001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021 022import com.google.common.annotations.Beta; 023import com.google.common.annotations.GwtIncompatible; 024import com.google.common.base.Objects; 025import com.google.common.collect.Iterables; 026import com.google.common.collect.Maps; 027import com.google.errorprone.annotations.CanIgnoreReturnValue; 028import java.util.ArrayDeque; 029import java.util.Collection; 030import java.util.Collections; 031import java.util.HashSet; 032import java.util.LinkedHashSet; 033import java.util.Map; 034import java.util.Optional; 035import java.util.Queue; 036import java.util.Set; 037import javax.annotation.Nullable; 038 039/** 040 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 041 * 042 * @author James Sexton 043 * @author Joshua O'Madadhain 044 * @since 20.0 045 */ 046@Beta 047public final class Graphs { 048 049 private Graphs() {} 050 051 // Graph query methods 052 053 /** 054 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 055 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 056 * and ending with the same node. 057 * 058 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 059 */ 060 public static <N> boolean hasCycle(Graph<N> graph) { 061 int numEdges = graph.edges().size(); 062 if (numEdges == 0) { 063 return false; // An edge-free graph is acyclic by definition. 064 } 065 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 066 return true; // Optimization for the undirected case: at least one cycle must exist. 067 } 068 069 Map<Object, NodeVisitState> visitedNodes = 070 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 071 for (N node : graph.nodes()) { 072 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 073 return true; 074 } 075 } 076 return false; 077 } 078 079 /** 080 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 081 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 082 * starting and ending with the same node. 083 * 084 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 085 */ 086 public static boolean hasCycle(Network<?, ?> network) { 087 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 088 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 089 if (!network.isDirected() 090 && network.allowsParallelEdges() 091 && network.edges().size() > network.asGraph().edges().size()) { 092 return true; 093 } 094 return hasCycle(network.asGraph()); 095 } 096 097 /** 098 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 099 * already visited (following only outgoing edges and without reusing edges), we know there's a 100 * cycle in the graph. 101 */ 102 private static <N> boolean subgraphHasCycle( 103 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N node, @Nullable N previousNode) { 104 NodeVisitState state = visitedNodes.get(node); 105 if (state == NodeVisitState.COMPLETE) { 106 return false; 107 } 108 if (state == NodeVisitState.PENDING) { 109 return true; 110 } 111 112 visitedNodes.put(node, NodeVisitState.PENDING); 113 for (N nextNode : graph.successors(node)) { 114 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 115 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 116 return true; 117 } 118 } 119 visitedNodes.put(node, NodeVisitState.COMPLETE); 120 return false; 121 } 122 123 /** 124 * Determines whether an edge has already been used during traversal. In the directed case a cycle 125 * is always detected before reusing an edge, so no special logic is required. In the undirected 126 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 127 * from B to A). 128 */ 129 private static boolean canTraverseWithoutReusingEdge( 130 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 131 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 132 return true; 133 } 134 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 135 // edges, so this traversal would require reusing the undirected AB edge. 136 return false; 137 } 138 139 /** 140 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 141 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 142 * Object) reachable} from node A. 143 * 144 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 145 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 146 * be updated after modifications to {@code graph}. 147 */ 148 // TODO(b/31438252): Consider potential optimizations for this algorithm. 149 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 150 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 151 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 152 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 153 154 if (graph.isDirected()) { 155 // Note: works for both directed and undirected graphs, but we only use in the directed case. 156 for (N node : graph.nodes()) { 157 for (N reachableNode : reachableNodes(graph, node)) { 158 transitiveClosure.putEdge(node, reachableNode); 159 } 160 } 161 } else { 162 // An optimization for the undirected case: for every node B reachable from node A, 163 // node A and node B have the same reachability set. 164 Set<N> visitedNodes = new HashSet<N>(); 165 for (N node : graph.nodes()) { 166 if (!visitedNodes.contains(node)) { 167 Set<N> reachableNodes = reachableNodes(graph, node); 168 visitedNodes.addAll(reachableNodes); 169 int pairwiseMatch = 1; // start at 1 to include self-loops 170 for (N nodeU : reachableNodes) { 171 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 172 transitiveClosure.putEdge(nodeU, nodeV); 173 } 174 } 175 } 176 } 177 } 178 179 return transitiveClosure; 180 } 181 182 /** 183 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 184 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 185 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 186 * 187 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 188 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 189 * not be updated after modifications to {@code graph}. 190 * 191 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 192 */ 193 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 194 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 195 Set<N> visitedNodes = new LinkedHashSet<N>(); 196 Queue<N> queuedNodes = new ArrayDeque<N>(); 197 visitedNodes.add(node); 198 queuedNodes.add(node); 199 // Perform a breadth-first traversal rooted at the input node. 200 while (!queuedNodes.isEmpty()) { 201 N currentNode = queuedNodes.remove(); 202 for (N successor : graph.successors(currentNode)) { 203 if (visitedNodes.add(successor)) { 204 queuedNodes.add(successor); 205 } 206 } 207 } 208 return Collections.unmodifiableSet(visitedNodes); 209 } 210 211 /** 212 * @deprecated Use {@link Graph#equals(Object)} instead. This method will be removed in late 2017. 213 */ 214 // TODO(user): Delete this method. 215 @Deprecated 216 public static boolean equivalent(@Nullable Graph<?> graphA, @Nullable Graph<?> graphB) { 217 return Objects.equal(graphA, graphB); 218 } 219 220 /** 221 * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method will be removed in late 222 * 2017. 223 */ 224 // TODO(user): Delete this method. 225 @Deprecated 226 public static boolean equivalent( 227 @Nullable ValueGraph<?, ?> graphA, @Nullable ValueGraph<?, ?> graphB) { 228 return Objects.equal(graphA, graphB); 229 } 230 231 /** 232 * @deprecated Use {@link Network#equals(Object)} instead. This method will be removed in late 233 * 2017. 234 */ 235 // TODO(user): Delete this method. 236 @Deprecated 237 public static boolean equivalent( 238 @Nullable Network<?, ?> networkA, @Nullable Network<?, ?> networkB) { 239 return Objects.equal(networkA, networkB); 240 } 241 242 // Graph mutation methods 243 244 // Graph view methods 245 246 /** 247 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 248 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 249 */ 250 public static <N> Graph<N> transpose(Graph<N> graph) { 251 if (!graph.isDirected()) { 252 return graph; // the transpose of an undirected graph is an identical graph 253 } 254 255 if (graph instanceof TransposedGraph) { 256 return ((TransposedGraph<N>) graph).graph; 257 } 258 259 return new TransposedGraph<N>(graph); 260 } 261 262 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 263 // AbstractGraph) derives its behavior from calling successors(). 264 private static class TransposedGraph<N> extends ForwardingGraph<N> { 265 private final Graph<N> graph; 266 267 TransposedGraph(Graph<N> graph) { 268 this.graph = graph; 269 } 270 271 @Override 272 protected Graph<N> delegate() { 273 return graph; 274 } 275 276 @Override 277 public Set<N> predecessors(N node) { 278 return delegate().successors(node); // transpose 279 } 280 281 @Override 282 public Set<N> successors(N node) { 283 return delegate().predecessors(node); // transpose 284 } 285 286 @Override 287 public int inDegree(N node) { 288 return delegate().outDegree(node); // transpose 289 } 290 291 @Override 292 public int outDegree(N node) { 293 return delegate().inDegree(node); // transpose 294 } 295 296 @Override 297 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 298 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 299 } 300 } 301 302 /** 303 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 304 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 305 */ 306 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 307 if (!graph.isDirected()) { 308 return graph; // the transpose of an undirected graph is an identical graph 309 } 310 311 if (graph instanceof TransposedValueGraph) { 312 return ((TransposedValueGraph<N, V>) graph).graph; 313 } 314 315 return new TransposedValueGraph<N, V>(graph); 316 } 317 318 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 319 // AbstractValueGraph) derives its behavior from calling successors(). 320 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 321 private final ValueGraph<N, V> graph; 322 323 TransposedValueGraph(ValueGraph<N, V> graph) { 324 this.graph = graph; 325 } 326 327 @Override 328 protected ValueGraph<N, V> delegate() { 329 return graph; 330 } 331 332 @Override 333 public Set<N> predecessors(N node) { 334 return delegate().successors(node); // transpose 335 } 336 337 @Override 338 public Set<N> successors(N node) { 339 return delegate().predecessors(node); // transpose 340 } 341 342 @Override 343 public int inDegree(N node) { 344 return delegate().outDegree(node); // transpose 345 } 346 347 @Override 348 public int outDegree(N node) { 349 return delegate().inDegree(node); // transpose 350 } 351 352 @Override 353 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 354 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 355 } 356 357 @Override 358 public Optional<V> edgeValue(N nodeU, N nodeV) { 359 return delegate().edgeValue(nodeV, nodeU); // transpose 360 } 361 362 @Override 363 @Nullable 364 public V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) { 365 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 366 } 367 } 368 369 /** 370 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 371 * properties remain intact, and further updates to {@code network} will be reflected in the view. 372 */ 373 @GwtIncompatible 374 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 375 if (!network.isDirected()) { 376 return network; // the transpose of an undirected network is an identical network 377 } 378 379 if (network instanceof TransposedNetwork) { 380 return ((TransposedNetwork<N, E>) network).network; 381 } 382 383 return new TransposedNetwork<N, E>(network); 384 } 385 386 @GwtIncompatible 387 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 388 private final Network<N, E> network; 389 390 TransposedNetwork(Network<N, E> network) { 391 this.network = network; 392 } 393 394 @Override 395 protected Network<N, E> delegate() { 396 return network; 397 } 398 399 @Override 400 public Set<N> predecessors(N node) { 401 return delegate().successors(node); // transpose 402 } 403 404 @Override 405 public Set<N> successors(N node) { 406 return delegate().predecessors(node); // transpose 407 } 408 409 @Override 410 public int inDegree(N node) { 411 return delegate().outDegree(node); // transpose 412 } 413 414 @Override 415 public int outDegree(N node) { 416 return delegate().inDegree(node); // transpose 417 } 418 419 @Override 420 public Set<E> inEdges(N node) { 421 return delegate().outEdges(node); // transpose 422 } 423 424 @Override 425 public Set<E> outEdges(N node) { 426 return delegate().inEdges(node); // transpose 427 } 428 429 @Override 430 public EndpointPair<N> incidentNodes(E edge) { 431 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 432 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 433 } 434 435 @Override 436 public Set<E> edgesConnecting(N nodeU, N nodeV) { 437 return delegate().edgesConnecting(nodeV, nodeU); // transpose 438 } 439 440 @Override 441 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 442 return delegate().edgeConnecting(nodeV, nodeU); // transpose 443 } 444 445 @Override 446 public E edgeConnectingOrNull(N nodeU, N nodeV) { 447 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 448 } 449 450 @Override 451 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 452 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 453 } 454 } 455 456 // Graph copy methods 457 458 /** 459 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 460 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 461 * from {@code graph} for which both nodes are contained by {@code nodes}. 462 * 463 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 464 */ 465 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 466 MutableGraph<N> subgraph = (nodes instanceof Collection) 467 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 468 : GraphBuilder.from(graph).build(); 469 for (N node : nodes) { 470 subgraph.addNode(node); 471 } 472 for (N node : subgraph.nodes()) { 473 for (N successorNode : graph.successors(node)) { 474 if (subgraph.nodes().contains(successorNode)) { 475 subgraph.putEdge(node, successorNode); 476 } 477 } 478 } 479 return subgraph; 480 } 481 482 /** 483 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 484 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 485 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 486 * nodes}. 487 * 488 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 489 */ 490 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 491 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 492 MutableValueGraph<N, V> subgraph = (nodes instanceof Collection) 493 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 494 : ValueGraphBuilder.from(graph).build(); 495 for (N node : nodes) { 496 subgraph.addNode(node); 497 } 498 for (N node : subgraph.nodes()) { 499 for (N successorNode : graph.successors(node)) { 500 if (subgraph.nodes().contains(successorNode)) { 501 subgraph.putEdgeValue( 502 node, successorNode, graph.edgeValueOrDefault(node, successorNode, null)); 503 } 504 } 505 } 506 return subgraph; 507 } 508 509 /** 510 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 511 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 512 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 513 * both contained by {@code nodes}. 514 * 515 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 516 */ 517 @GwtIncompatible 518 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 519 Network<N, E> network, Iterable<? extends N> nodes) { 520 MutableNetwork<N, E> subgraph = (nodes instanceof Collection) 521 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 522 : NetworkBuilder.from(network).build(); 523 for (N node : nodes) { 524 subgraph.addNode(node); 525 } 526 for (N node : subgraph.nodes()) { 527 for (E edge : network.outEdges(node)) { 528 N successorNode = network.incidentNodes(edge).adjacentNode(node); 529 if (subgraph.nodes().contains(successorNode)) { 530 subgraph.addEdge(node, successorNode, edge); 531 } 532 } 533 } 534 return subgraph; 535 } 536 537 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 538 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 539 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 540 for (N node : graph.nodes()) { 541 copy.addNode(node); 542 } 543 for (EndpointPair<N> edge : graph.edges()) { 544 copy.putEdge(edge.nodeU(), edge.nodeV()); 545 } 546 return copy; 547 } 548 549 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 550 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 551 MutableValueGraph<N, V> copy = 552 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 553 for (N node : graph.nodes()) { 554 copy.addNode(node); 555 } 556 for (EndpointPair<N> edge : graph.edges()) { 557 copy.putEdgeValue( 558 edge.nodeU(), edge.nodeV(), graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null)); 559 } 560 return copy; 561 } 562 563 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 564 @GwtIncompatible 565 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 566 MutableNetwork<N, E> copy = 567 NetworkBuilder.from(network) 568 .expectedNodeCount(network.nodes().size()) 569 .expectedEdgeCount(network.edges().size()) 570 .build(); 571 for (N node : network.nodes()) { 572 copy.addNode(node); 573 } 574 for (E edge : network.edges()) { 575 EndpointPair<N> endpointPair = network.incidentNodes(edge); 576 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 577 } 578 return copy; 579 } 580 581 @CanIgnoreReturnValue 582 static int checkNonNegative(int value) { 583 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 584 return value; 585 } 586 587 @CanIgnoreReturnValue 588 static int checkPositive(int value) { 589 checkArgument(value > 0, "Not true that %s is positive.", value); 590 return value; 591 } 592 593 @CanIgnoreReturnValue 594 static long checkNonNegative(long value) { 595 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 596 return value; 597 } 598 599 @CanIgnoreReturnValue 600 static long checkPositive(long value) { 601 checkArgument(value > 0, "Not true that %s is positive.", value); 602 return value; 603 } 604 605 /** 606 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 607 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 608 * been already explored. Any node that has not been explored will not have a state at all. 609 */ 610 private enum NodeVisitState { 611 PENDING, 612 COMPLETE 613 } 614}