 467 } 468 469 /** 470 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 471 * {@code values}. 472 * 473 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 474 * the arithmetic mean of the population. 475 * 476 * @param values a nonempty series of values, which will be converted to {@code double} values 477 * (this may cause loss of precision) 478 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 479 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 480 * values. This method will be removed in February 2018. 481 */ 482 @Deprecated 483 // com.google.common.math.DoubleUtils 484 @GwtIncompatible 485 public static double mean(Iterable<? extends Number> values) { 486 return mean(values.iterator()); 487 } 488 489 /** 490 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 491 * {@code values}. 492 * 493 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 494 * the arithmetic mean of the population. 495 * 496 * @param values a nonempty series of values, which will be converted to {@code double} values 497 * (this may cause loss of precision) 498 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 499 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 500 * values. This method will be removed in February 2018. 501 */ 502 @Deprecated 503 // com.google.common.math.DoubleUtils 504 @GwtIncompatible 505 public static double mean(Iterator<? extends Number> values) { 506 checkArgument(values.hasNext(), "Cannot take mean of 0 values"); 507 long count = 1; 508 double mean = checkFinite(values.next().doubleValue()); 509 while (values.hasNext()) { 510 double value = checkFinite(values.next().doubleValue()); 511 count++; 512 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 513 mean += (value - mean) / count; 514 } 515 return mean; 516 } 517 518 @GwtIncompatible // com.google.common.math.DoubleUtils 519 @CanIgnoreReturnValue 520 private static double checkFinite(double argument) { 521 checkArgument(isFinite(argument)); 522 return argument; 523 } 524 525 private DoubleMath() {} 526}