001/*
002 * Copyright (C) 2014 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.graph;
018
019import com.google.common.annotations.Beta;
020import java.util.Optional;
021import java.util.Set;
022import javax.annotation.Nullable;
023
024/**
025 * An interface for <a
026 * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data,
027 * whose edges are unique objects.
028 *
029 * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes.
030 *
031 * <p>There are three primary interfaces provided to represent graphs. In order of increasing
032 * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally
033 * prefer the simplest interface that satisfies your use case. See the <a
034 * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type">
035 * "Choosing the right graph type"</a> section of the Guava User Guide for more details.
036 *
037 * <h3>Capabilities</h3>
038 *
039 * <p>{@code Network} supports the following use cases (<a
040 * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of
041 * terms</a>):
042 *
043 * <ul>
044 *   <li>directed graphs
045 *   <li>undirected graphs
046 *   <li>graphs that do/don't allow parallel edges
047 *   <li>graphs that do/don't allow self-loops
048 *   <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered
049 *   <li>graphs whose edges are unique objects
050 * </ul>
051 *
052 * <h3>Building a {@code Network}</h3>
053 *
054 * <p>The implementation classes that `common.graph` provides are not public, by design. To create
055 * an instance of one of the built-in implementations of {@code Network}, use the {@link
056 * NetworkBuilder} class:
057 *
058 * <pre>{@code
059 * MutableNetwork<Integer, MyEdge> graph = NetworkBuilder.directed().build();
060 * }</pre>
061 *
062 * <p>{@link NetworkBuilder#build()} returns an instance of {@link MutableNetwork}, which is a
063 * subtype of {@code Network} that provides methods for adding and removing nodes and edges. If you
064 * do not need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the
065 * graph), you should use the non-mutating {@link Network} interface, or an {@link
066 * ImmutableNetwork}.
067 *
068 * <p>You can create an immutable copy of an existing {@code Network} using {@link
069 * ImmutableNetwork#copyOf(Network)}:
070 *
071 * <pre>{@code
072 * ImmutableNetwork<Integer, MyEdge> immutableGraph = ImmutableNetwork.copyOf(graph);
073 * }</pre>
074 *
075 * <p>Instances of {@link ImmutableNetwork} do not implement {@link MutableNetwork} (obviously!) and
076 * are contractually guaranteed to be unmodifiable and thread-safe.
077 *
078 * <p>The Guava User Guide has <a
079 * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more
080 * information on (and examples of) building graphs</a>.
081 *
082 * <h3>Additional documentation</h3>
083 *
084 * <p>See the Guava User Guide for the {@code common.graph} package (<a
085 * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for
086 * additional documentation, including:
087 *
088 * <ul>
089 *   <li><a
090 *       href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence">
091 *       {@code equals()}, {@code hashCode()}, and graph equivalence</a>
092 *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization">
093 *       Synchronization policy</a>
094 *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes
095 *       for implementors</a>
096 * </ul>
097 *
098 * @author James Sexton
099 * @author Joshua O'Madadhain
100 * @param <N> Node parameter type
101 * @param <E> Edge parameter type
102 * @since 20.0
103 */
104// TODO(b/35456940): Update the documentation to reflect the new interfaces
105@Beta
106public interface Network<N, E> extends SuccessorsFunction<N>, PredecessorsFunction<N> {
107  //
108  // Network-level accessors
109  //
110
111  /** Returns all nodes in this network, in the order specified by {@link #nodeOrder()}. */
112  Set<N> nodes();
113
114  /** Returns all edges in this network, in the order specified by {@link #edgeOrder()}. */
115  Set<E> edges();
116
117  /**
118   * Returns a live view of this network as a {@link Graph}. The resulting {@link Graph} will have
119   * an edge connecting node A to node B if this {@link Network} has an edge connecting A to B.
120   *
121   * <p>If this network {@link #allowsParallelEdges() allows parallel edges}, parallel edges will be
122   * treated as if collapsed into a single edge. For example, the {@link #degree(Object)} of a node
123   * in the {@link Graph} view may be less than the degree of the same node in this {@link Network}.
124   */
125  Graph<N> asGraph();
126
127  //
128  // Network properties
129  //
130
131  /**
132   * Returns true if the edges in this network are directed. Directed edges connect a {@link
133   * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while
134   * undirected edges connect a pair of nodes to each other.
135   */
136  boolean isDirected();
137
138  /**
139   * Returns true if this network allows parallel edges. Attempting to add a parallel edge to a
140   * network that does not allow them will throw an {@link IllegalArgumentException}.
141   */
142  boolean allowsParallelEdges();
143
144  /**
145   * Returns true if this network allows self-loops (edges that connect a node to itself).
146   * Attempting to add a self-loop to a network that does not allow them will throw an {@link
147   * IllegalArgumentException}.
148   */
149  boolean allowsSelfLoops();
150
151  /** Returns the order of iteration for the elements of {@link #nodes()}. */
152  ElementOrder<N> nodeOrder();
153
154  /** Returns the order of iteration for the elements of {@link #edges()}. */
155  ElementOrder<E> edgeOrder();
156
157  //
158  // Element-level accessors
159  //
160
161  /**
162   * Returns the nodes which have an incident edge in common with {@code node} in this network.
163   *
164   * @throws IllegalArgumentException if {@code node} is not an element of this network
165   */
166  Set<N> adjacentNodes(N node);
167
168  /**
169   * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
170   * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge.
171   *
172   * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
173   *
174   * @throws IllegalArgumentException if {@code node} is not an element of this network
175   */
176  @Override
177  Set<N> predecessors(N node);
178
179  /**
180   * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
181   * {@code node}'s outgoing edges in the direction (if any) of the edge.
182   *
183   * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
184   *
185   * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing
186   * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}.
187   *
188   * @throws IllegalArgumentException if {@code node} is not an element of this network
189   */
190  @Override
191  Set<N> successors(N node);
192
193  /**
194   * Returns the edges whose {@link #incidentNodes(Object) incident nodes} in this network include
195   * {@code node}.
196   *
197   * @throws IllegalArgumentException if {@code node} is not an element of this network
198   */
199  Set<E> incidentEdges(N node);
200
201  /**
202   * Returns all edges in this network which can be traversed in the direction (if any) of the edge
203   * to end at {@code node}.
204   *
205   * <p>In a directed network, an incoming edge's {@link EndpointPair#target()} equals {@code node}.
206   *
207   * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
208   *
209   * @throws IllegalArgumentException if {@code node} is not an element of this network
210   */
211  Set<E> inEdges(N node);
212
213  /**
214   * Returns all edges in this network which can be traversed in the direction (if any) of the edge
215   * starting from {@code node}.
216   *
217   * <p>In a directed network, an outgoing edge's {@link EndpointPair#source()} equals {@code node}.
218   *
219   * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
220   *
221   * @throws IllegalArgumentException if {@code node} is not an element of this network
222   */
223  Set<E> outEdges(N node);
224
225  /**
226   * Returns the count of {@code node}'s {@link #incidentEdges(Object) incident edges}, counting
227   * self-loops twice (equivalently, the number of times an edge touches {@code node}).
228   *
229   * <p>For directed networks, this is equal to {@code inDegree(node) + outDegree(node)}.
230   *
231   * <p>For undirected networks, this is equal to {@code incidentEdges(node).size()} + (number of
232   * self-loops incident to {@code node}).
233   *
234   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
235   *
236   * @throws IllegalArgumentException if {@code node} is not an element of this network
237   */
238  int degree(N node);
239
240  /**
241   * Returns the count of {@code node}'s {@link #inEdges(Object) incoming edges} in a directed
242   * network. In an undirected network, returns the {@link #degree(Object)}.
243   *
244   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
245   *
246   * @throws IllegalArgumentException if {@code node} is not an element of this network
247   */
248  int inDegree(N node);
249
250  /**
251   * Returns the count of {@code node}'s {@link #outEdges(Object) outgoing edges} in a directed
252   * network. In an undirected network, returns the {@link #degree(Object)}.
253   *
254   * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
255   *
256   * @throws IllegalArgumentException if {@code node} is not an element of this network
257   */
258  int outDegree(N node);
259
260  /**
261   * Returns the nodes which are the endpoints of {@code edge} in this network.
262   *
263   * @throws IllegalArgumentException if {@code edge} is not an element of this network
264   */
265  EndpointPair<N> incidentNodes(E edge);
266
267  /**
268   * Returns the edges which have an {@link #incidentNodes(Object) incident node} in common with
269   * {@code edge}. An edge is not considered adjacent to itself.
270   *
271   * @throws IllegalArgumentException if {@code edge} is not an element of this network
272   */
273  Set<E> adjacentEdges(E edge);
274
275  /**
276   * Returns the set of edges directly connecting {@code nodeU} to {@code nodeV}.
277   *
278   * <p>In an undirected network, this is equal to {@code edgesConnecting(nodeV, nodeU)}.
279   *
280   * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}.
281   * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set
282   * will contain at most one edge (equivalent to {@code edgeConnecting(nodeU, nodeV).asSet()}).
283   *
284   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
285   *     network
286   */
287  Set<E> edgesConnecting(N nodeU, N nodeV);
288
289  /**
290   * Returns the single edge directly connecting {@code nodeU} to {@code nodeV}, if one is present,
291   * or {@code Optional.empty()} if no such edge exists.
292   *
293   * <p>In an undirected network, this is equal to {@code edgeConnecting(nodeV, nodeU)}.
294   *
295   * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
296   *     to {@code nodeV}
297   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
298   *     network
299   * @since 23.0
300   */
301  Optional<E> edgeConnecting(N nodeU, N nodeV);
302
303  /**
304   * Returns the single edge directly connecting {@code nodeU} to {@code nodeV}, if one is present,
305   * or {@code null} if no such edge exists.
306   *
307   * <p>In an undirected network, this is equal to {@code edgeConnectingOrNull(nodeV, nodeU)}.
308   *
309   * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
310   *     to {@code nodeV}
311   * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
312   *     network
313   * @since 23.0
314   */
315  @Nullable
316  E edgeConnectingOrNull(N nodeU, N nodeV);
317
318  /**
319   * Returns true if there is an edge directly connecting {@code nodeU} to {@code nodeV}. This is
320   * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)},
321   * and to {@code edgeConnectingOrNull(nodeU, nodeV) != null}.
322   *
323   * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}.
324   *
325   * @since 23.0
326   */
327  boolean hasEdgeConnecting(N nodeU, N nodeV);
328
329  //
330  // Network identity
331  //
332
333  /**
334   * Returns {@code true} iff {@code object} is a {@link Network} that has the same elements and the
335   * same structural relationships as those in this network.
336   *
337   * <p>Thus, two networks A and B are equal if <b>all</b> of the following are true:
338   *
339   * <ul>
340   * <li>A and B have equal {@link #isDirected() directedness}.
341   * <li>A and B have equal {@link #nodes() node sets}.
342   * <li>A and B have equal {@link #edges() edge sets}.
343   * <li>Every edge in A and B connects the same nodes in the same direction (if any).
344   * </ul>
345   *
346   * <p>Network properties besides {@link #isDirected() directedness} do <b>not</b> affect equality.
347   * For example, two networks may be considered equal even if one allows parallel edges and the
348   * other doesn't. Additionally, the order in which nodes or edges are added to the network, and
349   * the order in which they are iterated over, are irrelevant.
350   *
351   * <p>A reference implementation of this is provided by {@link AbstractNetwork#equals(Object)}.
352   */
353  @Override
354  boolean equals(@Nullable Object object);
355
356  /**
357   * Returns the hash code for this network. The hash code of a network is defined as the hash code
358   * of a map from each of its {@link #edges() edges} to their {@link #incidentNodes(Object)
359   * incident nodes}.
360   *
361   * <p>A reference implementation of this is provided by {@link AbstractNetwork#hashCode()}.
362   */
363  @Override
364  int hashCode();
365}