001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022
023import com.google.common.annotations.Beta;
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.annotations.GwtIncompatible;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.collect.Collections2.FilteredCollection;
029import com.google.common.math.IntMath;
030import com.google.errorprone.annotations.CanIgnoreReturnValue;
031import java.io.Serializable;
032import java.util.AbstractSet;
033import java.util.Arrays;
034import java.util.BitSet;
035import java.util.Collection;
036import java.util.Collections;
037import java.util.Comparator;
038import java.util.EnumSet;
039import java.util.HashSet;
040import java.util.Iterator;
041import java.util.LinkedHashSet;
042import java.util.List;
043import java.util.Map;
044import java.util.NavigableSet;
045import java.util.NoSuchElementException;
046import java.util.Set;
047import java.util.SortedSet;
048import java.util.TreeSet;
049import java.util.concurrent.ConcurrentHashMap;
050import java.util.concurrent.CopyOnWriteArraySet;
051import java.util.function.Consumer;
052import java.util.stream.Collector;
053import java.util.stream.Stream;
054import javax.annotation.Nullable;
055
056/**
057 * Static utility methods pertaining to {@link Set} instances. Also see this
058 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}.
059 *
060 * <p>See the Guava User Guide article on <a href=
061 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">
062 * {@code Sets}</a>.
063 *
064 * @author Kevin Bourrillion
065 * @author Jared Levy
066 * @author Chris Povirk
067 * @since 2.0
068 */
069@GwtCompatible(emulated = true)
070public final class Sets {
071  private Sets() {}
072
073  /**
074   * {@link AbstractSet} substitute without the potentially-quadratic
075   * {@code removeAll} implementation.
076   */
077  abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> {
078    @Override
079    public boolean removeAll(Collection<?> c) {
080      return removeAllImpl(this, c);
081    }
082
083    @Override
084    public boolean retainAll(Collection<?> c) {
085      return super.retainAll(checkNotNull(c)); // GWT compatibility
086    }
087  }
088
089  /**
090   * Returns an immutable set instance containing the given enum elements.
091   * Internally, the returned set will be backed by an {@link EnumSet}.
092   *
093   * <p>The iteration order of the returned set follows the enum's iteration
094   * order, not the order in which the elements are provided to the method.
095   *
096   * @param anElement one of the elements the set should contain
097   * @param otherElements the rest of the elements the set should contain
098   * @return an immutable set containing those elements, minus duplicates
099   */
100  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
101  @GwtCompatible(serializable = true)
102  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
103      E anElement, E... otherElements) {
104    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
105  }
106
107  /**
108   * Returns an immutable set instance containing the given enum elements.
109   * Internally, the returned set will be backed by an {@link EnumSet}.
110   *
111   * <p>The iteration order of the returned set follows the enum's iteration
112   * order, not the order in which the elements appear in the given collection.
113   *
114   * @param elements the elements, all of the same {@code enum} type, that the
115   *     set should contain
116   * @return an immutable set containing those elements, minus duplicates
117   */
118  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
119  @GwtCompatible(serializable = true)
120  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
121    if (elements instanceof ImmutableEnumSet) {
122      return (ImmutableEnumSet<E>) elements;
123    } else if (elements instanceof Collection) {
124      Collection<E> collection = (Collection<E>) elements;
125      if (collection.isEmpty()) {
126        return ImmutableSet.of();
127      } else {
128        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
129      }
130    } else {
131      Iterator<E> itr = elements.iterator();
132      if (itr.hasNext()) {
133        EnumSet<E> enumSet = EnumSet.of(itr.next());
134        Iterators.addAll(enumSet, itr);
135        return ImmutableEnumSet.asImmutable(enumSet);
136      } else {
137        return ImmutableSet.of();
138      }
139    }
140  }
141
142  private static final class Accumulator<E extends Enum<E>> {
143    static final Collector<Enum<?>, ?, ImmutableSet<? extends Enum<?>>>
144      TO_IMMUTABLE_ENUM_SET =
145          (Collector)
146              Collector.<Enum, Accumulator, ImmutableSet<?>>of(
147                  Accumulator::new,
148                  Accumulator::add,
149                  Accumulator::combine,
150                  Accumulator::toImmutableSet,
151                  Collector.Characteristics.UNORDERED);
152
153    private EnumSet<E> set;
154
155    void add(E e) {
156      if (set == null) {
157        set = EnumSet.of(e);
158      } else {
159        set.add(e);
160      }
161    }
162
163    Accumulator<E> combine(Accumulator<E> other) {
164      if (this.set == null) {
165        return other;
166      } else if (other.set == null) {
167        return this;
168      } else {
169        this.set.addAll(other.set);
170        return this;
171      }
172    }
173
174    ImmutableSet<E> toImmutableSet() {
175      return (set == null) ? ImmutableSet.<E>of() : ImmutableEnumSet.asImmutable(set);
176    }
177  }
178
179  /**
180   * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet}
181   * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the
182   * resulting set will iterate over elements in their enum definition order, not encounter order.
183   *
184   * @since 21.0
185   */
186  @Beta
187  public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() {
188    return (Collector) Accumulator.TO_IMMUTABLE_ENUM_SET;
189  }
190
191  /**
192   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
193   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
194   * accepts non-{@code Collection} iterables and empty iterables.
195   */
196  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
197      Iterable<E> iterable, Class<E> elementType) {
198    EnumSet<E> set = EnumSet.noneOf(elementType);
199    Iterables.addAll(set, iterable);
200    return set;
201  }
202
203  // HashSet
204
205  /**
206   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
207   *
208   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If
209   * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly
210   * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to
211   * get deterministic iteration behavior.
212   *
213   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
214   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
215   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
216   */
217  public static <E> HashSet<E> newHashSet() {
218    return new HashSet<E>();
219  }
220
221  /**
222   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
223   *
224   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
225   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
226   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
227   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
228   * deterministic iteration behavior.
229   *
230   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
231   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
232   * This method is not actually very useful and will likely be deprecated in the future.
233   */
234  public static <E> HashSet<E> newHashSet(E... elements) {
235    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
236    Collections.addAll(set, elements);
237    return set;
238  }
239
240  /**
241   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
242   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
243   * is what most users want and expect it to do.
244   *
245   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
246   *
247   * @param expectedSize the number of elements you expect to add to the returned set
248   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
249   *     without resizing
250   * @throws IllegalArgumentException if {@code expectedSize} is negative
251   */
252  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
253    return new HashSet<E>(Maps.capacity(expectedSize));
254  }
255
256  /**
257   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
258   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
259   * Iterables#addAll}.
260   *
261   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
262   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
263   * FluentIterable} and call {@code elements.toSet()}.)
264   *
265   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
266   * instead.
267   *
268   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
269   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
270   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
271   *
272   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
273   */
274  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
275    return (elements instanceof Collection)
276        ? new HashSet<E>(Collections2.cast(elements))
277        : newHashSet(elements.iterator());
278  }
279
280  /**
281   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
282   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
283   *
284   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
285   * ImmutableSet#copyOf(Iterator)} instead.
286   *
287   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
288   * instead.
289   *
290   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
291   */
292  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
293    HashSet<E> set = newHashSet();
294    Iterators.addAll(set, elements);
295    return set;
296  }
297
298  /**
299   * Creates a thread-safe set backed by a hash map. The set is backed by a
300   * {@link ConcurrentHashMap} instance, and thus carries the same concurrency
301   * guarantees.
302   *
303   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be
304   * used as an element. The set is serializable.
305   *
306   * @return a new, empty thread-safe {@code Set}
307   * @since 15.0
308   */
309  public static <E> Set<E> newConcurrentHashSet() {
310    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
311  }
312
313  /**
314   * Creates a thread-safe set backed by a hash map and containing the given
315   * elements. The set is backed by a {@link ConcurrentHashMap} instance, and
316   * thus carries the same concurrency guarantees.
317   *
318   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be
319   * used as an element. The set is serializable.
320   *
321   * @param elements the elements that the set should contain
322   * @return a new thread-safe set containing those elements (minus duplicates)
323   * @throws NullPointerException if {@code elements} or any of its contents is
324   *      null
325   * @since 15.0
326   */
327  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
328    Set<E> set = newConcurrentHashSet();
329    Iterables.addAll(set, elements);
330    return set;
331  }
332
333  // LinkedHashSet
334
335  /**
336   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
337   *
338   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
339   *
340   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
341   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
342   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
343   *
344   * @return a new, empty {@code LinkedHashSet}
345   */
346  public static <E> LinkedHashSet<E> newLinkedHashSet() {
347    return new LinkedHashSet<E>();
348  }
349
350  /**
351   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
352   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
353   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
354   * that the method isn't inadvertently <i>oversizing</i> the returned set.
355   *
356   * @param expectedSize the number of elements you expect to add to the returned set
357   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
358   *         elements without resizing
359   * @throws IllegalArgumentException if {@code expectedSize} is negative
360   * @since 11.0
361   */
362  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) {
363    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
364  }
365
366  /**
367   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
368   *
369   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
370   * ImmutableSet#copyOf(Iterable)} instead.
371   *
372   * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't
373   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
374   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
375   *
376   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
377   *
378   * @param elements the elements that the set should contain, in order
379   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
380   */
381  public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) {
382    if (elements instanceof Collection) {
383      return new LinkedHashSet<E>(Collections2.cast(elements));
384    }
385    LinkedHashSet<E> set = newLinkedHashSet();
386    Iterables.addAll(set, elements);
387    return set;
388  }
389
390  // TreeSet
391
392  /**
393   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
394   * its elements.
395   *
396   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
397   *
398   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
399   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
400   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
401   *
402   * @return a new, empty {@code TreeSet}
403   */
404  public static <E extends Comparable> TreeSet<E> newTreeSet() {
405    return new TreeSet<E>();
406  }
407
408  /**
409   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
410   * natural ordering.
411   *
412   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
413   * instead.
414   *
415   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
416   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
417   * TreeSet} with that comparator.
418   *
419   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
420   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
421   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
422   *
423   * <p>This method is just a small convenience for creating an empty set and then calling {@link
424   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
425   *
426   * @param elements the elements that the set should contain
427   * @return a new {@code TreeSet} containing those elements (minus duplicates)
428   */
429  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
430    TreeSet<E> set = newTreeSet();
431    Iterables.addAll(set, elements);
432    return set;
433  }
434
435  /**
436   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
437   *
438   * <p><b>Note:</b> if mutability is not required, use {@code
439   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
440   *
441   * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as
442   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
443   * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code
444   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
445   * factory rejects null. Clean your code accordingly.
446   *
447   * @param comparator the comparator to use to sort the set
448   * @return a new, empty {@code TreeSet}
449   * @throws NullPointerException if {@code comparator} is null
450   */
451  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
452    return new TreeSet<E>(checkNotNull(comparator));
453  }
454
455  /**
456   * Creates an empty {@code Set} that uses identity to determine equality. It
457   * compares object references, instead of calling {@code equals}, to
458   * determine whether a provided object matches an element in the set. For
459   * example, {@code contains} returns {@code false} when passed an object that
460   * equals a set member, but isn't the same instance. This behavior is similar
461   * to the way {@code IdentityHashMap} handles key lookups.
462   *
463   * @since 8.0
464   */
465  public static <E> Set<E> newIdentityHashSet() {
466    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
467  }
468
469  /**
470   * Creates an empty {@code CopyOnWriteArraySet} instance.
471   *
472   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use
473   * {@link Collections#emptySet} instead.
474   *
475   * @return a new, empty {@code CopyOnWriteArraySet}
476   * @since 12.0
477   */
478  @GwtIncompatible // CopyOnWriteArraySet
479  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
480    return new CopyOnWriteArraySet<E>();
481  }
482
483  /**
484   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
485   *
486   * @param elements the elements that the set should contain, in order
487   * @return a new {@code CopyOnWriteArraySet} containing those elements
488   * @since 12.0
489   */
490  @GwtIncompatible // CopyOnWriteArraySet
491  public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) {
492    // We copy elements to an ArrayList first, rather than incurring the
493    // quadratic cost of adding them to the COWAS directly.
494    Collection<? extends E> elementsCollection =
495        (elements instanceof Collection)
496            ? Collections2.cast(elements)
497            : Lists.newArrayList(elements);
498    return new CopyOnWriteArraySet<E>(elementsCollection);
499  }
500
501  /**
502   * Creates an {@code EnumSet} consisting of all enum values that are not in
503   * the specified collection. If the collection is an {@link EnumSet}, this
504   * method has the same behavior as {@link EnumSet#complementOf}. Otherwise,
505   * the specified collection must contain at least one element, in order to
506   * determine the element type. If the collection could be empty, use
507   * {@link #complementOf(Collection, Class)} instead of this method.
508   *
509   * @param collection the collection whose complement should be stored in the
510   *     enum set
511   * @return a new, modifiable {@code EnumSet} containing all values of the enum
512   *     that aren't present in the given collection
513   * @throws IllegalArgumentException if {@code collection} is not an
514   *     {@code EnumSet} instance and contains no elements
515   */
516  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
517    if (collection instanceof EnumSet) {
518      return EnumSet.complementOf((EnumSet<E>) collection);
519    }
520    checkArgument(
521        !collection.isEmpty(), "collection is empty; use the other version of this method");
522    Class<E> type = collection.iterator().next().getDeclaringClass();
523    return makeComplementByHand(collection, type);
524  }
525
526  /**
527   * Creates an {@code EnumSet} consisting of all enum values that are not in
528   * the specified collection. This is equivalent to
529   * {@link EnumSet#complementOf}, but can act on any input collection, as long
530   * as the elements are of enum type.
531   *
532   * @param collection the collection whose complement should be stored in the
533   *     {@code EnumSet}
534   * @param type the type of the elements in the set
535   * @return a new, modifiable {@code EnumSet} initially containing all the
536   *     values of the enum not present in the given collection
537   */
538  public static <E extends Enum<E>> EnumSet<E> complementOf(
539      Collection<E> collection, Class<E> type) {
540    checkNotNull(collection);
541    return (collection instanceof EnumSet)
542        ? EnumSet.complementOf((EnumSet<E>) collection)
543        : makeComplementByHand(collection, type);
544  }
545
546  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
547      Collection<E> collection, Class<E> type) {
548    EnumSet<E> result = EnumSet.allOf(type);
549    result.removeAll(collection);
550    return result;
551  }
552
553  /**
554   * Returns a set backed by the specified map. The resulting set displays
555   * the same ordering, concurrency, and performance characteristics as the
556   * backing map. In essence, this factory method provides a {@link Set}
557   * implementation corresponding to any {@link Map} implementation. There is no
558   * need to use this method on a {@link Map} implementation that already has a
559   * corresponding {@link Set} implementation (such as {@link java.util.HashMap}
560   * or {@link java.util.TreeMap}).
561   *
562   * <p>Each method invocation on the set returned by this method results in
563   * exactly one method invocation on the backing map or its {@code keySet}
564   * view, with one exception. The {@code addAll} method is implemented as a
565   * sequence of {@code put} invocations on the backing map.
566   *
567   * <p>The specified map must be empty at the time this method is invoked,
568   * and should not be accessed directly after this method returns. These
569   * conditions are ensured if the map is created empty, passed directly
570   * to this method, and no reference to the map is retained, as illustrated
571   * in the following code fragment: <pre>  {@code
572   *
573   *   Set<Object> identityHashSet = Sets.newSetFromMap(
574   *       new IdentityHashMap<Object, Boolean>());}</pre>
575   *
576   * <p>The returned set is serializable if the backing map is.
577   *
578   * @param map the backing map
579   * @return the set backed by the map
580   * @throws IllegalArgumentException if {@code map} is not empty
581   * @deprecated Use {@link Collections#newSetFromMap} instead. This method
582   *     will be removed in December 2017.
583   */
584  @Deprecated
585  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
586    return Collections.newSetFromMap(map);
587  }
588
589  /**
590   * An unmodifiable view of a set which may be backed by other sets; this view
591   * will change as the backing sets do. Contains methods to copy the data into
592   * a new set which will then remain stable. There is usually no reason to
593   * retain a reference of type {@code SetView}; typically, you either use it
594   * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
595   * {@link #copyInto} and forget the {@code SetView} itself.
596   *
597   * @since 2.0
598   */
599  public abstract static class SetView<E> extends AbstractSet<E> {
600    private SetView() {} // no subclasses but our own
601
602    /**
603     * Returns an immutable copy of the current contents of this set view.
604     * Does not support null elements.
605     *
606     * <p><b>Warning:</b> this may have unexpected results if a backing set of
607     * this view uses a nonstandard notion of equivalence, for example if it is
608     * a {@link TreeSet} using a comparator that is inconsistent with {@link
609     * Object#equals(Object)}.
610     */
611    public ImmutableSet<E> immutableCopy() {
612      return ImmutableSet.copyOf(this);
613    }
614
615    /**
616     * Copies the current contents of this set view into an existing set. This
617     * method has equivalent behavior to {@code set.addAll(this)}, assuming that
618     * all the sets involved are based on the same notion of equivalence.
619     *
620     * @return a reference to {@code set}, for convenience
621     */
622    // Note: S should logically extend Set<? super E> but can't due to either
623    // some javac bug or some weirdness in the spec, not sure which.
624    @CanIgnoreReturnValue
625    public <S extends Set<E>> S copyInto(S set) {
626      set.addAll(this);
627      return set;
628    }
629
630    /**
631     * Guaranteed to throw an exception and leave the collection unmodified.
632     *
633     * @throws UnsupportedOperationException always
634     * @deprecated Unsupported operation.
635     */
636    @CanIgnoreReturnValue
637    @Deprecated
638    @Override
639    public final boolean add(E e) {
640      throw new UnsupportedOperationException();
641    }
642
643    /**
644     * Guaranteed to throw an exception and leave the collection unmodified.
645     *
646     * @throws UnsupportedOperationException always
647     * @deprecated Unsupported operation.
648     */
649    @CanIgnoreReturnValue
650    @Deprecated
651    @Override
652    public final boolean remove(Object object) {
653      throw new UnsupportedOperationException();
654    }
655
656    /**
657     * Guaranteed to throw an exception and leave the collection unmodified.
658     *
659     * @throws UnsupportedOperationException always
660     * @deprecated Unsupported operation.
661     */
662    @CanIgnoreReturnValue
663    @Deprecated
664    @Override
665    public final boolean addAll(Collection<? extends E> newElements) {
666      throw new UnsupportedOperationException();
667    }
668
669    /**
670     * Guaranteed to throw an exception and leave the collection unmodified.
671     *
672     * @throws UnsupportedOperationException always
673     * @deprecated Unsupported operation.
674     */
675    @CanIgnoreReturnValue
676    @Deprecated
677    @Override
678    public final boolean removeAll(Collection<?> oldElements) {
679      throw new UnsupportedOperationException();
680    }
681
682    /**
683     * Guaranteed to throw an exception and leave the collection unmodified.
684     *
685     * @throws UnsupportedOperationException always
686     * @deprecated Unsupported operation.
687     */
688    @CanIgnoreReturnValue
689    @Deprecated
690    @Override
691    public final boolean removeIf(java.util.function.Predicate<? super E> filter) {
692      throw new UnsupportedOperationException();
693    }
694
695    /**
696     * Guaranteed to throw an exception and leave the collection unmodified.
697     *
698     * @throws UnsupportedOperationException always
699     * @deprecated Unsupported operation.
700     */
701    @CanIgnoreReturnValue
702    @Deprecated
703    @Override
704    public final boolean retainAll(Collection<?> elementsToKeep) {
705      throw new UnsupportedOperationException();
706    }
707
708    /**
709     * Guaranteed to throw an exception and leave the collection unmodified.
710     *
711     * @throws UnsupportedOperationException always
712     * @deprecated Unsupported operation.
713     */
714    @Deprecated
715    @Override
716    public final void clear() {
717      throw new UnsupportedOperationException();
718    }
719
720    /**
721     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
722     *
723     * @since 20.0 (present with return type {@link Iterator} since 2.0)
724     */
725    @Override
726    public abstract UnmodifiableIterator<E> iterator();
727  }
728
729  /**
730   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned
731   * set contains all elements that are contained in either backing set.
732   * Iterating over the returned set iterates first over all the elements of
733   * {@code set1}, then over each element of {@code set2}, in order, that is not
734   * contained in {@code set1}.
735   *
736   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on
737   * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and
738   * the {@link Map#keySet} of an {@code IdentityHashMap} all are).
739   */
740  public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) {
741    checkNotNull(set1, "set1");
742    checkNotNull(set2, "set2");
743
744    return new SetView<E>() {
745      @Override
746      public int size() {
747        int size = set1.size();
748        for (E e : set2) {
749          if (!set1.contains(e)) {
750            size++;
751          }
752        }
753        return size;
754      }
755
756      @Override
757      public boolean isEmpty() {
758        return set1.isEmpty() && set2.isEmpty();
759      }
760
761      @Override
762      public UnmodifiableIterator<E> iterator() {
763        return new AbstractIterator<E>() {
764          final Iterator<? extends E> itr1 = set1.iterator();
765          final Iterator<? extends E> itr2 = set2.iterator();
766
767          @Override
768          protected E computeNext() {
769            if (itr1.hasNext()) {
770              return itr1.next();
771            }
772            while (itr2.hasNext()) {
773              E e = itr2.next();
774              if (!set1.contains(e)) {
775                return e;
776              }
777            }
778            return endOfData();
779          }
780        };
781      }
782
783      @Override
784      public Stream<E> stream() {
785        return Stream.concat(set1.stream(), set2.stream().filter(e -> !set1.contains(e)));
786      }
787
788      @Override
789      public Stream<E> parallelStream() {
790        return stream().parallel();
791      }
792
793      @Override
794      public boolean contains(Object object) {
795        return set1.contains(object) || set2.contains(object);
796      }
797
798      @Override
799      public <S extends Set<E>> S copyInto(S set) {
800        set.addAll(set1);
801        set.addAll(set2);
802        return set;
803      }
804
805      @Override
806      public ImmutableSet<E> immutableCopy() {
807        return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build();
808      }
809    };
810  }
811
812  /**
813   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The
814   * returned set contains all elements that are contained by both backing sets.
815   * The iteration order of the returned set matches that of {@code set1}.
816   *
817   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
818   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
819   * and the keySet of an {@code IdentityHashMap} all are).
820   *
821   * <p><b>Note:</b> The returned view performs slightly better when {@code
822   * set1} is the smaller of the two sets. If you have reason to believe one of
823   * your sets will generally be smaller than the other, pass it first.
824   * Unfortunately, since this method sets the generic type of the returned set
825   * based on the type of the first set passed, this could in rare cases force
826   * you to make a cast, for example: <pre>   {@code
827   *
828   *   Set<Object> aFewBadObjects = ...
829   *   Set<String> manyBadStrings = ...
830   *
831   *   // impossible for a non-String to be in the intersection
832   *   SuppressWarnings("unchecked")
833   *   Set<String> badStrings = (Set) Sets.intersection(
834   *       aFewBadObjects, manyBadStrings);}</pre>
835   *
836   * <p>This is unfortunate, but should come up only very rarely.
837   */
838  public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) {
839    checkNotNull(set1, "set1");
840    checkNotNull(set2, "set2");
841
842    return new SetView<E>() {
843      @Override
844      public UnmodifiableIterator<E> iterator() {
845        return new AbstractIterator<E>() {
846          final Iterator<E> itr = set1.iterator();
847
848          @Override
849          protected E computeNext() {
850            while (itr.hasNext()) {
851              E e = itr.next();
852              if (set2.contains(e)) {
853                return e;
854              }
855            }
856            return endOfData();
857          }
858        };
859      }
860
861      @Override
862      public Stream<E> stream() {
863        return set1.stream().filter(set2::contains);
864      }
865
866      @Override
867      public Stream<E> parallelStream() {
868        return set1.parallelStream().filter(set2::contains);
869      }
870
871      @Override
872      public int size() {
873        int size = 0;
874        for (E e : set1) {
875          if (set2.contains(e)) {
876            size++;
877          }
878        }
879        return size;
880      }
881
882      @Override
883      public boolean isEmpty() {
884        return Collections.disjoint(set1, set2);
885      }
886
887      @Override
888      public boolean contains(Object object) {
889        return set1.contains(object) && set2.contains(object);
890      }
891
892      @Override
893      public boolean containsAll(Collection<?> collection) {
894        return set1.containsAll(collection) && set2.containsAll(collection);
895      }
896    };
897  }
898
899  /**
900   * Returns an unmodifiable <b>view</b> of the difference of two sets. The
901   * returned set contains all elements that are contained by {@code set1} and
902   * not contained by {@code set2}. {@code set2} may also contain elements not
903   * present in {@code set1}; these are simply ignored. The iteration order of
904   * the returned set matches that of {@code set1}.
905   *
906   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
907   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
908   * and the keySet of an {@code IdentityHashMap} all are).
909   */
910  public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) {
911    checkNotNull(set1, "set1");
912    checkNotNull(set2, "set2");
913
914    return new SetView<E>() {
915      @Override
916      public UnmodifiableIterator<E> iterator() {
917        return new AbstractIterator<E>(){
918          final Iterator<E> itr = set1.iterator();
919          @Override
920          protected E computeNext() {
921            while (itr.hasNext()) {
922              E e = itr.next();
923              if (!set2.contains(e)) {
924                return e;
925              }
926            }
927            return endOfData();
928          }
929        };
930      }
931
932      @Override
933      public Stream<E> stream() {
934        return set1.stream().filter(e -> !set2.contains(e));
935      }
936
937      @Override
938      public Stream<E> parallelStream() {
939        return set1.parallelStream().filter(e -> !set2.contains(e));
940      }
941
942      @Override
943      public int size() {
944        int size = 0;
945        for (E e : set1) {
946          if (!set2.contains(e)) {
947            size++;
948          }
949        }
950        return size;
951      }
952
953      @Override
954      public boolean isEmpty() {
955        return set2.containsAll(set1);
956      }
957
958      @Override
959      public boolean contains(Object element) {
960        return set1.contains(element) && !set2.contains(element);
961      }
962    };
963  }
964
965  /**
966   * Returns an unmodifiable <b>view</b> of the symmetric difference of two
967   * sets. The returned set contains all elements that are contained in either
968   * {@code set1} or {@code set2} but not in both. The iteration order of the
969   * returned set is undefined.
970   *
971   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
972   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
973   * and the keySet of an {@code IdentityHashMap} all are).
974   *
975   * @since 3.0
976   */
977  public static <E> SetView<E> symmetricDifference(
978      final Set<? extends E> set1, final Set<? extends E> set2) {
979    checkNotNull(set1, "set1");
980    checkNotNull(set2, "set2");
981
982    return new SetView<E>() {
983      @Override
984      public UnmodifiableIterator<E> iterator() {
985        final Iterator<? extends E> itr1 = set1.iterator();
986        final Iterator<? extends E> itr2 = set2.iterator();
987        return new AbstractIterator<E>() {
988          @Override
989          public E computeNext() {
990            while (itr1.hasNext()) {
991              E elem1 = itr1.next();
992              if (!set2.contains(elem1)) {
993                return elem1;
994              }
995            }
996            while (itr2.hasNext()) {
997              E elem2 = itr2.next();
998              if (!set1.contains(elem2)) {
999                return elem2;
1000              }
1001            }
1002            return endOfData();
1003          }
1004        };
1005      }
1006
1007      @Override
1008      public int size() {
1009        int size = 0;
1010        for (E e : set1) {
1011          if (!set2.contains(e)) {
1012            size++;
1013          }
1014        }
1015        for (E e : set2) {
1016          if (!set1.contains(e)) {
1017            size++;
1018          }
1019        }
1020        return size;
1021      }
1022
1023      @Override
1024      public boolean isEmpty() {
1025        return set1.equals(set2);
1026      }
1027
1028      @Override
1029      public boolean contains(Object element) {
1030        return set1.contains(element) ^ set2.contains(element);
1031      }
1032    };
1033  }
1034
1035  /**
1036   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
1037   * returned set is a live view of {@code unfiltered}; changes to one affect
1038   * the other.
1039   *
1040   * <p>The resulting set's iterator does not support {@code remove()}, but all
1041   * other set methods are supported. When given an element that doesn't satisfy
1042   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
1043   * an {@link IllegalArgumentException}. When methods such as {@code
1044   * removeAll()} and {@code clear()} are called on the filtered set, only
1045   * elements that satisfy the filter will be removed from the underlying set.
1046   *
1047   * <p>The returned set isn't threadsafe or serializable, even if
1048   * {@code unfiltered} is.
1049   *
1050   * <p>Many of the filtered set's methods, such as {@code size()}, iterate
1051   * across every element in the underlying set and determine which elements
1052   * satisfy the filter. When a live view is <i>not</i> needed, it may be faster
1053   * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy.
1054   *
1055   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
1056   * as documented at {@link Predicate#apply}. Do not provide a predicate such
1057   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
1058   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
1059   * functionality.)
1060   *
1061   * <p><b>Java 8 users:</b> many use cases for this method are better
1062   * addressed by {@link java.util.stream.Stream#filter}. This method is not
1063   * being deprecated, but we gently encourage you to migrate to streams.
1064   */
1065  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
1066  public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) {
1067    if (unfiltered instanceof SortedSet) {
1068      return filter((SortedSet<E>) unfiltered, predicate);
1069    }
1070    if (unfiltered instanceof FilteredSet) {
1071      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1072      // collection.
1073      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1074      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1075      return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate);
1076    }
1077
1078    return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1079  }
1080
1081  private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> {
1082    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
1083      super(unfiltered, predicate);
1084    }
1085
1086    @Override
1087    public boolean equals(@Nullable Object object) {
1088      return equalsImpl(this, object);
1089    }
1090
1091    @Override
1092    public int hashCode() {
1093      return hashCodeImpl(this);
1094    }
1095  }
1096
1097  /**
1098   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that
1099   * satisfy a predicate. The returned set is a live view of {@code unfiltered};
1100   * changes to one affect the other.
1101   *
1102   * <p>The resulting set's iterator does not support {@code remove()}, but all
1103   * other set methods are supported. When given an element that doesn't satisfy
1104   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
1105   * an {@link IllegalArgumentException}. When methods such as
1106   * {@code removeAll()} and {@code clear()} are called on the filtered set,
1107   * only elements that satisfy the filter will be removed from the underlying
1108   * set.
1109   *
1110   * <p>The returned set isn't threadsafe or serializable, even if
1111   * {@code unfiltered} is.
1112   *
1113   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across
1114   * every element in the underlying set and determine which elements satisfy
1115   * the filter. When a live view is <i>not</i> needed, it may be faster to copy
1116   * {@code Iterables.filter(unfiltered, predicate)} and use the copy.
1117   *
1118   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
1119   * as documented at {@link Predicate#apply}. Do not provide a predicate such as
1120   * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
1121   * equals. (See {@link Iterables#filter(Iterable, Class)} for related
1122   * functionality.)
1123   *
1124   * @since 11.0
1125   */
1126  public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1127    if (unfiltered instanceof FilteredSet) {
1128      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1129      // collection.
1130      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1131      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1132      return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1133    }
1134
1135    return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1136  }
1137
1138  private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> {
1139
1140    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1141      super(unfiltered, predicate);
1142    }
1143
1144    @Override
1145    public Comparator<? super E> comparator() {
1146      return ((SortedSet<E>) unfiltered).comparator();
1147    }
1148
1149    @Override
1150    public SortedSet<E> subSet(E fromElement, E toElement) {
1151      return new FilteredSortedSet<E>(
1152          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1153    }
1154
1155    @Override
1156    public SortedSet<E> headSet(E toElement) {
1157      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1158    }
1159
1160    @Override
1161    public SortedSet<E> tailSet(E fromElement) {
1162      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1163    }
1164
1165    @Override
1166    public E first() {
1167      return Iterators.find(unfiltered.iterator(), predicate);
1168    }
1169
1170    @Override
1171    public E last() {
1172      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1173      while (true) {
1174        E element = sortedUnfiltered.last();
1175        if (predicate.apply(element)) {
1176          return element;
1177        }
1178        sortedUnfiltered = sortedUnfiltered.headSet(element);
1179      }
1180    }
1181  }
1182
1183  /**
1184   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that
1185   * satisfy a predicate. The returned set is a live view of {@code unfiltered};
1186   * changes to one affect the other.
1187   *
1188   * <p>The resulting set's iterator does not support {@code remove()}, but all
1189   * other set methods are supported. When given an element that doesn't satisfy
1190   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
1191   * an {@link IllegalArgumentException}. When methods such as
1192   * {@code removeAll()} and {@code clear()} are called on the filtered set,
1193   * only elements that satisfy the filter will be removed from the underlying
1194   * set.
1195   *
1196   * <p>The returned set isn't threadsafe or serializable, even if
1197   * {@code unfiltered} is.
1198   *
1199   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across
1200   * every element in the underlying set and determine which elements satisfy
1201   * the filter. When a live view is <i>not</i> needed, it may be faster to copy
1202   * {@code Iterables.filter(unfiltered, predicate)} and use the copy.
1203   *
1204   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
1205   * as documented at {@link Predicate#apply}. Do not provide a predicate such as
1206   * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
1207   * equals. (See {@link Iterables#filter(Iterable, Class)} for related
1208   * functionality.)
1209   *
1210   * @since 14.0
1211   */
1212  @GwtIncompatible // NavigableSet
1213  @SuppressWarnings("unchecked")
1214  public static <E> NavigableSet<E> filter(
1215      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1216    if (unfiltered instanceof FilteredSet) {
1217      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1218      // collection.
1219      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1220      Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate);
1221      return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1222    }
1223
1224    return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate));
1225  }
1226
1227  @GwtIncompatible // NavigableSet
1228  private static class FilteredNavigableSet<E> extends FilteredSortedSet<E>
1229      implements NavigableSet<E> {
1230    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1231      super(unfiltered, predicate);
1232    }
1233
1234    NavigableSet<E> unfiltered() {
1235      return (NavigableSet<E>) unfiltered;
1236    }
1237
1238    @Override
1239    @Nullable
1240    public E lower(E e) {
1241      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1242    }
1243
1244    @Override
1245    @Nullable
1246    public E floor(E e) {
1247      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1248    }
1249
1250    @Override
1251    public E ceiling(E e) {
1252      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1253    }
1254
1255    @Override
1256    public E higher(E e) {
1257      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1258    }
1259
1260    @Override
1261    public E pollFirst() {
1262      return Iterables.removeFirstMatching(unfiltered(), predicate);
1263    }
1264
1265    @Override
1266    public E pollLast() {
1267      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1268    }
1269
1270    @Override
1271    public NavigableSet<E> descendingSet() {
1272      return Sets.filter(unfiltered().descendingSet(), predicate);
1273    }
1274
1275    @Override
1276    public Iterator<E> descendingIterator() {
1277      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1278    }
1279
1280    @Override
1281    public E last() {
1282      return Iterators.find(unfiltered().descendingIterator(), predicate);
1283    }
1284
1285    @Override
1286    public NavigableSet<E> subSet(
1287        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1288      return filter(
1289          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1290    }
1291
1292    @Override
1293    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1294      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1295    }
1296
1297    @Override
1298    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1299      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1300    }
1301  }
1302
1303  /**
1304   * Returns every possible list that can be formed by choosing one element
1305   * from each of the given sets in order; the "n-ary
1306   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1307   * product</a>" of the sets. For example: <pre>   {@code
1308   *
1309   *   Sets.cartesianProduct(ImmutableList.of(
1310   *       ImmutableSet.of(1, 2),
1311   *       ImmutableSet.of("A", "B", "C")))}</pre>
1312   *
1313   * <p>returns a set containing six lists:
1314   *
1315   * <ul>
1316   * <li>{@code ImmutableList.of(1, "A")}
1317   * <li>{@code ImmutableList.of(1, "B")}
1318   * <li>{@code ImmutableList.of(1, "C")}
1319   * <li>{@code ImmutableList.of(2, "A")}
1320   * <li>{@code ImmutableList.of(2, "B")}
1321   * <li>{@code ImmutableList.of(2, "C")}
1322   * </ul>
1323   *
1324   * <p>The result is guaranteed to be in the "traditional", lexicographical
1325   * order for Cartesian products that you would get from nesting for loops:
1326   * <pre>   {@code
1327   *
1328   *   for (B b0 : sets.get(0)) {
1329   *     for (B b1 : sets.get(1)) {
1330   *       ...
1331   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1332   *       // operate on tuple
1333   *     }
1334   *   }}</pre>
1335   *
1336   * <p>Note that if any input set is empty, the Cartesian product will also be
1337   * empty. If no sets at all are provided (an empty list), the resulting
1338   * Cartesian product has one element, an empty list (counter-intuitive, but
1339   * mathematically consistent).
1340   *
1341   * <p><i>Performance notes:</i> while the cartesian product of sets of size
1342   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
1343   * consumption is much smaller. When the cartesian set is constructed, the
1344   * input sets are merely copied. Only as the resulting set is iterated are the
1345   * individual lists created, and these are not retained after iteration.
1346   *
1347   * @param sets the sets to choose elements from, in the order that
1348   *     the elements chosen from those sets should appear in the resulting
1349   *     lists
1350   * @param <B> any common base class shared by all axes (often just {@link
1351   *     Object})
1352   * @return the Cartesian product, as an immutable set containing immutable
1353   *     lists
1354   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
1355   *     or any element of a provided set is null
1356   * @since 2.0
1357   */
1358  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1359    return CartesianSet.create(sets);
1360  }
1361
1362  /**
1363   * Returns every possible list that can be formed by choosing one element
1364   * from each of the given sets in order; the "n-ary
1365   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1366   * product</a>" of the sets. For example: <pre>   {@code
1367   *
1368   *   Sets.cartesianProduct(
1369   *       ImmutableSet.of(1, 2),
1370   *       ImmutableSet.of("A", "B", "C"))}</pre>
1371   *
1372   * <p>returns a set containing six lists:
1373   *
1374   * <ul>
1375   * <li>{@code ImmutableList.of(1, "A")}
1376   * <li>{@code ImmutableList.of(1, "B")}
1377   * <li>{@code ImmutableList.of(1, "C")}
1378   * <li>{@code ImmutableList.of(2, "A")}
1379   * <li>{@code ImmutableList.of(2, "B")}
1380   * <li>{@code ImmutableList.of(2, "C")}
1381   * </ul>
1382   *
1383   * <p>The result is guaranteed to be in the "traditional", lexicographical
1384   * order for Cartesian products that you would get from nesting for loops:
1385   * <pre>   {@code
1386   *
1387   *   for (B b0 : sets.get(0)) {
1388   *     for (B b1 : sets.get(1)) {
1389   *       ...
1390   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1391   *       // operate on tuple
1392   *     }
1393   *   }}</pre>
1394   *
1395   * <p>Note that if any input set is empty, the Cartesian product will also be
1396   * empty. If no sets at all are provided (an empty list), the resulting
1397   * Cartesian product has one element, an empty list (counter-intuitive, but
1398   * mathematically consistent).
1399   *
1400   * <p><i>Performance notes:</i> while the cartesian product of sets of size
1401   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
1402   * consumption is much smaller. When the cartesian set is constructed, the
1403   * input sets are merely copied. Only as the resulting set is iterated are the
1404   * individual lists created, and these are not retained after iteration.
1405   *
1406   * @param sets the sets to choose elements from, in the order that
1407   *     the elements chosen from those sets should appear in the resulting
1408   *     lists
1409   * @param <B> any common base class shared by all axes (often just {@link
1410   *     Object})
1411   * @return the Cartesian product, as an immutable set containing immutable
1412   *     lists
1413   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
1414   *     or any element of a provided set is null
1415   * @since 2.0
1416   */
1417  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1418    return cartesianProduct(Arrays.asList(sets));
1419  }
1420
1421  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1422      implements Set<List<E>> {
1423    private final transient ImmutableList<ImmutableSet<E>> axes;
1424    private final transient CartesianList<E> delegate;
1425
1426    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1427      ImmutableList.Builder<ImmutableSet<E>> axesBuilder =
1428          new ImmutableList.Builder<ImmutableSet<E>>(sets.size());
1429      for (Set<? extends E> set : sets) {
1430        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1431        if (copy.isEmpty()) {
1432          return ImmutableSet.of();
1433        }
1434        axesBuilder.add(copy);
1435      }
1436      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1437      ImmutableList<List<E>> listAxes =
1438          new ImmutableList<List<E>>() {
1439            @Override
1440            public int size() {
1441              return axes.size();
1442            }
1443
1444            @Override
1445            public List<E> get(int index) {
1446              return axes.get(index).asList();
1447            }
1448
1449            @Override
1450            boolean isPartialView() {
1451              return true;
1452            }
1453          };
1454      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1455    }
1456
1457    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1458      this.axes = axes;
1459      this.delegate = delegate;
1460    }
1461
1462    @Override
1463    protected Collection<List<E>> delegate() {
1464      return delegate;
1465    }
1466
1467    @Override
1468    public boolean equals(@Nullable Object object) {
1469      // Warning: this is broken if size() == 0, so it is critical that we
1470      // substitute an empty ImmutableSet to the user in place of this
1471      if (object instanceof CartesianSet) {
1472        CartesianSet<?> that = (CartesianSet<?>) object;
1473        return this.axes.equals(that.axes);
1474      }
1475      return super.equals(object);
1476    }
1477
1478    @Override
1479    public int hashCode() {
1480      // Warning: this is broken if size() == 0, so it is critical that we
1481      // substitute an empty ImmutableSet to the user in place of this
1482
1483      // It's a weird formula, but tests prove it works.
1484      int adjust = size() - 1;
1485      for (int i = 0; i < axes.size(); i++) {
1486        adjust *= 31;
1487        adjust = ~~adjust;
1488        // in GWT, we have to deal with integer overflow carefully
1489      }
1490      int hash = 1;
1491      for (Set<E> axis : axes) {
1492        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1493
1494        hash = ~~hash;
1495      }
1496      hash += adjust;
1497      return ~~hash;
1498    }
1499  }
1500
1501  /**
1502   * Returns the set of all possible subsets of {@code set}. For example,
1503   * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{},
1504   * {1}, {2}, {1, 2}}}.
1505   *
1506   * <p>Elements appear in these subsets in the same iteration order as they
1507   * appeared in the input set. The order in which these subsets appear in the
1508   * outer set is undefined. Note that the power set of the empty set is not the
1509   * empty set, but a one-element set containing the empty set.
1510   *
1511   * <p>The returned set and its constituent sets use {@code equals} to decide
1512   * whether two elements are identical, even if the input set uses a different
1513   * concept of equivalence.
1514   *
1515   * <p><i>Performance notes:</i> while the power set of a set with size {@code
1516   * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the
1517   * power set is constructed, the input set is merely copied. Only as the
1518   * power set is iterated are the individual subsets created, and these subsets
1519   * themselves occupy only a small constant amount of memory.
1520   *
1521   * @param set the set of elements to construct a power set from
1522   * @return the power set, as an immutable set of immutable sets
1523   * @throws IllegalArgumentException if {@code set} has more than 30 unique
1524   *     elements (causing the power set size to exceed the {@code int} range)
1525   * @throws NullPointerException if {@code set} is or contains {@code null}
1526   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at
1527   *      Wikipedia</a>
1528   * @since 4.0
1529   */
1530  @GwtCompatible(serializable = false)
1531  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1532    return new PowerSet<E>(set);
1533  }
1534
1535  private static final class SubSet<E> extends AbstractSet<E> {
1536    private final ImmutableMap<E, Integer> inputSet;
1537    private final int mask;
1538
1539    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1540      this.inputSet = inputSet;
1541      this.mask = mask;
1542    }
1543
1544    @Override
1545    public Iterator<E> iterator() {
1546      return new UnmodifiableIterator<E>() {
1547        final ImmutableList<E> elements = inputSet.keySet().asList();
1548        int remainingSetBits = mask;
1549
1550        @Override
1551        public boolean hasNext() {
1552          return remainingSetBits != 0;
1553        }
1554
1555        @Override
1556        public E next() {
1557          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1558          if (index == 32) {
1559            throw new NoSuchElementException();
1560          }
1561          remainingSetBits &= ~(1 << index);
1562          return elements.get(index);
1563        }
1564      };
1565    }
1566
1567    @Override
1568    public int size() {
1569      return Integer.bitCount(mask);
1570    }
1571
1572    @Override
1573    public boolean contains(@Nullable Object o) {
1574      Integer index = inputSet.get(o);
1575      return index != null && (mask & (1 << index)) != 0;
1576    }
1577  }
1578
1579  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1580    final ImmutableMap<E, Integer> inputSet;
1581
1582    PowerSet(Set<E> input) {
1583      this.inputSet = Maps.indexMap(input);
1584      checkArgument(
1585          inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size());
1586    }
1587
1588    @Override
1589    public int size() {
1590      return 1 << inputSet.size();
1591    }
1592
1593    @Override
1594    public boolean isEmpty() {
1595      return false;
1596    }
1597
1598    @Override
1599    public Iterator<Set<E>> iterator() {
1600      return new AbstractIndexedListIterator<Set<E>>(size()) {
1601        @Override
1602        protected Set<E> get(final int setBits) {
1603          return new SubSet<E>(inputSet, setBits);
1604        }
1605      };
1606    }
1607
1608    @Override
1609    public boolean contains(@Nullable Object obj) {
1610      if (obj instanceof Set) {
1611        Set<?> set = (Set<?>) obj;
1612        return inputSet.keySet().containsAll(set);
1613      }
1614      return false;
1615    }
1616
1617    @Override
1618    public boolean equals(@Nullable Object obj) {
1619      if (obj instanceof PowerSet) {
1620        PowerSet<?> that = (PowerSet<?>) obj;
1621        return inputSet.equals(that.inputSet);
1622      }
1623      return super.equals(obj);
1624    }
1625
1626    @Override
1627    public int hashCode() {
1628      /*
1629       * The sum of the sums of the hash codes in each subset is just the sum of
1630       * each input element's hash code times the number of sets that element
1631       * appears in. Each element appears in exactly half of the 2^n sets, so:
1632       */
1633      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1634    }
1635
1636    @Override
1637    public String toString() {
1638      return "powerSet(" + inputSet + ")";
1639    }
1640  }
1641
1642  /**
1643   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1644   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1645   *
1646   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1647   * set. The order in which these subsets appear in the outer set is undefined.
1648   *
1649   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1650   * are identical, even if the input set uses a different concept of equivalence.
1651   *
1652   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1653   * the result set is constructed, the input set is merely copied. Only as the result set is
1654   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1655   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1656   * {@code combinations} does not retain the individual subsets.
1657   *
1658   * @param set the set of elements to take combinations of
1659   * @param size the number of elements per combination
1660   * @return the set of all combinations of {@code size} elements from {@code set}
1661   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1662   *     inclusive
1663   * @throws NullPointerException if {@code set} is or contains {@code null}
1664   * @since 23.0
1665   */
1666  @Beta
1667  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1668    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1669    checkNonnegative(size, "size");
1670    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1671    if (size == 0) {
1672      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1673    } else if (size == index.size()) {
1674      return ImmutableSet.<Set<E>>of(index.keySet());
1675    }
1676    return new AbstractSet<Set<E>>() {
1677      @Override
1678      public boolean contains(@Nullable Object o) {
1679        if (o instanceof Set) {
1680          Set<?> s = (Set<?>) o;
1681          return s.size() == size && index.keySet().containsAll(s);
1682        }
1683        return false;
1684      }
1685
1686      @Override
1687      public Iterator<Set<E>> iterator() {
1688        return new AbstractIterator<Set<E>>() {
1689          final BitSet bits = new BitSet(index.size());
1690
1691          @Override
1692          protected Set<E> computeNext() {
1693            if (bits.isEmpty()) {
1694              bits.set(0, size);
1695            } else {
1696              int firstSetBit = bits.nextSetBit(0);
1697              int bitToFlip = bits.nextClearBit(firstSetBit);
1698
1699              if (bitToFlip == index.size()) {
1700                return endOfData();
1701              }
1702
1703              /*
1704               * The current set in sorted order looks like
1705               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1706               * where it does *not* contain bitToFlip.
1707               *
1708               * The next combination is
1709               *
1710               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1711               *
1712               * This is lexicographically next if you look at the combinations in descending order
1713               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1714               */
1715
1716              bits.set(0, bitToFlip - firstSetBit - 1);
1717              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1718              bits.set(bitToFlip);
1719            }
1720            final BitSet copy = (BitSet) bits.clone();
1721            return new AbstractSet<E>() {
1722              @Override
1723              public boolean contains(@Nullable Object o) {
1724                Integer i = index.get(o);
1725                return i != null && copy.get(i);
1726              }
1727
1728              @Override
1729              public Iterator<E> iterator() {
1730                return new AbstractIterator<E>() {
1731                  int i = -1;
1732
1733                  @Override
1734                  protected E computeNext() {
1735                    i = copy.nextSetBit(i + 1);
1736                    if (i == -1) {
1737                      return endOfData();
1738                    }
1739                    return index.keySet().asList().get(i);
1740                  }
1741                };
1742              }
1743
1744              @Override
1745              public int size() {
1746                return size;
1747              }
1748            };
1749          }
1750        };
1751      }
1752
1753      @Override
1754      public int size() {
1755        return IntMath.binomial(index.size(), size);
1756      }
1757
1758      @Override
1759      public String toString() {
1760        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1761      }
1762    };
1763  }
1764
1765  /**
1766   * An implementation for {@link Set#hashCode()}.
1767   */
1768  static int hashCodeImpl(Set<?> s) {
1769    int hashCode = 0;
1770    for (Object o : s) {
1771      hashCode += o != null ? o.hashCode() : 0;
1772
1773      hashCode = ~~hashCode;
1774      // Needed to deal with unusual integer overflow in GWT.
1775    }
1776    return hashCode;
1777  }
1778
1779  /**
1780   * An implementation for {@link Set#equals(Object)}.
1781   */
1782  static boolean equalsImpl(Set<?> s, @Nullable Object object) {
1783    if (s == object) {
1784      return true;
1785    }
1786    if (object instanceof Set) {
1787      Set<?> o = (Set<?>) object;
1788
1789      try {
1790        return s.size() == o.size() && s.containsAll(o);
1791      } catch (NullPointerException ignored) {
1792        return false;
1793      } catch (ClassCastException ignored) {
1794        return false;
1795      }
1796    }
1797    return false;
1798  }
1799
1800  /**
1801   * Returns an unmodifiable view of the specified navigable set. This method
1802   * allows modules to provide users with "read-only" access to internal
1803   * navigable sets. Query operations on the returned set "read through" to the
1804   * specified set, and attempts to modify the returned set, whether direct or
1805   * via its collection views, result in an
1806   * {@code UnsupportedOperationException}.
1807   *
1808   * <p>The returned navigable set will be serializable if the specified
1809   * navigable set is serializable.
1810   *
1811   * @param set the navigable set for which an unmodifiable view is to be
1812   *        returned
1813   * @return an unmodifiable view of the specified navigable set
1814   * @since 12.0
1815   */
1816  public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) {
1817    if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) {
1818      return set;
1819    }
1820    return new UnmodifiableNavigableSet<E>(set);
1821  }
1822
1823  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E>
1824      implements NavigableSet<E>, Serializable {
1825    private final NavigableSet<E> delegate;
1826    private final SortedSet<E> unmodifiableDelegate;
1827
1828    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1829      this.delegate = checkNotNull(delegate);
1830      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1831    }
1832
1833    @Override
1834    protected SortedSet<E> delegate() {
1835      return unmodifiableDelegate;
1836    }
1837
1838    // default methods not forwarded by ForwardingSortedSet
1839
1840    @Override
1841    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
1842      throw new UnsupportedOperationException();
1843    }
1844
1845    @Override
1846    public Stream<E> stream() {
1847      return delegate.stream();
1848    }
1849
1850    @Override
1851    public Stream<E> parallelStream() {
1852      return delegate.parallelStream();
1853    }
1854
1855    @Override
1856    public void forEach(Consumer<? super E> action) {
1857      delegate.forEach(action);
1858    }
1859
1860    @Override
1861    public E lower(E e) {
1862      return delegate.lower(e);
1863    }
1864
1865    @Override
1866    public E floor(E e) {
1867      return delegate.floor(e);
1868    }
1869
1870    @Override
1871    public E ceiling(E e) {
1872      return delegate.ceiling(e);
1873    }
1874
1875    @Override
1876    public E higher(E e) {
1877      return delegate.higher(e);
1878    }
1879
1880    @Override
1881    public E pollFirst() {
1882      throw new UnsupportedOperationException();
1883    }
1884
1885    @Override
1886    public E pollLast() {
1887      throw new UnsupportedOperationException();
1888    }
1889
1890    private transient UnmodifiableNavigableSet<E> descendingSet;
1891
1892    @Override
1893    public NavigableSet<E> descendingSet() {
1894      UnmodifiableNavigableSet<E> result = descendingSet;
1895      if (result == null) {
1896        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
1897        result.descendingSet = this;
1898      }
1899      return result;
1900    }
1901
1902    @Override
1903    public Iterator<E> descendingIterator() {
1904      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1905    }
1906
1907    @Override
1908    public NavigableSet<E> subSet(
1909        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
1910      return unmodifiableNavigableSet(
1911          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1912    }
1913
1914    @Override
1915    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1916      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1917    }
1918
1919    @Override
1920    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1921      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1922    }
1923
1924    private static final long serialVersionUID = 0;
1925  }
1926
1927  /**
1928   * Returns a synchronized (thread-safe) navigable set backed by the specified
1929   * navigable set.  In order to guarantee serial access, it is critical that
1930   * <b>all</b> access to the backing navigable set is accomplished
1931   * through the returned navigable set (or its views).
1932   *
1933   * <p>It is imperative that the user manually synchronize on the returned
1934   * sorted set when iterating over it or any of its {@code descendingSet},
1935   * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre>   {@code
1936   *
1937   *   NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1938   *    ...
1939   *   synchronized (set) {
1940   *     // Must be in the synchronized block
1941   *     Iterator<E> it = set.iterator();
1942   *     while (it.hasNext()) {
1943   *       foo(it.next());
1944   *     }
1945   *   }}</pre>
1946   *
1947   * <p>or: <pre>   {@code
1948   *
1949   *   NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1950   *   NavigableSet<E> set2 = set.descendingSet().headSet(foo);
1951   *    ...
1952   *   synchronized (set) { // Note: set, not set2!!!
1953   *     // Must be in the synchronized block
1954   *     Iterator<E> it = set2.descendingIterator();
1955   *     while (it.hasNext())
1956   *       foo(it.next());
1957   *     }
1958   *   }}</pre>
1959   *
1960   * <p>Failure to follow this advice may result in non-deterministic behavior.
1961   *
1962   * <p>The returned navigable set will be serializable if the specified
1963   * navigable set is serializable.
1964   *
1965   * @param navigableSet the navigable set to be "wrapped" in a synchronized
1966   *    navigable set.
1967   * @return a synchronized view of the specified navigable set.
1968   * @since 13.0
1969   */
1970  @GwtIncompatible // NavigableSet
1971  public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) {
1972    return Synchronized.navigableSet(navigableSet);
1973  }
1974
1975  /**
1976   * Remove each element in an iterable from a set.
1977   */
1978  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
1979    boolean changed = false;
1980    while (iterator.hasNext()) {
1981      changed |= set.remove(iterator.next());
1982    }
1983    return changed;
1984  }
1985
1986  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
1987    checkNotNull(collection); // for GWT
1988    if (collection instanceof Multiset) {
1989      collection = ((Multiset<?>) collection).elementSet();
1990    }
1991    /*
1992     * AbstractSet.removeAll(List) has quadratic behavior if the list size
1993     * is just less than the set's size.  We augment the test by
1994     * assuming that sets have fast contains() performance, and other
1995     * collections don't.  See
1996     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
1997     */
1998    if (collection instanceof Set && collection.size() > set.size()) {
1999      return Iterators.removeAll(set.iterator(), collection);
2000    } else {
2001      return removeAllImpl(set, collection.iterator());
2002    }
2003  }
2004
2005  @GwtIncompatible // NavigableSet
2006  static class DescendingSet<E> extends ForwardingNavigableSet<E> {
2007    private final NavigableSet<E> forward;
2008
2009    DescendingSet(NavigableSet<E> forward) {
2010      this.forward = forward;
2011    }
2012
2013    @Override
2014    protected NavigableSet<E> delegate() {
2015      return forward;
2016    }
2017
2018    @Override
2019    public E lower(E e) {
2020      return forward.higher(e);
2021    }
2022
2023    @Override
2024    public E floor(E e) {
2025      return forward.ceiling(e);
2026    }
2027
2028    @Override
2029    public E ceiling(E e) {
2030      return forward.floor(e);
2031    }
2032
2033    @Override
2034    public E higher(E e) {
2035      return forward.lower(e);
2036    }
2037
2038    @Override
2039    public E pollFirst() {
2040      return forward.pollLast();
2041    }
2042
2043    @Override
2044    public E pollLast() {
2045      return forward.pollFirst();
2046    }
2047
2048    @Override
2049    public NavigableSet<E> descendingSet() {
2050      return forward;
2051    }
2052
2053    @Override
2054    public Iterator<E> descendingIterator() {
2055      return forward.iterator();
2056    }
2057
2058    @Override
2059    public NavigableSet<E> subSet(
2060        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
2061      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
2062    }
2063
2064    @Override
2065    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2066      return forward.tailSet(toElement, inclusive).descendingSet();
2067    }
2068
2069    @Override
2070    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2071      return forward.headSet(fromElement, inclusive).descendingSet();
2072    }
2073
2074    @SuppressWarnings("unchecked")
2075    @Override
2076    public Comparator<? super E> comparator() {
2077      Comparator<? super E> forwardComparator = forward.comparator();
2078      if (forwardComparator == null) {
2079        return (Comparator) Ordering.natural().reverse();
2080      } else {
2081        return reverse(forwardComparator);
2082      }
2083    }
2084
2085    // If we inline this, we get a javac error.
2086    private static <T> Ordering<T> reverse(Comparator<T> forward) {
2087      return Ordering.from(forward).reverse();
2088    }
2089
2090    @Override
2091    public E first() {
2092      return forward.last();
2093    }
2094
2095    @Override
2096    public SortedSet<E> headSet(E toElement) {
2097      return standardHeadSet(toElement);
2098    }
2099
2100    @Override
2101    public E last() {
2102      return forward.first();
2103    }
2104
2105    @Override
2106    public SortedSet<E> subSet(E fromElement, E toElement) {
2107      return standardSubSet(fromElement, toElement);
2108    }
2109
2110    @Override
2111    public SortedSet<E> tailSet(E fromElement) {
2112      return standardTailSet(fromElement);
2113    }
2114
2115    @Override
2116    public Iterator<E> iterator() {
2117      return forward.descendingIterator();
2118    }
2119
2120    @Override
2121    public Object[] toArray() {
2122      return standardToArray();
2123    }
2124
2125    @Override
2126    public <T> T[] toArray(T[] array) {
2127      return standardToArray(array);
2128    }
2129
2130    @Override
2131    public String toString() {
2132      return standardToString();
2133    }
2134  }
2135
2136  /**
2137   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
2138   *
2139   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely
2140   * {@link NavigableSet#subSet(Object, boolean, Object, boolean) subSet()},
2141   * {@link NavigableSet#tailSet(Object, boolean) tailSet()}, and
2142   * {@link NavigableSet#headSet(Object, boolean) headSet()}) to actually construct the view.
2143   * Consult these methods for a full description of the returned view's behavior.
2144   *
2145   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
2146   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a
2147   * {@link Comparator}, which can violate the natural ordering. Using this method (or in general
2148   * using {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined
2149   * behavior.
2150   *
2151   * @since 20.0
2152   */
2153  @Beta
2154  @GwtIncompatible // NavigableSet
2155  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
2156      NavigableSet<K> set, Range<K> range) {
2157    if (set.comparator() != null
2158        && set.comparator() != Ordering.natural()
2159        && range.hasLowerBound()
2160        && range.hasUpperBound()) {
2161      checkArgument(
2162          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
2163          "set is using a custom comparator which is inconsistent with the natural ordering.");
2164    }
2165    if (range.hasLowerBound() && range.hasUpperBound()) {
2166      return set.subSet(
2167          range.lowerEndpoint(),
2168          range.lowerBoundType() == BoundType.CLOSED,
2169          range.upperEndpoint(),
2170          range.upperBoundType() == BoundType.CLOSED);
2171    } else if (range.hasLowerBound()) {
2172      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2173    } else if (range.hasUpperBound()) {
2174      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2175    }
2176    return checkNotNull(set);
2177  }
2178}