001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.hash;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019
020import com.google.common.annotations.Beta;
021import com.google.common.annotations.VisibleForTesting;
022import com.google.common.base.Objects;
023import com.google.common.base.Predicate;
024import com.google.common.hash.BloomFilterStrategies.LockFreeBitArray;
025import com.google.common.math.DoubleMath;
026import com.google.common.primitives.SignedBytes;
027import com.google.common.primitives.UnsignedBytes;
028import com.google.errorprone.annotations.CanIgnoreReturnValue;
029import java.io.DataInputStream;
030import java.io.DataOutputStream;
031import java.io.IOException;
032import java.io.InputStream;
033import java.io.OutputStream;
034import java.io.Serializable;
035import java.math.RoundingMode;
036import java.util.stream.Collector;
037import javax.annotation.Nullable;
038
039/**
040 * A Bloom filter for instances of {@code T}. A Bloom filter offers an approximate containment test
041 * with one-sided error: if it claims that an element is contained in it, this might be in error,
042 * but if it claims that an element is <i>not</i> contained in it, then this is definitely true.
043 *
044 * <p>If you are unfamiliar with Bloom filters, this nice <a
045 * href="http://llimllib.github.com/bloomfilter-tutorial/">tutorial</a> may help you understand how
046 * they work.
047 *
048 * <p>The false positive probability ({@code FPP}) of a Bloom filter is defined as the probability
049 * that {@linkplain #mightContain(Object)} will erroneously return {@code true} for an object that
050 * has not actually been put in the {@code BloomFilter}.
051 *
052 * <p>Bloom filters are serializable. They also support a more compact serial representation via the
053 * {@link #writeTo} and {@link #readFrom} methods. Both serialized forms will continue to be
054 * supported by future versions of this library. However, serial forms generated by newer versions
055 * of the code may not be readable by older versions of the code (e.g., a serialized Bloom filter
056 * generated today may <i>not</i> be readable by a binary that was compiled 6 months ago).
057 *
058 * <p>As of Guava 22.0, this class is thread-safe and lock-free. It internally uses atomics and
059 * compare-and-swap to ensure correctness when multiple threads are used to access it.
060 *
061 * @param <T> the type of instances that the {@code BloomFilter} accepts
062 * @author Dimitris Andreou
063 * @author Kevin Bourrillion
064 * @since 11.0 (thread-safe since 22.0)
065 */
066@Beta
067public final class BloomFilter<T> implements Predicate<T>, Serializable {
068  /**
069   * A strategy to translate T instances, to {@code numHashFunctions} bit indexes.
070   *
071   * <p>Implementations should be collections of pure functions (i.e. stateless).
072   */
073  interface Strategy extends java.io.Serializable {
074
075    /**
076     * Sets {@code numHashFunctions} bits of the given bit array, by hashing a user element.
077     *
078     * <p>Returns whether any bits changed as a result of this operation.
079     */
080    <T> boolean put(
081        T object, Funnel<? super T> funnel, int numHashFunctions, LockFreeBitArray bits);
082
083    /**
084     * Queries {@code numHashFunctions} bits of the given bit array, by hashing a user element;
085     * returns {@code true} if and only if all selected bits are set.
086     */
087    <T> boolean mightContain(
088        T object, Funnel<? super T> funnel, int numHashFunctions, LockFreeBitArray bits);
089
090    /**
091     * Identifier used to encode this strategy, when marshalled as part of a BloomFilter. Only
092     * values in the [-128, 127] range are valid for the compact serial form. Non-negative values
093     * are reserved for enums defined in BloomFilterStrategies; negative values are reserved for any
094     * custom, stateful strategy we may define (e.g. any kind of strategy that would depend on user
095     * input).
096     */
097    int ordinal();
098  }
099
100  /** The bit set of the BloomFilter (not necessarily power of 2!) */
101  private final LockFreeBitArray bits;
102
103  /** Number of hashes per element */
104  private final int numHashFunctions;
105
106  /** The funnel to translate Ts to bytes */
107  private final Funnel<? super T> funnel;
108
109  /**
110   * The strategy we employ to map an element T to {@code numHashFunctions} bit indexes.
111   */
112  private final Strategy strategy;
113
114  /** Creates a BloomFilter. */
115  private BloomFilter(
116      LockFreeBitArray bits, int numHashFunctions, Funnel<? super T> funnel, Strategy strategy) {
117    checkArgument(numHashFunctions > 0, "numHashFunctions (%s) must be > 0", numHashFunctions);
118    checkArgument(
119        numHashFunctions <= 255, "numHashFunctions (%s) must be <= 255", numHashFunctions);
120    this.bits = checkNotNull(bits);
121    this.numHashFunctions = numHashFunctions;
122    this.funnel = checkNotNull(funnel);
123    this.strategy = checkNotNull(strategy);
124  }
125
126  /**
127   * Creates a new {@code BloomFilter} that's a copy of this instance. The new instance is equal to
128   * this instance but shares no mutable state.
129   *
130   * @since 12.0
131   */
132  public BloomFilter<T> copy() {
133    return new BloomFilter<T>(bits.copy(), numHashFunctions, funnel, strategy);
134  }
135
136  /**
137   * Returns {@code true} if the element <i>might</i> have been put in this Bloom filter,
138   * {@code false} if this is <i>definitely</i> not the case.
139   */
140  public boolean mightContain(T object) {
141    return strategy.mightContain(object, funnel, numHashFunctions, bits);
142  }
143
144  /**
145   * @deprecated Provided only to satisfy the {@link Predicate} interface; use {@link #mightContain}
146   *     instead.
147   */
148  @Deprecated
149  @Override
150  public boolean apply(T input) {
151    return mightContain(input);
152  }
153
154  /**
155   * Puts an element into this {@code BloomFilter}. Ensures that subsequent invocations of {@link
156   * #mightContain(Object)} with the same element will always return {@code true}.
157   *
158   * @return true if the Bloom filter's bits changed as a result of this operation. If the bits
159   *     changed, this is <i>definitely</i> the first time {@code object} has been added to the
160   *     filter. If the bits haven't changed, this <i>might</i> be the first time {@code object} has
161   *     been added to the filter. Note that {@code put(t)} always returns the <i>opposite</i>
162   *     result to what {@code mightContain(t)} would have returned at the time it is called.
163   * @since 12.0 (present in 11.0 with {@code void} return type})
164   */
165  @CanIgnoreReturnValue
166  public boolean put(T object) {
167    return strategy.put(object, funnel, numHashFunctions, bits);
168  }
169
170  /**
171   * Returns the probability that {@linkplain #mightContain(Object)} will erroneously return
172   * {@code true} for an object that has not actually been put in the {@code BloomFilter}.
173   *
174   * <p>Ideally, this number should be close to the {@code fpp} parameter passed in
175   * {@linkplain #create(Funnel, int, double)}, or smaller. If it is significantly higher, it is
176   * usually the case that too many elements (more than expected) have been put in the
177   * {@code BloomFilter}, degenerating it.
178   *
179   * @since 14.0 (since 11.0 as expectedFalsePositiveProbability())
180   */
181  public double expectedFpp() {
182    // You down with FPP? (Yeah you know me!) Who's down with FPP? (Every last homie!)
183    return Math.pow((double) bits.bitCount() / bitSize(), numHashFunctions);
184  }
185
186  /**
187   * Returns an estimate for the total number of distinct elements that have been added to this
188   * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
189   * {@code expectedInsertions} that was used when constructing the filter.
190   *
191   * @since 22.0
192   */
193  public long approximateElementCount() {
194    long bitSize = bits.bitSize();
195    long bitCount = bits.bitCount();
196
197    /**
198     * Each insertion is expected to reduce the # of clear bits by a factor of
199     * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 -
200     * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x
201     * is close to 1 (why?), gives the following formula.
202     */
203    double fractionOfBitsSet = (double) bitCount / bitSize;
204    return DoubleMath.roundToLong(
205        -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP);
206  }
207
208  /**
209   * Returns the number of bits in the underlying bit array.
210   */
211  @VisibleForTesting
212  long bitSize() {
213    return bits.bitSize();
214  }
215
216  /**
217   * Determines whether a given Bloom filter is compatible with this Bloom filter. For two Bloom
218   * filters to be compatible, they must:
219   *
220   * <ul>
221   *   <li>not be the same instance
222   *   <li>have the same number of hash functions
223   *   <li>have the same bit size
224   *   <li>have the same strategy
225   *   <li>have equal funnels
226   * </ul>
227   *
228   * @param that The Bloom filter to check for compatibility.
229   * @since 15.0
230   */
231  public boolean isCompatible(BloomFilter<T> that) {
232    checkNotNull(that);
233    return (this != that)
234        && (this.numHashFunctions == that.numHashFunctions)
235        && (this.bitSize() == that.bitSize())
236        && (this.strategy.equals(that.strategy))
237        && (this.funnel.equals(that.funnel));
238  }
239
240  /**
241   * Combines this Bloom filter with another Bloom filter by performing a bitwise OR of the
242   * underlying data. The mutations happen to <b>this</b> instance. Callers must ensure the Bloom
243   * filters are appropriately sized to avoid saturating them.
244   *
245   * @param that The Bloom filter to combine this Bloom filter with. It is not mutated.
246   * @throws IllegalArgumentException if {@code isCompatible(that) == false}
247   * @since 15.0
248   */
249  public void putAll(BloomFilter<T> that) {
250    checkNotNull(that);
251    checkArgument(this != that, "Cannot combine a BloomFilter with itself.");
252    checkArgument(
253        this.numHashFunctions == that.numHashFunctions,
254        "BloomFilters must have the same number of hash functions (%s != %s)",
255        this.numHashFunctions,
256        that.numHashFunctions);
257    checkArgument(
258        this.bitSize() == that.bitSize(),
259        "BloomFilters must have the same size underlying bit arrays (%s != %s)",
260        this.bitSize(),
261        that.bitSize());
262    checkArgument(
263        this.strategy.equals(that.strategy),
264        "BloomFilters must have equal strategies (%s != %s)",
265        this.strategy,
266        that.strategy);
267    checkArgument(
268        this.funnel.equals(that.funnel),
269        "BloomFilters must have equal funnels (%s != %s)",
270        this.funnel,
271        that.funnel);
272    this.bits.putAll(that.bits);
273  }
274
275  @Override
276  public boolean equals(@Nullable Object object) {
277    if (object == this) {
278      return true;
279    }
280    if (object instanceof BloomFilter) {
281      BloomFilter<?> that = (BloomFilter<?>) object;
282      return this.numHashFunctions == that.numHashFunctions
283          && this.funnel.equals(that.funnel)
284          && this.bits.equals(that.bits)
285          && this.strategy.equals(that.strategy);
286    }
287    return false;
288  }
289
290  @Override
291  public int hashCode() {
292    return Objects.hashCode(numHashFunctions, funnel, strategy, bits);
293  }
294
295  /**
296   * Returns a {@code Collector} expecting the specified number of insertions, and yielding a {@link
297   * BloomFilter} with false positive probability 3%.
298   *
299   * <p>Note that if the {@code Collector} receives significantly more elements than specified, the
300   * resulting {@code BloomFilter} will suffer a sharp deterioration of its false positive
301   * probability.
302   *
303   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code
304   * Funnel<T>} is.
305   *
306   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
307   * ensuring proper serialization and deserialization, which is important since {@link #equals}
308   * also relies on object identity of funnels.
309   *
310   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
311   * @param expectedInsertions the number of expected insertions to the constructed {@code
312   *     BloomFilter}; must be positive
313   * @return a {@code Collector} generating a {@code BloomFilter} of the received elements
314   * @since 23.0
315   */
316  public static <T> Collector<T, ?, BloomFilter<T>> toBloomFilter(
317      Funnel<? super T> funnel, long expectedInsertions) {
318    return toBloomFilter(funnel, expectedInsertions, 0.03);
319  }
320
321  /**
322   * Returns a {@code Collector} expecting the specified number of insertions, and yielding a {@link
323   * BloomFilter} with the specified expected false positive probability.
324   *
325   * <p>Note that if the {@code Collector} receives significantly more elements than specified, the
326   * resulting {@code BloomFilter} will suffer a sharp deterioration of its false positive
327   * probability.
328   *
329   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code
330   * Funnel<T>} is.
331   *
332   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
333   * ensuring proper serialization and deserialization, which is important since {@link #equals}
334   * also relies on object identity of funnels.
335   *
336   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
337   * @param expectedInsertions the number of expected insertions to the constructed {@code
338   *     BloomFilter}; must be positive
339   * @param fpp the desired false positive probability (must be positive and less than 1.0)
340   * @return a {@code Collector} generating a {@code BloomFilter} of the received elements
341   * @since 23.0
342   */
343  public static <T> Collector<T, ?, BloomFilter<T>> toBloomFilter(
344      Funnel<? super T> funnel, long expectedInsertions, double fpp) {
345    checkNotNull(funnel);
346    checkArgument(
347        expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions);
348    checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
349    checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
350    return Collector.of(
351        () -> BloomFilter.create(funnel, expectedInsertions, fpp),
352        BloomFilter::put,
353        (bf1, bf2) -> {
354          bf1.putAll(bf2);
355          return bf1;
356        },
357        Collector.Characteristics.UNORDERED,
358        Collector.Characteristics.CONCURRENT);
359  }
360
361  /**
362   * Creates a {@link BloomFilter} with the expected number of insertions and
363   * expected false positive probability.
364   *
365   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
366   * will result in its saturation, and a sharp deterioration of its false positive probability.
367   *
368   * <p>The constructed {@code BloomFilter} will be serializable if the provided
369   * {@code Funnel<T>} is.
370   *
371   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
372   * ensuring proper serialization and deserialization, which is important since {@link #equals}
373   * also relies on object identity of funnels.
374   *
375   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
376   * @param expectedInsertions the number of expected insertions to the constructed
377   *     {@code BloomFilter}; must be positive
378   * @param fpp the desired false positive probability (must be positive and less than 1.0)
379   * @return a {@code BloomFilter}
380   */
381  public static <T> BloomFilter<T> create(
382      Funnel<? super T> funnel, int expectedInsertions, double fpp) {
383    return create(funnel, (long) expectedInsertions, fpp);
384  }
385
386  /**
387   * Creates a {@link BloomFilter} with the expected number of insertions and
388   * expected false positive probability.
389   *
390   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
391   * will result in its saturation, and a sharp deterioration of its false positive probability.
392   *
393   * <p>The constructed {@code BloomFilter} will be serializable if the provided
394   * {@code Funnel<T>} is.
395   *
396   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
397   * ensuring proper serialization and deserialization, which is important since {@link #equals}
398   * also relies on object identity of funnels.
399   *
400   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
401   * @param expectedInsertions the number of expected insertions to the constructed
402   *     {@code BloomFilter}; must be positive
403   * @param fpp the desired false positive probability (must be positive and less than 1.0)
404   * @return a {@code BloomFilter}
405   * @since 19.0
406   */
407  public static <T> BloomFilter<T> create(
408      Funnel<? super T> funnel, long expectedInsertions, double fpp) {
409    return create(funnel, expectedInsertions, fpp, BloomFilterStrategies.MURMUR128_MITZ_64);
410  }
411
412  @VisibleForTesting
413  static <T> BloomFilter<T> create(
414      Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
415    checkNotNull(funnel);
416    checkArgument(
417        expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions);
418    checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
419    checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
420    checkNotNull(strategy);
421
422    if (expectedInsertions == 0) {
423      expectedInsertions = 1;
424    }
425    /*
426     * TODO(user): Put a warning in the javadoc about tiny fpp values, since the resulting size
427     * is proportional to -log(p), but there is not much of a point after all, e.g.
428     * optimalM(1000, 0.0000000000000001) = 76680 which is less than 10kb. Who cares!
429     */
430    long numBits = optimalNumOfBits(expectedInsertions, fpp);
431    int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
432    try {
433      return new BloomFilter<T>(new LockFreeBitArray(numBits), numHashFunctions, funnel, strategy);
434    } catch (IllegalArgumentException e) {
435      throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e);
436    }
437  }
438
439  /**
440   * Creates a {@link BloomFilter} with the expected number of insertions and a
441   * default expected false positive probability of 3%.
442   *
443   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
444   * will result in its saturation, and a sharp deterioration of its false positive probability.
445   *
446   * <p>The constructed {@code BloomFilter} will be serializable if the provided
447   * {@code Funnel<T>} is.
448   *
449   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
450   * ensuring proper serialization and deserialization, which is important since {@link #equals}
451   * also relies on object identity of funnels.
452   *
453   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
454   * @param expectedInsertions the number of expected insertions to the constructed
455   *     {@code BloomFilter}; must be positive
456   * @return a {@code BloomFilter}
457   */
458  public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int expectedInsertions) {
459    return create(funnel, (long) expectedInsertions);
460  }
461
462  /**
463   * Creates a {@link BloomFilter} with the expected number of insertions and a
464   * default expected false positive probability of 3%.
465   *
466   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
467   * will result in its saturation, and a sharp deterioration of its false positive probability.
468   *
469   * <p>The constructed {@code BloomFilter} will be serializable if the provided
470   * {@code Funnel<T>} is.
471   *
472   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
473   * ensuring proper serialization and deserialization, which is important since {@link #equals}
474   * also relies on object identity of funnels.
475   *
476   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
477   * @param expectedInsertions the number of expected insertions to the constructed
478   *     {@code BloomFilter}; must be positive
479   * @return a {@code BloomFilter}
480   * @since 19.0
481   */
482  public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) {
483    return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
484  }
485
486  // Cheat sheet:
487  //
488  // m: total bits
489  // n: expected insertions
490  // b: m/n, bits per insertion
491  // p: expected false positive probability
492  //
493  // 1) Optimal k = b * ln2
494  // 2) p = (1 - e ^ (-kn/m))^k
495  // 3) For optimal k: p = 2 ^ (-k) ~= 0.6185^b
496  // 4) For optimal k: m = -nlnp / ((ln2) ^ 2)
497
498  /**
499   * Computes the optimal k (number of hashes per element inserted in Bloom filter), given the
500   * expected insertions and total number of bits in the Bloom filter.
501   *
502   * See http://en.wikipedia.org/wiki/File:Bloom_filter_fp_probability.svg for the formula.
503   *
504   * @param n expected insertions (must be positive)
505   * @param m total number of bits in Bloom filter (must be positive)
506   */
507  @VisibleForTesting
508  static int optimalNumOfHashFunctions(long n, long m) {
509    // (m / n) * log(2), but avoid truncation due to division!
510    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
511  }
512
513  /**
514   * Computes m (total bits of Bloom filter) which is expected to achieve, for the specified
515   * expected insertions, the required false positive probability.
516   *
517   * See http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives for the formula.
518   *
519   * @param n expected insertions (must be positive)
520   * @param p false positive rate (must be 0 < p < 1)
521   */
522  @VisibleForTesting
523  static long optimalNumOfBits(long n, double p) {
524    if (p == 0) {
525      p = Double.MIN_VALUE;
526    }
527    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
528  }
529
530  private Object writeReplace() {
531    return new SerialForm<T>(this);
532  }
533
534  private static class SerialForm<T> implements Serializable {
535    final long[] data;
536    final int numHashFunctions;
537    final Funnel<? super T> funnel;
538    final Strategy strategy;
539
540    SerialForm(BloomFilter<T> bf) {
541      this.data = LockFreeBitArray.toPlainArray(bf.bits.data);
542      this.numHashFunctions = bf.numHashFunctions;
543      this.funnel = bf.funnel;
544      this.strategy = bf.strategy;
545    }
546
547    Object readResolve() {
548      return new BloomFilter<T>(new LockFreeBitArray(data), numHashFunctions, funnel, strategy);
549    }
550
551    private static final long serialVersionUID = 1;
552  }
553
554  /**
555   * Writes this {@code BloomFilter} to an output stream, with a custom format (not Java
556   * serialization). This has been measured to save at least 400 bytes compared to regular
557   * serialization.
558   *
559   * <p>Use {@linkplain #readFrom(InputStream, Funnel)} to reconstruct the written BloomFilter.
560   */
561  public void writeTo(OutputStream out) throws IOException {
562    // Serial form:
563    // 1 signed byte for the strategy
564    // 1 unsigned byte for the number of hash functions
565    // 1 big endian int, the number of longs in our bitset
566    // N big endian longs of our bitset
567    DataOutputStream dout = new DataOutputStream(out);
568    dout.writeByte(SignedBytes.checkedCast(strategy.ordinal()));
569    dout.writeByte(UnsignedBytes.checkedCast(numHashFunctions)); // note: checked at the c'tor
570    dout.writeInt(bits.data.length());
571    for (int i = 0; i < bits.data.length(); i++) {
572      dout.writeLong(bits.data.get(i));
573    }
574  }
575
576  /**
577   * Reads a byte stream, which was written by {@linkplain #writeTo(OutputStream)}, into a
578   * {@code BloomFilter}.
579   *
580   * The {@code Funnel} to be used is not encoded in the stream, so it must be provided here.
581   * <b>Warning:</b> the funnel provided <b>must</b> behave identically to the one used to populate
582   * the original Bloom filter!
583   *
584   * @throws IOException if the InputStream throws an {@code IOException}, or if its data does not
585   *     appear to be a BloomFilter serialized using the {@linkplain #writeTo(OutputStream)} method.
586   */
587  public static <T> BloomFilter<T> readFrom(InputStream in, Funnel<? super T> funnel)
588      throws IOException {
589    checkNotNull(in, "InputStream");
590    checkNotNull(funnel, "Funnel");
591    int strategyOrdinal = -1;
592    int numHashFunctions = -1;
593    int dataLength = -1;
594    try {
595      DataInputStream din = new DataInputStream(in);
596      // currently this assumes there is no negative ordinal; will have to be updated if we
597      // add non-stateless strategies (for which we've reserved negative ordinals; see
598      // Strategy.ordinal()).
599      strategyOrdinal = din.readByte();
600      numHashFunctions = UnsignedBytes.toInt(din.readByte());
601      dataLength = din.readInt();
602
603      Strategy strategy = BloomFilterStrategies.values()[strategyOrdinal];
604      long[] data = new long[dataLength];
605      for (int i = 0; i < data.length; i++) {
606        data[i] = din.readLong();
607      }
608      return new BloomFilter<T>(new LockFreeBitArray(data), numHashFunctions, funnel, strategy);
609    } catch (RuntimeException e) {
610      String message =
611          "Unable to deserialize BloomFilter from InputStream."
612              + " strategyOrdinal: "
613              + strategyOrdinal
614              + " numHashFunctions: "
615              + numHashFunctions
616              + " dataLength: "
617              + dataLength;
618      throw new IOException(message, e);
619    }
620  }
621}