001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.Beta; 024import com.google.common.annotations.GwtCompatible; 025import com.google.common.annotations.GwtIncompatible; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.collect.Collections2.FilteredCollection; 029import com.google.common.math.IntMath; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import java.io.Serializable; 032import java.util.AbstractSet; 033import java.util.Arrays; 034import java.util.BitSet; 035import java.util.Collection; 036import java.util.Collections; 037import java.util.Comparator; 038import java.util.EnumSet; 039import java.util.HashSet; 040import java.util.Iterator; 041import java.util.LinkedHashSet; 042import java.util.List; 043import java.util.Map; 044import java.util.NavigableSet; 045import java.util.NoSuchElementException; 046import java.util.Set; 047import java.util.SortedSet; 048import java.util.TreeSet; 049import java.util.concurrent.ConcurrentHashMap; 050import java.util.concurrent.CopyOnWriteArraySet; 051import javax.annotation.Nullable; 052 053/** 054 * Static utility methods pertaining to {@link Set} instances. Also see this 055 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}. 056 * 057 * <p>See the Guava User Guide article on <a href= 058 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets"> 059 * {@code Sets}</a>. 060 * 061 * @author Kevin Bourrillion 062 * @author Jared Levy 063 * @author Chris Povirk 064 * @since 2.0 065 */ 066@GwtCompatible(emulated = true) 067public final class Sets { 068 private Sets() {} 069 070 /** 071 * {@link AbstractSet} substitute without the potentially-quadratic 072 * {@code removeAll} implementation. 073 */ 074 abstract static class ImprovedAbstractSet<E> extends AbstractSet<E> { 075 @Override 076 public boolean removeAll(Collection<?> c) { 077 return removeAllImpl(this, c); 078 } 079 080 @Override 081 public boolean retainAll(Collection<?> c) { 082 return super.retainAll(checkNotNull(c)); // GWT compatibility 083 } 084 } 085 086 /** 087 * Returns an immutable set instance containing the given enum elements. 088 * Internally, the returned set will be backed by an {@link EnumSet}. 089 * 090 * <p>The iteration order of the returned set follows the enum's iteration 091 * order, not the order in which the elements are provided to the method. 092 * 093 * @param anElement one of the elements the set should contain 094 * @param otherElements the rest of the elements the set should contain 095 * @return an immutable set containing those elements, minus duplicates 096 */ 097 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 098 @GwtCompatible(serializable = true) 099 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 100 E anElement, E... otherElements) { 101 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 102 } 103 104 /** 105 * Returns an immutable set instance containing the given enum elements. 106 * Internally, the returned set will be backed by an {@link EnumSet}. 107 * 108 * <p>The iteration order of the returned set follows the enum's iteration 109 * order, not the order in which the elements appear in the given collection. 110 * 111 * @param elements the elements, all of the same {@code enum} type, that the 112 * set should contain 113 * @return an immutable set containing those elements, minus duplicates 114 */ 115 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 116 @GwtCompatible(serializable = true) 117 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 118 if (elements instanceof ImmutableEnumSet) { 119 return (ImmutableEnumSet<E>) elements; 120 } else if (elements instanceof Collection) { 121 Collection<E> collection = (Collection<E>) elements; 122 if (collection.isEmpty()) { 123 return ImmutableSet.of(); 124 } else { 125 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 126 } 127 } else { 128 Iterator<E> itr = elements.iterator(); 129 if (itr.hasNext()) { 130 EnumSet<E> enumSet = EnumSet.of(itr.next()); 131 Iterators.addAll(enumSet, itr); 132 return ImmutableEnumSet.asImmutable(enumSet); 133 } else { 134 return ImmutableSet.of(); 135 } 136 } 137 } 138 139 /** 140 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 141 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 142 * accepts non-{@code Collection} iterables and empty iterables. 143 */ 144 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 145 Iterable<E> iterable, Class<E> elementType) { 146 EnumSet<E> set = EnumSet.noneOf(elementType); 147 Iterables.addAll(set, iterable); 148 return set; 149 } 150 151 // HashSet 152 153 /** 154 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 155 * 156 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If 157 * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly 158 * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to 159 * get deterministic iteration behavior. 160 * 161 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 162 * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new 163 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 164 */ 165 public static <E> HashSet<E> newHashSet() { 166 return new HashSet<E>(); 167 } 168 169 /** 170 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 171 * 172 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 173 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 174 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 175 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 176 * deterministic iteration behavior. 177 * 178 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 179 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 180 * This method is not actually very useful and will likely be deprecated in the future. 181 */ 182 public static <E> HashSet<E> newHashSet(E... elements) { 183 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 184 Collections.addAll(set, elements); 185 return set; 186 } 187 188 /** 189 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 190 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 191 * is what most users want and expect it to do. 192 * 193 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 194 * 195 * @param expectedSize the number of elements you expect to add to the returned set 196 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 197 * without resizing 198 * @throws IllegalArgumentException if {@code expectedSize} is negative 199 */ 200 public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) { 201 return new HashSet<E>(Maps.capacity(expectedSize)); 202 } 203 204 /** 205 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 206 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 207 * Iterables#addAll}. 208 * 209 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 210 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 211 * FluentIterable} and call {@code elements.toSet()}.) 212 * 213 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 214 * instead. 215 * 216 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 217 * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of 218 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 219 * 220 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 221 */ 222 public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) { 223 return (elements instanceof Collection) 224 ? new HashSet<E>(Collections2.cast(elements)) 225 : newHashSet(elements.iterator()); 226 } 227 228 /** 229 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 230 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 231 * 232 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 233 * ImmutableSet#copyOf(Iterator)} instead. 234 * 235 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 236 * instead. 237 * 238 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 239 */ 240 public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) { 241 HashSet<E> set = newHashSet(); 242 Iterators.addAll(set, elements); 243 return set; 244 } 245 246 /** 247 * Creates a thread-safe set backed by a hash map. The set is backed by a 248 * {@link ConcurrentHashMap} instance, and thus carries the same concurrency 249 * guarantees. 250 * 251 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 252 * used as an element. The set is serializable. 253 * 254 * @return a new, empty thread-safe {@code Set} 255 * @since 15.0 256 */ 257 public static <E> Set<E> newConcurrentHashSet() { 258 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 259 } 260 261 /** 262 * Creates a thread-safe set backed by a hash map and containing the given 263 * elements. The set is backed by a {@link ConcurrentHashMap} instance, and 264 * thus carries the same concurrency guarantees. 265 * 266 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be 267 * used as an element. The set is serializable. 268 * 269 * @param elements the elements that the set should contain 270 * @return a new thread-safe set containing those elements (minus duplicates) 271 * @throws NullPointerException if {@code elements} or any of its contents is 272 * null 273 * @since 15.0 274 */ 275 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 276 Set<E> set = newConcurrentHashSet(); 277 Iterables.addAll(set, elements); 278 return set; 279 } 280 281 // LinkedHashSet 282 283 /** 284 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 285 * 286 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 287 * 288 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 289 * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of 290 * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 291 * 292 * @return a new, empty {@code LinkedHashSet} 293 */ 294 public static <E> LinkedHashSet<E> newLinkedHashSet() { 295 return new LinkedHashSet<E>(); 296 } 297 298 /** 299 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 300 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 301 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 302 * that the method isn't inadvertently <i>oversizing</i> the returned set. 303 * 304 * @param expectedSize the number of elements you expect to add to the returned set 305 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 306 * elements without resizing 307 * @throws IllegalArgumentException if {@code expectedSize} is negative 308 * @since 11.0 309 */ 310 public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(int expectedSize) { 311 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 312 } 313 314 /** 315 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 316 * 317 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 318 * ImmutableSet#copyOf(Iterable)} instead. 319 * 320 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 321 * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage 322 * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 323 * 324 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 325 * 326 * @param elements the elements that the set should contain, in order 327 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 328 */ 329 public static <E> LinkedHashSet<E> newLinkedHashSet(Iterable<? extends E> elements) { 330 if (elements instanceof Collection) { 331 return new LinkedHashSet<E>(Collections2.cast(elements)); 332 } 333 LinkedHashSet<E> set = newLinkedHashSet(); 334 Iterables.addAll(set, elements); 335 return set; 336 } 337 338 // TreeSet 339 340 /** 341 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 342 * its elements. 343 * 344 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 345 * 346 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 347 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 348 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 349 * 350 * @return a new, empty {@code TreeSet} 351 */ 352 public static <E extends Comparable> TreeSet<E> newTreeSet() { 353 return new TreeSet<E>(); 354 } 355 356 /** 357 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 358 * natural ordering. 359 * 360 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 361 * instead. 362 * 363 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 364 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 365 * TreeSet} with that comparator. 366 * 367 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 368 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 369 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 370 * 371 * <p>This method is just a small convenience for creating an empty set and then calling {@link 372 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 373 * 374 * @param elements the elements that the set should contain 375 * @return a new {@code TreeSet} containing those elements (minus duplicates) 376 */ 377 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 378 TreeSet<E> set = newTreeSet(); 379 Iterables.addAll(set, elements); 380 return set; 381 } 382 383 /** 384 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 385 * 386 * <p><b>Note:</b> if mutability is not required, use {@code 387 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 388 * 389 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 390 * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new 391 * <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code 392 * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this 393 * factory rejects null. Clean your code accordingly. 394 * 395 * @param comparator the comparator to use to sort the set 396 * @return a new, empty {@code TreeSet} 397 * @throws NullPointerException if {@code comparator} is null 398 */ 399 public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) { 400 return new TreeSet<E>(checkNotNull(comparator)); 401 } 402 403 /** 404 * Creates an empty {@code Set} that uses identity to determine equality. It 405 * compares object references, instead of calling {@code equals}, to 406 * determine whether a provided object matches an element in the set. For 407 * example, {@code contains} returns {@code false} when passed an object that 408 * equals a set member, but isn't the same instance. This behavior is similar 409 * to the way {@code IdentityHashMap} handles key lookups. 410 * 411 * @since 8.0 412 */ 413 public static <E> Set<E> newIdentityHashSet() { 414 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 415 } 416 417 /** 418 * Creates an empty {@code CopyOnWriteArraySet} instance. 419 * 420 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use 421 * {@link Collections#emptySet} instead. 422 * 423 * @return a new, empty {@code CopyOnWriteArraySet} 424 * @since 12.0 425 */ 426 @GwtIncompatible // CopyOnWriteArraySet 427 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 428 return new CopyOnWriteArraySet<E>(); 429 } 430 431 /** 432 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 433 * 434 * @param elements the elements that the set should contain, in order 435 * @return a new {@code CopyOnWriteArraySet} containing those elements 436 * @since 12.0 437 */ 438 @GwtIncompatible // CopyOnWriteArraySet 439 public static <E> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(Iterable<? extends E> elements) { 440 // We copy elements to an ArrayList first, rather than incurring the 441 // quadratic cost of adding them to the COWAS directly. 442 Collection<? extends E> elementsCollection = 443 (elements instanceof Collection) 444 ? Collections2.cast(elements) 445 : Lists.newArrayList(elements); 446 return new CopyOnWriteArraySet<E>(elementsCollection); 447 } 448 449 /** 450 * Creates an {@code EnumSet} consisting of all enum values that are not in 451 * the specified collection. If the collection is an {@link EnumSet}, this 452 * method has the same behavior as {@link EnumSet#complementOf}. Otherwise, 453 * the specified collection must contain at least one element, in order to 454 * determine the element type. If the collection could be empty, use 455 * {@link #complementOf(Collection, Class)} instead of this method. 456 * 457 * @param collection the collection whose complement should be stored in the 458 * enum set 459 * @return a new, modifiable {@code EnumSet} containing all values of the enum 460 * that aren't present in the given collection 461 * @throws IllegalArgumentException if {@code collection} is not an 462 * {@code EnumSet} instance and contains no elements 463 */ 464 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 465 if (collection instanceof EnumSet) { 466 return EnumSet.complementOf((EnumSet<E>) collection); 467 } 468 checkArgument( 469 !collection.isEmpty(), "collection is empty; use the other version of this method"); 470 Class<E> type = collection.iterator().next().getDeclaringClass(); 471 return makeComplementByHand(collection, type); 472 } 473 474 /** 475 * Creates an {@code EnumSet} consisting of all enum values that are not in 476 * the specified collection. This is equivalent to 477 * {@link EnumSet#complementOf}, but can act on any input collection, as long 478 * as the elements are of enum type. 479 * 480 * @param collection the collection whose complement should be stored in the 481 * {@code EnumSet} 482 * @param type the type of the elements in the set 483 * @return a new, modifiable {@code EnumSet} initially containing all the 484 * values of the enum not present in the given collection 485 */ 486 public static <E extends Enum<E>> EnumSet<E> complementOf( 487 Collection<E> collection, Class<E> type) { 488 checkNotNull(collection); 489 return (collection instanceof EnumSet) 490 ? EnumSet.complementOf((EnumSet<E>) collection) 491 : makeComplementByHand(collection, type); 492 } 493 494 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 495 Collection<E> collection, Class<E> type) { 496 EnumSet<E> result = EnumSet.allOf(type); 497 result.removeAll(collection); 498 return result; 499 } 500 501 /** 502 * Returns a set backed by the specified map. The resulting set displays 503 * the same ordering, concurrency, and performance characteristics as the 504 * backing map. In essence, this factory method provides a {@link Set} 505 * implementation corresponding to any {@link Map} implementation. There is no 506 * need to use this method on a {@link Map} implementation that already has a 507 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} 508 * or {@link java.util.TreeMap}). 509 * 510 * <p>Each method invocation on the set returned by this method results in 511 * exactly one method invocation on the backing map or its {@code keySet} 512 * view, with one exception. The {@code addAll} method is implemented as a 513 * sequence of {@code put} invocations on the backing map. 514 * 515 * <p>The specified map must be empty at the time this method is invoked, 516 * and should not be accessed directly after this method returns. These 517 * conditions are ensured if the map is created empty, passed directly 518 * to this method, and no reference to the map is retained, as illustrated 519 * in the following code fragment: <pre> {@code 520 * 521 * Set<Object> identityHashSet = Sets.newSetFromMap( 522 * new IdentityHashMap<Object, Boolean>());}</pre> 523 * 524 * <p>The returned set is serializable if the backing map is. 525 * 526 * @param map the backing map 527 * @return the set backed by the map 528 * @throws IllegalArgumentException if {@code map} is not empty 529 * @deprecated Use {@link Collections#newSetFromMap} instead. This method 530 * will be removed in December 2017. 531 */ 532 @Deprecated 533 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { 534 return Collections.newSetFromMap(map); 535 } 536 537 /** 538 * An unmodifiable view of a set which may be backed by other sets; this view 539 * will change as the backing sets do. Contains methods to copy the data into 540 * a new set which will then remain stable. There is usually no reason to 541 * retain a reference of type {@code SetView}; typically, you either use it 542 * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 543 * {@link #copyInto} and forget the {@code SetView} itself. 544 * 545 * @since 2.0 546 */ 547 public abstract static class SetView<E> extends AbstractSet<E> { 548 private SetView() {} // no subclasses but our own 549 550 /** 551 * Returns an immutable copy of the current contents of this set view. 552 * Does not support null elements. 553 * 554 * <p><b>Warning:</b> this may have unexpected results if a backing set of 555 * this view uses a nonstandard notion of equivalence, for example if it is 556 * a {@link TreeSet} using a comparator that is inconsistent with {@link 557 * Object#equals(Object)}. 558 */ 559 public ImmutableSet<E> immutableCopy() { 560 return ImmutableSet.copyOf(this); 561 } 562 563 /** 564 * Copies the current contents of this set view into an existing set. This 565 * method has equivalent behavior to {@code set.addAll(this)}, assuming that 566 * all the sets involved are based on the same notion of equivalence. 567 * 568 * @return a reference to {@code set}, for convenience 569 */ 570 // Note: S should logically extend Set<? super E> but can't due to either 571 // some javac bug or some weirdness in the spec, not sure which. 572 @CanIgnoreReturnValue 573 public <S extends Set<E>> S copyInto(S set) { 574 set.addAll(this); 575 return set; 576 } 577 578 /** 579 * Guaranteed to throw an exception and leave the collection unmodified. 580 * 581 * @throws UnsupportedOperationException always 582 * @deprecated Unsupported operation. 583 */ 584 @CanIgnoreReturnValue 585 @Deprecated 586 @Override 587 public final boolean add(E e) { 588 throw new UnsupportedOperationException(); 589 } 590 591 /** 592 * Guaranteed to throw an exception and leave the collection unmodified. 593 * 594 * @throws UnsupportedOperationException always 595 * @deprecated Unsupported operation. 596 */ 597 @CanIgnoreReturnValue 598 @Deprecated 599 @Override 600 public final boolean remove(Object object) { 601 throw new UnsupportedOperationException(); 602 } 603 604 /** 605 * Guaranteed to throw an exception and leave the collection unmodified. 606 * 607 * @throws UnsupportedOperationException always 608 * @deprecated Unsupported operation. 609 */ 610 @CanIgnoreReturnValue 611 @Deprecated 612 @Override 613 public final boolean addAll(Collection<? extends E> newElements) { 614 throw new UnsupportedOperationException(); 615 } 616 617 /** 618 * Guaranteed to throw an exception and leave the collection unmodified. 619 * 620 * @throws UnsupportedOperationException always 621 * @deprecated Unsupported operation. 622 */ 623 @CanIgnoreReturnValue 624 @Deprecated 625 @Override 626 public final boolean removeAll(Collection<?> oldElements) { 627 throw new UnsupportedOperationException(); 628 } 629 630 /** 631 * Guaranteed to throw an exception and leave the collection unmodified. 632 * 633 * @throws UnsupportedOperationException always 634 * @deprecated Unsupported operation. 635 */ 636 @CanIgnoreReturnValue 637 @Deprecated 638 @Override 639 public final boolean retainAll(Collection<?> elementsToKeep) { 640 throw new UnsupportedOperationException(); 641 } 642 643 /** 644 * Guaranteed to throw an exception and leave the collection unmodified. 645 * 646 * @throws UnsupportedOperationException always 647 * @deprecated Unsupported operation. 648 */ 649 @Deprecated 650 @Override 651 public final void clear() { 652 throw new UnsupportedOperationException(); 653 } 654 655 /** 656 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 657 * 658 * @since 20.0 (present with return type {@link Iterator} since 2.0) 659 */ 660 @Override 661 public abstract UnmodifiableIterator<E> iterator(); 662 } 663 664 /** 665 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned 666 * set contains all elements that are contained in either backing set. 667 * Iterating over the returned set iterates first over all the elements of 668 * {@code set1}, then over each element of {@code set2}, in order, that is not 669 * contained in {@code set1}. 670 * 671 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on 672 * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and 673 * the {@link Map#keySet} of an {@code IdentityHashMap} all are). 674 */ 675 public static <E> SetView<E> union(final Set<? extends E> set1, final Set<? extends E> set2) { 676 checkNotNull(set1, "set1"); 677 checkNotNull(set2, "set2"); 678 679 return new SetView<E>() { 680 @Override 681 public int size() { 682 int size = set1.size(); 683 for (E e : set2) { 684 if (!set1.contains(e)) { 685 size++; 686 } 687 } 688 return size; 689 } 690 691 @Override 692 public boolean isEmpty() { 693 return set1.isEmpty() && set2.isEmpty(); 694 } 695 696 @Override 697 public UnmodifiableIterator<E> iterator() { 698 return new AbstractIterator<E>() { 699 final Iterator<? extends E> itr1 = set1.iterator(); 700 final Iterator<? extends E> itr2 = set2.iterator(); 701 702 @Override 703 protected E computeNext() { 704 if (itr1.hasNext()) { 705 return itr1.next(); 706 } 707 while (itr2.hasNext()) { 708 E e = itr2.next(); 709 if (!set1.contains(e)) { 710 return e; 711 } 712 } 713 return endOfData(); 714 } 715 }; 716 } 717 718 @Override 719 public boolean contains(Object object) { 720 return set1.contains(object) || set2.contains(object); 721 } 722 723 @Override 724 public <S extends Set<E>> S copyInto(S set) { 725 set.addAll(set1); 726 set.addAll(set2); 727 return set; 728 } 729 730 @Override 731 public ImmutableSet<E> immutableCopy() { 732 return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); 733 } 734 }; 735 } 736 737 /** 738 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The 739 * returned set contains all elements that are contained by both backing sets. 740 * The iteration order of the returned set matches that of {@code set1}. 741 * 742 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 743 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 744 * and the keySet of an {@code IdentityHashMap} all are). 745 * 746 * <p><b>Note:</b> The returned view performs slightly better when {@code 747 * set1} is the smaller of the two sets. If you have reason to believe one of 748 * your sets will generally be smaller than the other, pass it first. 749 * Unfortunately, since this method sets the generic type of the returned set 750 * based on the type of the first set passed, this could in rare cases force 751 * you to make a cast, for example: <pre> {@code 752 * 753 * Set<Object> aFewBadObjects = ... 754 * Set<String> manyBadStrings = ... 755 * 756 * // impossible for a non-String to be in the intersection 757 * SuppressWarnings("unchecked") 758 * Set<String> badStrings = (Set) Sets.intersection( 759 * aFewBadObjects, manyBadStrings);}</pre> 760 * 761 * <p>This is unfortunate, but should come up only very rarely. 762 */ 763 public static <E> SetView<E> intersection(final Set<E> set1, final Set<?> set2) { 764 checkNotNull(set1, "set1"); 765 checkNotNull(set2, "set2"); 766 767 return new SetView<E>() { 768 @Override 769 public UnmodifiableIterator<E> iterator() { 770 return new AbstractIterator<E>() { 771 final Iterator<E> itr = set1.iterator(); 772 773 @Override 774 protected E computeNext() { 775 while (itr.hasNext()) { 776 E e = itr.next(); 777 if (set2.contains(e)) { 778 return e; 779 } 780 } 781 return endOfData(); 782 } 783 }; 784 } 785 786 @Override 787 public int size() { 788 int size = 0; 789 for (E e : set1) { 790 if (set2.contains(e)) { 791 size++; 792 } 793 } 794 return size; 795 } 796 797 @Override 798 public boolean isEmpty() { 799 return Collections.disjoint(set1, set2); 800 } 801 802 @Override 803 public boolean contains(Object object) { 804 return set1.contains(object) && set2.contains(object); 805 } 806 807 @Override 808 public boolean containsAll(Collection<?> collection) { 809 return set1.containsAll(collection) && set2.containsAll(collection); 810 } 811 }; 812 } 813 814 /** 815 * Returns an unmodifiable <b>view</b> of the difference of two sets. The 816 * returned set contains all elements that are contained by {@code set1} and 817 * not contained by {@code set2}. {@code set2} may also contain elements not 818 * present in {@code set1}; these are simply ignored. The iteration order of 819 * the returned set matches that of {@code set1}. 820 * 821 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 822 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 823 * and the keySet of an {@code IdentityHashMap} all are). 824 */ 825 public static <E> SetView<E> difference(final Set<E> set1, final Set<?> set2) { 826 checkNotNull(set1, "set1"); 827 checkNotNull(set2, "set2"); 828 829 return new SetView<E>() { 830 @Override 831 public UnmodifiableIterator<E> iterator() { 832 return new AbstractIterator<E>(){ 833 final Iterator<E> itr = set1.iterator(); 834 @Override 835 protected E computeNext() { 836 while (itr.hasNext()) { 837 E e = itr.next(); 838 if (!set2.contains(e)) { 839 return e; 840 } 841 } 842 return endOfData(); 843 } 844 }; 845 } 846 847 @Override 848 public int size() { 849 int size = 0; 850 for (E e : set1) { 851 if (!set2.contains(e)) { 852 size++; 853 } 854 } 855 return size; 856 } 857 858 @Override 859 public boolean isEmpty() { 860 return set2.containsAll(set1); 861 } 862 863 @Override 864 public boolean contains(Object element) { 865 return set1.contains(element) && !set2.contains(element); 866 } 867 }; 868 } 869 870 /** 871 * Returns an unmodifiable <b>view</b> of the symmetric difference of two 872 * sets. The returned set contains all elements that are contained in either 873 * {@code set1} or {@code set2} but not in both. The iteration order of the 874 * returned set is undefined. 875 * 876 * <p>Results are undefined if {@code set1} and {@code set2} are sets based 877 * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, 878 * and the keySet of an {@code IdentityHashMap} all are). 879 * 880 * @since 3.0 881 */ 882 public static <E> SetView<E> symmetricDifference( 883 final Set<? extends E> set1, final Set<? extends E> set2) { 884 checkNotNull(set1, "set1"); 885 checkNotNull(set2, "set2"); 886 887 return new SetView<E>() { 888 @Override 889 public UnmodifiableIterator<E> iterator() { 890 final Iterator<? extends E> itr1 = set1.iterator(); 891 final Iterator<? extends E> itr2 = set2.iterator(); 892 return new AbstractIterator<E>() { 893 @Override 894 public E computeNext() { 895 while (itr1.hasNext()) { 896 E elem1 = itr1.next(); 897 if (!set2.contains(elem1)) { 898 return elem1; 899 } 900 } 901 while (itr2.hasNext()) { 902 E elem2 = itr2.next(); 903 if (!set1.contains(elem2)) { 904 return elem2; 905 } 906 } 907 return endOfData(); 908 } 909 }; 910 } 911 912 @Override 913 public int size() { 914 int size = 0; 915 for (E e : set1) { 916 if (!set2.contains(e)) { 917 size++; 918 } 919 } 920 for (E e : set2) { 921 if (!set1.contains(e)) { 922 size++; 923 } 924 } 925 return size; 926 } 927 928 @Override 929 public boolean isEmpty() { 930 return set1.equals(set2); 931 } 932 933 @Override 934 public boolean contains(Object element) { 935 return set1.contains(element) ^ set2.contains(element); 936 } 937 }; 938 } 939 940 /** 941 * Returns the elements of {@code unfiltered} that satisfy a predicate. The 942 * returned set is a live view of {@code unfiltered}; changes to one affect 943 * the other. 944 * 945 * <p>The resulting set's iterator does not support {@code remove()}, but all 946 * other set methods are supported. When given an element that doesn't satisfy 947 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 948 * an {@link IllegalArgumentException}. When methods such as {@code 949 * removeAll()} and {@code clear()} are called on the filtered set, only 950 * elements that satisfy the filter will be removed from the underlying set. 951 * 952 * <p>The returned set isn't threadsafe or serializable, even if 953 * {@code unfiltered} is. 954 * 955 * <p>Many of the filtered set's methods, such as {@code size()}, iterate 956 * across every element in the underlying set and determine which elements 957 * satisfy the filter. When a live view is <i>not</i> needed, it may be faster 958 * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy. 959 * 960 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 961 * as documented at {@link Predicate#apply}. Do not provide a predicate such 962 * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent 963 * with equals. (See {@link Iterables#filter(Iterable, Class)} for related 964 * functionality.) 965 * 966 * <p><b>Java 8 users:</b> many use cases for this method are better 967 * addressed by {@link java.util.stream.Stream#filter}. This method is not 968 * being deprecated, but we gently encourage you to migrate to streams. 969 */ 970 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 971 public static <E> Set<E> filter(Set<E> unfiltered, Predicate<? super E> predicate) { 972 if (unfiltered instanceof SortedSet) { 973 return filter((SortedSet<E>) unfiltered, predicate); 974 } 975 if (unfiltered instanceof FilteredSet) { 976 // Support clear(), removeAll(), and retainAll() when filtering a filtered 977 // collection. 978 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 979 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 980 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 981 } 982 983 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 984 } 985 986 private static class FilteredSet<E> extends FilteredCollection<E> implements Set<E> { 987 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 988 super(unfiltered, predicate); 989 } 990 991 @Override 992 public boolean equals(@Nullable Object object) { 993 return equalsImpl(this, object); 994 } 995 996 @Override 997 public int hashCode() { 998 return hashCodeImpl(this); 999 } 1000 } 1001 1002 /** 1003 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that 1004 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 1005 * changes to one affect the other. 1006 * 1007 * <p>The resulting set's iterator does not support {@code remove()}, but all 1008 * other set methods are supported. When given an element that doesn't satisfy 1009 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1010 * an {@link IllegalArgumentException}. When methods such as 1011 * {@code removeAll()} and {@code clear()} are called on the filtered set, 1012 * only elements that satisfy the filter will be removed from the underlying 1013 * set. 1014 * 1015 * <p>The returned set isn't threadsafe or serializable, even if 1016 * {@code unfiltered} is. 1017 * 1018 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 1019 * every element in the underlying set and determine which elements satisfy 1020 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 1021 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1022 * 1023 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1024 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 1025 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 1026 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 1027 * functionality.) 1028 * 1029 * @since 11.0 1030 */ 1031 public static <E> SortedSet<E> filter(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1032 if (unfiltered instanceof FilteredSet) { 1033 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1034 // collection. 1035 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1036 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1037 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1038 } 1039 1040 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1041 } 1042 1043 private static class FilteredSortedSet<E> extends FilteredSet<E> implements SortedSet<E> { 1044 1045 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1046 super(unfiltered, predicate); 1047 } 1048 1049 @Override 1050 public Comparator<? super E> comparator() { 1051 return ((SortedSet<E>) unfiltered).comparator(); 1052 } 1053 1054 @Override 1055 public SortedSet<E> subSet(E fromElement, E toElement) { 1056 return new FilteredSortedSet<E>( 1057 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1058 } 1059 1060 @Override 1061 public SortedSet<E> headSet(E toElement) { 1062 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1063 } 1064 1065 @Override 1066 public SortedSet<E> tailSet(E fromElement) { 1067 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1068 } 1069 1070 @Override 1071 public E first() { 1072 return Iterators.find(unfiltered.iterator(), predicate); 1073 } 1074 1075 @Override 1076 public E last() { 1077 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1078 while (true) { 1079 E element = sortedUnfiltered.last(); 1080 if (predicate.apply(element)) { 1081 return element; 1082 } 1083 sortedUnfiltered = sortedUnfiltered.headSet(element); 1084 } 1085 } 1086 } 1087 1088 /** 1089 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that 1090 * satisfy a predicate. The returned set is a live view of {@code unfiltered}; 1091 * changes to one affect the other. 1092 * 1093 * <p>The resulting set's iterator does not support {@code remove()}, but all 1094 * other set methods are supported. When given an element that doesn't satisfy 1095 * the predicate, the set's {@code add()} and {@code addAll()} methods throw 1096 * an {@link IllegalArgumentException}. When methods such as 1097 * {@code removeAll()} and {@code clear()} are called on the filtered set, 1098 * only elements that satisfy the filter will be removed from the underlying 1099 * set. 1100 * 1101 * <p>The returned set isn't threadsafe or serializable, even if 1102 * {@code unfiltered} is. 1103 * 1104 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across 1105 * every element in the underlying set and determine which elements satisfy 1106 * the filter. When a live view is <i>not</i> needed, it may be faster to copy 1107 * {@code Iterables.filter(unfiltered, predicate)} and use the copy. 1108 * 1109 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, 1110 * as documented at {@link Predicate#apply}. Do not provide a predicate such as 1111 * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with 1112 * equals. (See {@link Iterables#filter(Iterable, Class)} for related 1113 * functionality.) 1114 * 1115 * @since 14.0 1116 */ 1117 @GwtIncompatible // NavigableSet 1118 @SuppressWarnings("unchecked") 1119 public static <E> NavigableSet<E> filter( 1120 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1121 if (unfiltered instanceof FilteredSet) { 1122 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1123 // collection. 1124 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1125 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1126 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1127 } 1128 1129 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1130 } 1131 1132 @GwtIncompatible // NavigableSet 1133 private static class FilteredNavigableSet<E> extends FilteredSortedSet<E> 1134 implements NavigableSet<E> { 1135 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1136 super(unfiltered, predicate); 1137 } 1138 1139 NavigableSet<E> unfiltered() { 1140 return (NavigableSet<E>) unfiltered; 1141 } 1142 1143 @Override 1144 @Nullable 1145 public E lower(E e) { 1146 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1147 } 1148 1149 @Override 1150 @Nullable 1151 public E floor(E e) { 1152 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1153 } 1154 1155 @Override 1156 public E ceiling(E e) { 1157 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1158 } 1159 1160 @Override 1161 public E higher(E e) { 1162 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1163 } 1164 1165 @Override 1166 public E pollFirst() { 1167 return Iterables.removeFirstMatching(unfiltered(), predicate); 1168 } 1169 1170 @Override 1171 public E pollLast() { 1172 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1173 } 1174 1175 @Override 1176 public NavigableSet<E> descendingSet() { 1177 return Sets.filter(unfiltered().descendingSet(), predicate); 1178 } 1179 1180 @Override 1181 public Iterator<E> descendingIterator() { 1182 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1183 } 1184 1185 @Override 1186 public E last() { 1187 return Iterators.find(unfiltered().descendingIterator(), predicate); 1188 } 1189 1190 @Override 1191 public NavigableSet<E> subSet( 1192 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1193 return filter( 1194 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1195 } 1196 1197 @Override 1198 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1199 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1200 } 1201 1202 @Override 1203 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1204 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1205 } 1206 } 1207 1208 /** 1209 * Returns every possible list that can be formed by choosing one element 1210 * from each of the given sets in order; the "n-ary 1211 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1212 * product</a>" of the sets. For example: <pre> {@code 1213 * 1214 * Sets.cartesianProduct(ImmutableList.of( 1215 * ImmutableSet.of(1, 2), 1216 * ImmutableSet.of("A", "B", "C")))}</pre> 1217 * 1218 * <p>returns a set containing six lists: 1219 * 1220 * <ul> 1221 * <li>{@code ImmutableList.of(1, "A")} 1222 * <li>{@code ImmutableList.of(1, "B")} 1223 * <li>{@code ImmutableList.of(1, "C")} 1224 * <li>{@code ImmutableList.of(2, "A")} 1225 * <li>{@code ImmutableList.of(2, "B")} 1226 * <li>{@code ImmutableList.of(2, "C")} 1227 * </ul> 1228 * 1229 * <p>The result is guaranteed to be in the "traditional", lexicographical 1230 * order for Cartesian products that you would get from nesting for loops: 1231 * <pre> {@code 1232 * 1233 * for (B b0 : sets.get(0)) { 1234 * for (B b1 : sets.get(1)) { 1235 * ... 1236 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1237 * // operate on tuple 1238 * } 1239 * }}</pre> 1240 * 1241 * <p>Note that if any input set is empty, the Cartesian product will also be 1242 * empty. If no sets at all are provided (an empty list), the resulting 1243 * Cartesian product has one element, an empty list (counter-intuitive, but 1244 * mathematically consistent). 1245 * 1246 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1247 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1248 * consumption is much smaller. When the cartesian set is constructed, the 1249 * input sets are merely copied. Only as the resulting set is iterated are the 1250 * individual lists created, and these are not retained after iteration. 1251 * 1252 * @param sets the sets to choose elements from, in the order that 1253 * the elements chosen from those sets should appear in the resulting 1254 * lists 1255 * @param <B> any common base class shared by all axes (often just {@link 1256 * Object}) 1257 * @return the Cartesian product, as an immutable set containing immutable 1258 * lists 1259 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1260 * or any element of a provided set is null 1261 * @since 2.0 1262 */ 1263 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1264 return CartesianSet.create(sets); 1265 } 1266 1267 /** 1268 * Returns every possible list that can be formed by choosing one element 1269 * from each of the given sets in order; the "n-ary 1270 * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1271 * product</a>" of the sets. For example: <pre> {@code 1272 * 1273 * Sets.cartesianProduct( 1274 * ImmutableSet.of(1, 2), 1275 * ImmutableSet.of("A", "B", "C"))}</pre> 1276 * 1277 * <p>returns a set containing six lists: 1278 * 1279 * <ul> 1280 * <li>{@code ImmutableList.of(1, "A")} 1281 * <li>{@code ImmutableList.of(1, "B")} 1282 * <li>{@code ImmutableList.of(1, "C")} 1283 * <li>{@code ImmutableList.of(2, "A")} 1284 * <li>{@code ImmutableList.of(2, "B")} 1285 * <li>{@code ImmutableList.of(2, "C")} 1286 * </ul> 1287 * 1288 * <p>The result is guaranteed to be in the "traditional", lexicographical 1289 * order for Cartesian products that you would get from nesting for loops: 1290 * <pre> {@code 1291 * 1292 * for (B b0 : sets.get(0)) { 1293 * for (B b1 : sets.get(1)) { 1294 * ... 1295 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1296 * // operate on tuple 1297 * } 1298 * }}</pre> 1299 * 1300 * <p>Note that if any input set is empty, the Cartesian product will also be 1301 * empty. If no sets at all are provided (an empty list), the resulting 1302 * Cartesian product has one element, an empty list (counter-intuitive, but 1303 * mathematically consistent). 1304 * 1305 * <p><i>Performance notes:</i> while the cartesian product of sets of size 1306 * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory 1307 * consumption is much smaller. When the cartesian set is constructed, the 1308 * input sets are merely copied. Only as the resulting set is iterated are the 1309 * individual lists created, and these are not retained after iteration. 1310 * 1311 * @param sets the sets to choose elements from, in the order that 1312 * the elements chosen from those sets should appear in the resulting 1313 * lists 1314 * @param <B> any common base class shared by all axes (often just {@link 1315 * Object}) 1316 * @return the Cartesian product, as an immutable set containing immutable 1317 * lists 1318 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, 1319 * or any element of a provided set is null 1320 * @since 2.0 1321 */ 1322 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1323 return cartesianProduct(Arrays.asList(sets)); 1324 } 1325 1326 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1327 implements Set<List<E>> { 1328 private final transient ImmutableList<ImmutableSet<E>> axes; 1329 private final transient CartesianList<E> delegate; 1330 1331 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1332 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = 1333 new ImmutableList.Builder<ImmutableSet<E>>(sets.size()); 1334 for (Set<? extends E> set : sets) { 1335 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1336 if (copy.isEmpty()) { 1337 return ImmutableSet.of(); 1338 } 1339 axesBuilder.add(copy); 1340 } 1341 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1342 ImmutableList<List<E>> listAxes = 1343 new ImmutableList<List<E>>() { 1344 @Override 1345 public int size() { 1346 return axes.size(); 1347 } 1348 1349 @Override 1350 public List<E> get(int index) { 1351 return axes.get(index).asList(); 1352 } 1353 1354 @Override 1355 boolean isPartialView() { 1356 return true; 1357 } 1358 }; 1359 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1360 } 1361 1362 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1363 this.axes = axes; 1364 this.delegate = delegate; 1365 } 1366 1367 @Override 1368 protected Collection<List<E>> delegate() { 1369 return delegate; 1370 } 1371 1372 @Override 1373 public boolean equals(@Nullable Object object) { 1374 // Warning: this is broken if size() == 0, so it is critical that we 1375 // substitute an empty ImmutableSet to the user in place of this 1376 if (object instanceof CartesianSet) { 1377 CartesianSet<?> that = (CartesianSet<?>) object; 1378 return this.axes.equals(that.axes); 1379 } 1380 return super.equals(object); 1381 } 1382 1383 @Override 1384 public int hashCode() { 1385 // Warning: this is broken if size() == 0, so it is critical that we 1386 // substitute an empty ImmutableSet to the user in place of this 1387 1388 // It's a weird formula, but tests prove it works. 1389 int adjust = size() - 1; 1390 for (int i = 0; i < axes.size(); i++) { 1391 adjust *= 31; 1392 adjust = ~~adjust; 1393 // in GWT, we have to deal with integer overflow carefully 1394 } 1395 int hash = 1; 1396 for (Set<E> axis : axes) { 1397 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1398 1399 hash = ~~hash; 1400 } 1401 hash += adjust; 1402 return ~~hash; 1403 } 1404 } 1405 1406 /** 1407 * Returns the set of all possible subsets of {@code set}. For example, 1408 * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, 1409 * {1}, {2}, {1, 2}}}. 1410 * 1411 * <p>Elements appear in these subsets in the same iteration order as they 1412 * appeared in the input set. The order in which these subsets appear in the 1413 * outer set is undefined. Note that the power set of the empty set is not the 1414 * empty set, but a one-element set containing the empty set. 1415 * 1416 * <p>The returned set and its constituent sets use {@code equals} to decide 1417 * whether two elements are identical, even if the input set uses a different 1418 * concept of equivalence. 1419 * 1420 * <p><i>Performance notes:</i> while the power set of a set with size {@code 1421 * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the 1422 * power set is constructed, the input set is merely copied. Only as the 1423 * power set is iterated are the individual subsets created, and these subsets 1424 * themselves occupy only a small constant amount of memory. 1425 * 1426 * @param set the set of elements to construct a power set from 1427 * @return the power set, as an immutable set of immutable sets 1428 * @throws IllegalArgumentException if {@code set} has more than 30 unique 1429 * elements (causing the power set size to exceed the {@code int} range) 1430 * @throws NullPointerException if {@code set} is or contains {@code null} 1431 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at 1432 * Wikipedia</a> 1433 * @since 4.0 1434 */ 1435 @GwtCompatible(serializable = false) 1436 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1437 return new PowerSet<E>(set); 1438 } 1439 1440 private static final class SubSet<E> extends AbstractSet<E> { 1441 private final ImmutableMap<E, Integer> inputSet; 1442 private final int mask; 1443 1444 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1445 this.inputSet = inputSet; 1446 this.mask = mask; 1447 } 1448 1449 @Override 1450 public Iterator<E> iterator() { 1451 return new UnmodifiableIterator<E>() { 1452 final ImmutableList<E> elements = inputSet.keySet().asList(); 1453 int remainingSetBits = mask; 1454 1455 @Override 1456 public boolean hasNext() { 1457 return remainingSetBits != 0; 1458 } 1459 1460 @Override 1461 public E next() { 1462 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1463 if (index == 32) { 1464 throw new NoSuchElementException(); 1465 } 1466 remainingSetBits &= ~(1 << index); 1467 return elements.get(index); 1468 } 1469 }; 1470 } 1471 1472 @Override 1473 public int size() { 1474 return Integer.bitCount(mask); 1475 } 1476 1477 @Override 1478 public boolean contains(@Nullable Object o) { 1479 Integer index = inputSet.get(o); 1480 return index != null && (mask & (1 << index)) != 0; 1481 } 1482 } 1483 1484 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1485 final ImmutableMap<E, Integer> inputSet; 1486 1487 PowerSet(Set<E> input) { 1488 this.inputSet = Maps.indexMap(input); 1489 checkArgument( 1490 inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size()); 1491 } 1492 1493 @Override 1494 public int size() { 1495 return 1 << inputSet.size(); 1496 } 1497 1498 @Override 1499 public boolean isEmpty() { 1500 return false; 1501 } 1502 1503 @Override 1504 public Iterator<Set<E>> iterator() { 1505 return new AbstractIndexedListIterator<Set<E>>(size()) { 1506 @Override 1507 protected Set<E> get(final int setBits) { 1508 return new SubSet<E>(inputSet, setBits); 1509 } 1510 }; 1511 } 1512 1513 @Override 1514 public boolean contains(@Nullable Object obj) { 1515 if (obj instanceof Set) { 1516 Set<?> set = (Set<?>) obj; 1517 return inputSet.keySet().containsAll(set); 1518 } 1519 return false; 1520 } 1521 1522 @Override 1523 public boolean equals(@Nullable Object obj) { 1524 if (obj instanceof PowerSet) { 1525 PowerSet<?> that = (PowerSet<?>) obj; 1526 return inputSet.equals(that.inputSet); 1527 } 1528 return super.equals(obj); 1529 } 1530 1531 @Override 1532 public int hashCode() { 1533 /* 1534 * The sum of the sums of the hash codes in each subset is just the sum of 1535 * each input element's hash code times the number of sets that element 1536 * appears in. Each element appears in exactly half of the 2^n sets, so: 1537 */ 1538 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1539 } 1540 1541 @Override 1542 public String toString() { 1543 return "powerSet(" + inputSet + ")"; 1544 } 1545 } 1546 1547 /** 1548 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1549 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1550 * 1551 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1552 * set. The order in which these subsets appear in the outer set is undefined. 1553 * 1554 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1555 * are identical, even if the input set uses a different concept of equivalence. 1556 * 1557 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1558 * the result set is constructed, the input set is merely copied. Only as the result set is 1559 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1560 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1561 * {@code combinations} does not retain the individual subsets. 1562 * 1563 * @param set the set of elements to take combinations of 1564 * @param size the number of elements per combination 1565 * @return the set of all combinations of {@code size} elements from {@code set} 1566 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1567 * inclusive 1568 * @throws NullPointerException if {@code set} is or contains {@code null} 1569 * @since 23.0 1570 */ 1571 @Beta 1572 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1573 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1574 checkNonnegative(size, "size"); 1575 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1576 if (size == 0) { 1577 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1578 } else if (size == index.size()) { 1579 return ImmutableSet.<Set<E>>of(index.keySet()); 1580 } 1581 return new AbstractSet<Set<E>>() { 1582 @Override 1583 public boolean contains(@Nullable Object o) { 1584 if (o instanceof Set) { 1585 Set<?> s = (Set<?>) o; 1586 return s.size() == size && index.keySet().containsAll(s); 1587 } 1588 return false; 1589 } 1590 1591 @Override 1592 public Iterator<Set<E>> iterator() { 1593 return new AbstractIterator<Set<E>>() { 1594 final BitSet bits = new BitSet(index.size()); 1595 1596 @Override 1597 protected Set<E> computeNext() { 1598 if (bits.isEmpty()) { 1599 bits.set(0, size); 1600 } else { 1601 int firstSetBit = bits.nextSetBit(0); 1602 int bitToFlip = bits.nextClearBit(firstSetBit); 1603 1604 if (bitToFlip == index.size()) { 1605 return endOfData(); 1606 } 1607 /* 1608 * The current set in sorted order looks like 1609 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1610 * where it does *not* contain bitToFlip. 1611 * 1612 * The next combination is 1613 * 1614 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1615 * 1616 * This is lexicographically next if you look at the combinations in descending order 1617 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1618 */ 1619 1620 bits.set(0, bitToFlip - firstSetBit - 1); 1621 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1622 bits.set(bitToFlip); 1623 } 1624 final BitSet copy = (BitSet) bits.clone(); 1625 return new AbstractSet<E>() { 1626 @Override 1627 public boolean contains(@Nullable Object o) { 1628 Integer i = index.get(o); 1629 return i != null && copy.get(i); 1630 } 1631 1632 @Override 1633 public Iterator<E> iterator() { 1634 return new AbstractIterator<E>() { 1635 int i = -1; 1636 1637 @Override 1638 protected E computeNext() { 1639 i = copy.nextSetBit(i + 1); 1640 if (i == -1) { 1641 return endOfData(); 1642 } 1643 return index.keySet().asList().get(i); 1644 } 1645 }; 1646 } 1647 1648 @Override 1649 public int size() { 1650 return size; 1651 } 1652 }; 1653 } 1654 }; 1655 } 1656 1657 @Override 1658 public int size() { 1659 return IntMath.binomial(index.size(), size); 1660 } 1661 1662 @Override 1663 public String toString() { 1664 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1665 } 1666 }; 1667 } 1668 1669 /** 1670 * An implementation for {@link Set#hashCode()}. 1671 */ 1672 static int hashCodeImpl(Set<?> s) { 1673 int hashCode = 0; 1674 for (Object o : s) { 1675 hashCode += o != null ? o.hashCode() : 0; 1676 1677 hashCode = ~~hashCode; 1678 // Needed to deal with unusual integer overflow in GWT. 1679 } 1680 return hashCode; 1681 } 1682 1683 /** 1684 * An implementation for {@link Set#equals(Object)}. 1685 */ 1686 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1687 if (s == object) { 1688 return true; 1689 } 1690 if (object instanceof Set) { 1691 Set<?> o = (Set<?>) object; 1692 1693 try { 1694 return s.size() == o.size() && s.containsAll(o); 1695 } catch (NullPointerException ignored) { 1696 return false; 1697 } catch (ClassCastException ignored) { 1698 return false; 1699 } 1700 } 1701 return false; 1702 } 1703 1704 /** 1705 * Returns an unmodifiable view of the specified navigable set. This method 1706 * allows modules to provide users with "read-only" access to internal 1707 * navigable sets. Query operations on the returned set "read through" to the 1708 * specified set, and attempts to modify the returned set, whether direct or 1709 * via its collection views, result in an 1710 * {@code UnsupportedOperationException}. 1711 * 1712 * <p>The returned navigable set will be serializable if the specified 1713 * navigable set is serializable. 1714 * 1715 * @param set the navigable set for which an unmodifiable view is to be 1716 * returned 1717 * @return an unmodifiable view of the specified navigable set 1718 * @since 12.0 1719 */ 1720 public static <E> NavigableSet<E> unmodifiableNavigableSet(NavigableSet<E> set) { 1721 if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) { 1722 return set; 1723 } 1724 return new UnmodifiableNavigableSet<E>(set); 1725 } 1726 1727 static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet<E> 1728 implements NavigableSet<E>, Serializable { 1729 private final NavigableSet<E> delegate; 1730 private final SortedSet<E> unmodifiableDelegate; 1731 1732 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1733 this.delegate = checkNotNull(delegate); 1734 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1735 } 1736 1737 @Override 1738 protected SortedSet<E> delegate() { 1739 return unmodifiableDelegate; 1740 } 1741 1742 @Override 1743 public E lower(E e) { 1744 return delegate.lower(e); 1745 } 1746 1747 @Override 1748 public E floor(E e) { 1749 return delegate.floor(e); 1750 } 1751 1752 @Override 1753 public E ceiling(E e) { 1754 return delegate.ceiling(e); 1755 } 1756 1757 @Override 1758 public E higher(E e) { 1759 return delegate.higher(e); 1760 } 1761 1762 @Override 1763 public E pollFirst() { 1764 throw new UnsupportedOperationException(); 1765 } 1766 1767 @Override 1768 public E pollLast() { 1769 throw new UnsupportedOperationException(); 1770 } 1771 1772 private transient UnmodifiableNavigableSet<E> descendingSet; 1773 1774 @Override 1775 public NavigableSet<E> descendingSet() { 1776 UnmodifiableNavigableSet<E> result = descendingSet; 1777 if (result == null) { 1778 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1779 result.descendingSet = this; 1780 } 1781 return result; 1782 } 1783 1784 @Override 1785 public Iterator<E> descendingIterator() { 1786 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1787 } 1788 1789 @Override 1790 public NavigableSet<E> subSet( 1791 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1792 return unmodifiableNavigableSet( 1793 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1794 } 1795 1796 @Override 1797 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1798 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1799 } 1800 1801 @Override 1802 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1803 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1804 } 1805 1806 private static final long serialVersionUID = 0; 1807 } 1808 1809 /** 1810 * Returns a synchronized (thread-safe) navigable set backed by the specified 1811 * navigable set. In order to guarantee serial access, it is critical that 1812 * <b>all</b> access to the backing navigable set is accomplished 1813 * through the returned navigable set (or its views). 1814 * 1815 * <p>It is imperative that the user manually synchronize on the returned 1816 * sorted set when iterating over it or any of its {@code descendingSet}, 1817 * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre> {@code 1818 * 1819 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1820 * ... 1821 * synchronized (set) { 1822 * // Must be in the synchronized block 1823 * Iterator<E> it = set.iterator(); 1824 * while (it.hasNext()) { 1825 * foo(it.next()); 1826 * } 1827 * }}</pre> 1828 * 1829 * <p>or: <pre> {@code 1830 * 1831 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1832 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1833 * ... 1834 * synchronized (set) { // Note: set, not set2!!! 1835 * // Must be in the synchronized block 1836 * Iterator<E> it = set2.descendingIterator(); 1837 * while (it.hasNext()) 1838 * foo(it.next()); 1839 * } 1840 * }}</pre> 1841 * 1842 * <p>Failure to follow this advice may result in non-deterministic behavior. 1843 * 1844 * <p>The returned navigable set will be serializable if the specified 1845 * navigable set is serializable. 1846 * 1847 * @param navigableSet the navigable set to be "wrapped" in a synchronized 1848 * navigable set. 1849 * @return a synchronized view of the specified navigable set. 1850 * @since 13.0 1851 */ 1852 @GwtIncompatible // NavigableSet 1853 public static <E> NavigableSet<E> synchronizedNavigableSet(NavigableSet<E> navigableSet) { 1854 return Synchronized.navigableSet(navigableSet); 1855 } 1856 1857 /** 1858 * Remove each element in an iterable from a set. 1859 */ 1860 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1861 boolean changed = false; 1862 while (iterator.hasNext()) { 1863 changed |= set.remove(iterator.next()); 1864 } 1865 return changed; 1866 } 1867 1868 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1869 checkNotNull(collection); // for GWT 1870 if (collection instanceof Multiset) { 1871 collection = ((Multiset<?>) collection).elementSet(); 1872 } 1873 /* 1874 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1875 * is just less than the set's size. We augment the test by 1876 * assuming that sets have fast contains() performance, and other 1877 * collections don't. See 1878 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1879 */ 1880 if (collection instanceof Set && collection.size() > set.size()) { 1881 return Iterators.removeAll(set.iterator(), collection); 1882 } else { 1883 return removeAllImpl(set, collection.iterator()); 1884 } 1885 } 1886 1887 @GwtIncompatible // NavigableSet 1888 static class DescendingSet<E> extends ForwardingNavigableSet<E> { 1889 private final NavigableSet<E> forward; 1890 1891 DescendingSet(NavigableSet<E> forward) { 1892 this.forward = forward; 1893 } 1894 1895 @Override 1896 protected NavigableSet<E> delegate() { 1897 return forward; 1898 } 1899 1900 @Override 1901 public E lower(E e) { 1902 return forward.higher(e); 1903 } 1904 1905 @Override 1906 public E floor(E e) { 1907 return forward.ceiling(e); 1908 } 1909 1910 @Override 1911 public E ceiling(E e) { 1912 return forward.floor(e); 1913 } 1914 1915 @Override 1916 public E higher(E e) { 1917 return forward.lower(e); 1918 } 1919 1920 @Override 1921 public E pollFirst() { 1922 return forward.pollLast(); 1923 } 1924 1925 @Override 1926 public E pollLast() { 1927 return forward.pollFirst(); 1928 } 1929 1930 @Override 1931 public NavigableSet<E> descendingSet() { 1932 return forward; 1933 } 1934 1935 @Override 1936 public Iterator<E> descendingIterator() { 1937 return forward.iterator(); 1938 } 1939 1940 @Override 1941 public NavigableSet<E> subSet( 1942 E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { 1943 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 1944 } 1945 1946 @Override 1947 public NavigableSet<E> headSet(E toElement, boolean inclusive) { 1948 return forward.tailSet(toElement, inclusive).descendingSet(); 1949 } 1950 1951 @Override 1952 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { 1953 return forward.headSet(fromElement, inclusive).descendingSet(); 1954 } 1955 1956 @SuppressWarnings("unchecked") 1957 @Override 1958 public Comparator<? super E> comparator() { 1959 Comparator<? super E> forwardComparator = forward.comparator(); 1960 if (forwardComparator == null) { 1961 return (Comparator) Ordering.natural().reverse(); 1962 } else { 1963 return reverse(forwardComparator); 1964 } 1965 } 1966 1967 // If we inline this, we get a javac error. 1968 private static <T> Ordering<T> reverse(Comparator<T> forward) { 1969 return Ordering.from(forward).reverse(); 1970 } 1971 1972 @Override 1973 public E first() { 1974 return forward.last(); 1975 } 1976 1977 @Override 1978 public SortedSet<E> headSet(E toElement) { 1979 return standardHeadSet(toElement); 1980 } 1981 1982 @Override 1983 public E last() { 1984 return forward.first(); 1985 } 1986 1987 @Override 1988 public SortedSet<E> subSet(E fromElement, E toElement) { 1989 return standardSubSet(fromElement, toElement); 1990 } 1991 1992 @Override 1993 public SortedSet<E> tailSet(E fromElement) { 1994 return standardTailSet(fromElement); 1995 } 1996 1997 @Override 1998 public Iterator<E> iterator() { 1999 return forward.descendingIterator(); 2000 } 2001 2002 @Override 2003 public Object[] toArray() { 2004 return standardToArray(); 2005 } 2006 2007 @Override 2008 public <T> T[] toArray(T[] array) { 2009 return standardToArray(array); 2010 } 2011 2012 @Override 2013 public String toString() { 2014 return standardToString(); 2015 } 2016 } 2017 2018 /** 2019 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2020 * 2021 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely 2022 * {@link NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, 2023 * {@link NavigableSet#tailSet(Object, boolean) tailSet()}, and 2024 * {@link NavigableSet#headSet(Object, boolean) headSet()}) to actually construct the view. 2025 * Consult these methods for a full description of the returned view's behavior. 2026 * 2027 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2028 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a 2029 * {@link Comparator}, which can violate the natural ordering. Using this method (or in general 2030 * using {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined 2031 * behavior. 2032 * 2033 * @since 20.0 2034 */ 2035 @Beta 2036 @GwtIncompatible // NavigableSet 2037 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2038 NavigableSet<K> set, Range<K> range) { 2039 if (set.comparator() != null 2040 && set.comparator() != Ordering.natural() 2041 && range.hasLowerBound() 2042 && range.hasUpperBound()) { 2043 checkArgument( 2044 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2045 "set is using a custom comparator which is inconsistent with the natural ordering."); 2046 } 2047 if (range.hasLowerBound() && range.hasUpperBound()) { 2048 return set.subSet( 2049 range.lowerEndpoint(), 2050 range.lowerBoundType() == BoundType.CLOSED, 2051 range.upperEndpoint(), 2052 range.upperBoundType() == BoundType.CLOSED); 2053 } else if (range.hasLowerBound()) { 2054 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2055 } else if (range.hasUpperBound()) { 2056 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2057 } 2058 return checkNotNull(set); 2059 } 2060}