001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.hash; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.Beta; 021import com.google.common.annotations.VisibleForTesting; 022import com.google.common.base.Objects; 023import com.google.common.base.Predicate; 024import com.google.common.hash.BloomFilterStrategies.BitArray; 025import com.google.common.math.DoubleMath; 026import com.google.common.primitives.SignedBytes; 027import com.google.common.primitives.UnsignedBytes; 028import com.google.errorprone.annotations.CanIgnoreReturnValue; 029import java.io.DataInputStream; 030import java.io.DataOutputStream; 031import java.io.IOException; 032import java.io.InputStream; 033import java.io.OutputStream; 034import java.io.Serializable; 035import java.math.RoundingMode; 036import javax.annotation.Nullable; 037 038/** 039 * A Bloom filter for instances of {@code T}. A Bloom filter offers an approximate containment test 040 * with one-sided error: if it claims that an element is contained in it, this might be in error, 041 * but if it claims that an element is <i>not</i> contained in it, then this is definitely true. 042 * 043 * <p>If you are unfamiliar with Bloom filters, this nice <a 044 * href="http://llimllib.github.com/bloomfilter-tutorial/">tutorial</a> may help you understand how 045 * they work. 046 * 047 * <p>The false positive probability ({@code FPP}) of a Bloom filter is defined as the probability 048 * that {@linkplain #mightContain(Object)} will erroneously return {@code true} for an object that 049 * has not actually been put in the {@code BloomFilter}. 050 * 051 * <p>Bloom filters are serializable. They also support a more compact serial representation via the 052 * {@link #writeTo} and {@link #readFrom} methods. Both serialized forms will continue to be 053 * supported by future versions of this library. However, serial forms generated by newer versions 054 * of the code may not be readable by older versions of the code (e.g., a serialized Bloom filter 055 * generated today may <i>not</i> be readable by a binary that was compiled 6 months ago). 056 * 057 * @param <T> the type of instances that the {@code BloomFilter} accepts 058 * @author Dimitris Andreou 059 * @author Kevin Bourrillion 060 * @since 11.0 061 */ 062@Beta 063public final class BloomFilter<T> implements Predicate<T>, Serializable { 064 /** 065 * A strategy to translate T instances, to {@code numHashFunctions} bit indexes. 066 * 067 * <p>Implementations should be collections of pure functions (i.e. stateless). 068 */ 069 interface Strategy extends java.io.Serializable { 070 071 /** 072 * Sets {@code numHashFunctions} bits of the given bit array, by hashing a user element. 073 * 074 * <p>Returns whether any bits changed as a result of this operation. 075 */ 076 <T> boolean put(T object, Funnel<? super T> funnel, int numHashFunctions, BitArray bits); 077 078 /** 079 * Queries {@code numHashFunctions} bits of the given bit array, by hashing a user element; 080 * returns {@code true} if and only if all selected bits are set. 081 */ 082 <T> boolean mightContain( 083 T object, Funnel<? super T> funnel, int numHashFunctions, BitArray bits); 084 085 /** 086 * Identifier used to encode this strategy, when marshalled as part of a BloomFilter. Only 087 * values in the [-128, 127] range are valid for the compact serial form. Non-negative values 088 * are reserved for enums defined in BloomFilterStrategies; negative values are reserved for any 089 * custom, stateful strategy we may define (e.g. any kind of strategy that would depend on user 090 * input). 091 */ 092 int ordinal(); 093 } 094 095 /** The bit set of the BloomFilter (not necessarily power of 2!) */ 096 private final BitArray bits; 097 098 /** Number of hashes per element */ 099 private final int numHashFunctions; 100 101 /** The funnel to translate Ts to bytes */ 102 private final Funnel<? super T> funnel; 103 104 /** 105 * The strategy we employ to map an element T to {@code numHashFunctions} bit indexes. 106 */ 107 private final Strategy strategy; 108 109 /** 110 * Creates a BloomFilter. 111 */ 112 private BloomFilter( 113 BitArray bits, int numHashFunctions, Funnel<? super T> funnel, Strategy strategy) { 114 checkArgument(numHashFunctions > 0, "numHashFunctions (%s) must be > 0", numHashFunctions); 115 checkArgument( 116 numHashFunctions <= 255, "numHashFunctions (%s) must be <= 255", numHashFunctions); 117 this.bits = checkNotNull(bits); 118 this.numHashFunctions = numHashFunctions; 119 this.funnel = checkNotNull(funnel); 120 this.strategy = checkNotNull(strategy); 121 } 122 123 /** 124 * Creates a new {@code BloomFilter} that's a copy of this instance. The new instance is equal to 125 * this instance but shares no mutable state. 126 * 127 * @since 12.0 128 */ 129 public BloomFilter<T> copy() { 130 return new BloomFilter<T>(bits.copy(), numHashFunctions, funnel, strategy); 131 } 132 133 /** 134 * Returns {@code true} if the element <i>might</i> have been put in this Bloom filter, 135 * {@code false} if this is <i>definitely</i> not the case. 136 */ 137 public boolean mightContain(T object) { 138 return strategy.mightContain(object, funnel, numHashFunctions, bits); 139 } 140 141 /** 142 * @deprecated Provided only to satisfy the {@link Predicate} interface; use {@link #mightContain} 143 * instead. 144 */ 145 @Deprecated 146 @Override 147 public boolean apply(T input) { 148 return mightContain(input); 149 } 150 151 /** 152 * Puts an element into this {@code BloomFilter}. Ensures that subsequent invocations of {@link 153 * #mightContain(Object)} with the same element will always return {@code true}. 154 * 155 * @return true if the Bloom filter's bits changed as a result of this operation. If the bits 156 * changed, this is <i>definitely</i> the first time {@code object} has been added to the 157 * filter. If the bits haven't changed, this <i>might</i> be the first time {@code object} has 158 * been added to the filter. Note that {@code put(t)} always returns the <i>opposite</i> 159 * result to what {@code mightContain(t)} would have returned at the time it is called. 160 * @since 12.0 (present in 11.0 with {@code void} return type}) 161 */ 162 @CanIgnoreReturnValue 163 public boolean put(T object) { 164 return strategy.put(object, funnel, numHashFunctions, bits); 165 } 166 167 /** 168 * Returns the probability that {@linkplain #mightContain(Object)} will erroneously return 169 * {@code true} for an object that has not actually been put in the {@code BloomFilter}. 170 * 171 * <p>Ideally, this number should be close to the {@code fpp} parameter passed in 172 * {@linkplain #create(Funnel, int, double)}, or smaller. If it is significantly higher, it is 173 * usually the case that too many elements (more than expected) have been put in the 174 * {@code BloomFilter}, degenerating it. 175 * 176 * @since 14.0 (since 11.0 as expectedFalsePositiveProbability()) 177 */ 178 public double expectedFpp() { 179 // You down with FPP? (Yeah you know me!) Who's down with FPP? (Every last homie!) 180 return Math.pow((double) bits.bitCount() / bitSize(), numHashFunctions); 181 } 182 183 /** 184 * Returns an estimate for the total number of distinct elements that have been added to this 185 * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of 186 * {@code expectedInsertions} that was used when constructing the filter. 187 * 188 * @since 22.0 189 */ 190 public long approximateElementCount() { 191 long bitSize = bits.bitSize(); 192 long bitCount = bits.bitCount(); 193 194 /** 195 * Each insertion is expected to reduce the # of clear bits by a factor of 196 * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 - 197 * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x 198 * is close to 1 (why?), gives the following formula. 199 */ 200 double fractionOfBitsSet = (double) bitCount / bitSize; 201 return DoubleMath.roundToLong( 202 -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP); 203 } 204 205 /** 206 * Returns the number of bits in the underlying bit array. 207 */ 208 @VisibleForTesting 209 long bitSize() { 210 return bits.bitSize(); 211 } 212 213 /** 214 * Determines whether a given Bloom filter is compatible with this Bloom filter. For two Bloom 215 * filters to be compatible, they must: 216 * 217 * <ul> 218 * <li>not be the same instance 219 * <li>have the same number of hash functions 220 * <li>have the same bit size 221 * <li>have the same strategy 222 * <li>have equal funnels 223 * </ul> 224 * 225 * @param that The Bloom filter to check for compatibility. 226 * @since 15.0 227 */ 228 public boolean isCompatible(BloomFilter<T> that) { 229 checkNotNull(that); 230 return (this != that) 231 && (this.numHashFunctions == that.numHashFunctions) 232 && (this.bitSize() == that.bitSize()) 233 && (this.strategy.equals(that.strategy)) 234 && (this.funnel.equals(that.funnel)); 235 } 236 237 /** 238 * Combines this Bloom filter with another Bloom filter by performing a bitwise OR of the 239 * underlying data. The mutations happen to <b>this</b> instance. Callers must ensure the Bloom 240 * filters are appropriately sized to avoid saturating them. 241 * 242 * @param that The Bloom filter to combine this Bloom filter with. It is not mutated. 243 * @throws IllegalArgumentException if {@code isCompatible(that) == false} 244 * @since 15.0 245 */ 246 public void putAll(BloomFilter<T> that) { 247 checkNotNull(that); 248 checkArgument(this != that, "Cannot combine a BloomFilter with itself."); 249 checkArgument( 250 this.numHashFunctions == that.numHashFunctions, 251 "BloomFilters must have the same number of hash functions (%s != %s)", 252 this.numHashFunctions, 253 that.numHashFunctions); 254 checkArgument( 255 this.bitSize() == that.bitSize(), 256 "BloomFilters must have the same size underlying bit arrays (%s != %s)", 257 this.bitSize(), 258 that.bitSize()); 259 checkArgument( 260 this.strategy.equals(that.strategy), 261 "BloomFilters must have equal strategies (%s != %s)", 262 this.strategy, 263 that.strategy); 264 checkArgument( 265 this.funnel.equals(that.funnel), 266 "BloomFilters must have equal funnels (%s != %s)", 267 this.funnel, 268 that.funnel); 269 this.bits.putAll(that.bits); 270 } 271 272 @Override 273 public boolean equals(@Nullable Object object) { 274 if (object == this) { 275 return true; 276 } 277 if (object instanceof BloomFilter) { 278 BloomFilter<?> that = (BloomFilter<?>) object; 279 return this.numHashFunctions == that.numHashFunctions 280 && this.funnel.equals(that.funnel) 281 && this.bits.equals(that.bits) 282 && this.strategy.equals(that.strategy); 283 } 284 return false; 285 } 286 287 @Override 288 public int hashCode() { 289 return Objects.hashCode(numHashFunctions, funnel, strategy, bits); 290 } 291 292 /** 293 * Creates a {@link BloomFilter}{@code <T>} with the expected number of insertions and 294 * expected false positive probability. 295 * 296 * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified, 297 * will result in its saturation, and a sharp deterioration of its false positive probability. 298 * 299 * <p>The constructed {@code BloomFilter<T>} will be serializable if the provided 300 * {@code Funnel<T>} is. 301 * 302 * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of 303 * ensuring proper serialization and deserialization, which is important since {@link #equals} 304 * also relies on object identity of funnels. 305 * 306 * @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use 307 * @param expectedInsertions the number of expected insertions to the constructed 308 * {@code BloomFilter<T>}; must be positive 309 * @param fpp the desired false positive probability (must be positive and less than 1.0) 310 * @return a {@code BloomFilter} 311 */ 312 public static <T> BloomFilter<T> create( 313 Funnel<? super T> funnel, int expectedInsertions, double fpp) { 314 return create(funnel, (long) expectedInsertions, fpp); 315 } 316 317 /** 318 * Creates a {@link BloomFilter}{@code <T>} with the expected number of insertions and 319 * expected false positive probability. 320 * 321 * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified, 322 * will result in its saturation, and a sharp deterioration of its false positive probability. 323 * 324 * <p>The constructed {@code BloomFilter<T>} will be serializable if the provided 325 * {@code Funnel<T>} is. 326 * 327 * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of 328 * ensuring proper serialization and deserialization, which is important since {@link #equals} 329 * also relies on object identity of funnels. 330 * 331 * @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use 332 * @param expectedInsertions the number of expected insertions to the constructed 333 * {@code BloomFilter<T>}; must be positive 334 * @param fpp the desired false positive probability (must be positive and less than 1.0) 335 * @return a {@code BloomFilter} 336 * @since 19.0 337 */ 338 public static <T> BloomFilter<T> create( 339 Funnel<? super T> funnel, long expectedInsertions, double fpp) { 340 return create(funnel, expectedInsertions, fpp, BloomFilterStrategies.MURMUR128_MITZ_64); 341 } 342 343 @VisibleForTesting 344 static <T> BloomFilter<T> create( 345 Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) { 346 checkNotNull(funnel); 347 checkArgument( 348 expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions); 349 checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp); 350 checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp); 351 checkNotNull(strategy); 352 353 if (expectedInsertions == 0) { 354 expectedInsertions = 1; 355 } 356 /* 357 * TODO(user): Put a warning in the javadoc about tiny fpp values, since the resulting size 358 * is proportional to -log(p), but there is not much of a point after all, e.g. 359 * optimalM(1000, 0.0000000000000001) = 76680 which is less than 10kb. Who cares! 360 */ 361 long numBits = optimalNumOfBits(expectedInsertions, fpp); 362 int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits); 363 try { 364 return new BloomFilter<T>(new BitArray(numBits), numHashFunctions, funnel, strategy); 365 } catch (IllegalArgumentException e) { 366 throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e); 367 } 368 } 369 370 /** 371 * Creates a {@link BloomFilter}{@code <T>} with the expected number of insertions and a 372 * default expected false positive probability of 3%. 373 * 374 * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified, 375 * will result in its saturation, and a sharp deterioration of its false positive probability. 376 * 377 * <p>The constructed {@code BloomFilter<T>} will be serializable if the provided 378 * {@code Funnel<T>} is. 379 * 380 * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of 381 * ensuring proper serialization and deserialization, which is important since {@link #equals} 382 * also relies on object identity of funnels. 383 * 384 * @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use 385 * @param expectedInsertions the number of expected insertions to the constructed 386 * {@code BloomFilter<T>}; must be positive 387 * @return a {@code BloomFilter} 388 */ 389 public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int expectedInsertions) { 390 return create(funnel, (long) expectedInsertions); 391 } 392 393 /** 394 * Creates a {@link BloomFilter}{@code <T>} with the expected number of insertions and a 395 * default expected false positive probability of 3%. 396 * 397 * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified, 398 * will result in its saturation, and a sharp deterioration of its false positive probability. 399 * 400 * <p>The constructed {@code BloomFilter<T>} will be serializable if the provided 401 * {@code Funnel<T>} is. 402 * 403 * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of 404 * ensuring proper serialization and deserialization, which is important since {@link #equals} 405 * also relies on object identity of funnels. 406 * 407 * @param funnel the funnel of T's that the constructed {@code BloomFilter<T>} will use 408 * @param expectedInsertions the number of expected insertions to the constructed 409 * {@code BloomFilter<T>}; must be positive 410 * @return a {@code BloomFilter} 411 * @since 19.0 412 */ 413 public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) { 414 return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions 415 } 416 417 // Cheat sheet: 418 // 419 // m: total bits 420 // n: expected insertions 421 // b: m/n, bits per insertion 422 // p: expected false positive probability 423 // 424 // 1) Optimal k = b * ln2 425 // 2) p = (1 - e ^ (-kn/m))^k 426 // 3) For optimal k: p = 2 ^ (-k) ~= 0.6185^b 427 // 4) For optimal k: m = -nlnp / ((ln2) ^ 2) 428 429 /** 430 * Computes the optimal k (number of hashes per element inserted in Bloom filter), given the 431 * expected insertions and total number of bits in the Bloom filter. 432 * 433 * See http://en.wikipedia.org/wiki/File:Bloom_filter_fp_probability.svg for the formula. 434 * 435 * @param n expected insertions (must be positive) 436 * @param m total number of bits in Bloom filter (must be positive) 437 */ 438 @VisibleForTesting 439 static int optimalNumOfHashFunctions(long n, long m) { 440 // (m / n) * log(2), but avoid truncation due to division! 441 return Math.max(1, (int) Math.round((double) m / n * Math.log(2))); 442 } 443 444 /** 445 * Computes m (total bits of Bloom filter) which is expected to achieve, for the specified 446 * expected insertions, the required false positive probability. 447 * 448 * See http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives for the formula. 449 * 450 * @param n expected insertions (must be positive) 451 * @param p false positive rate (must be 0 < p < 1) 452 */ 453 @VisibleForTesting 454 static long optimalNumOfBits(long n, double p) { 455 if (p == 0) { 456 p = Double.MIN_VALUE; 457 } 458 return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2))); 459 } 460 461 private Object writeReplace() { 462 return new SerialForm<T>(this); 463 } 464 465 private static class SerialForm<T> implements Serializable { 466 final long[] data; 467 final int numHashFunctions; 468 final Funnel<? super T> funnel; 469 final Strategy strategy; 470 471 SerialForm(BloomFilter<T> bf) { 472 this.data = bf.bits.data; 473 this.numHashFunctions = bf.numHashFunctions; 474 this.funnel = bf.funnel; 475 this.strategy = bf.strategy; 476 } 477 478 Object readResolve() { 479 return new BloomFilter<T>(new BitArray(data), numHashFunctions, funnel, strategy); 480 } 481 482 private static final long serialVersionUID = 1; 483 } 484 485 /** 486 * Writes this {@code BloomFilter} to an output stream, with a custom format (not Java 487 * serialization). This has been measured to save at least 400 bytes compared to regular 488 * serialization. 489 * 490 * <p>Use {@linkplain #readFrom(InputStream, Funnel)} to reconstruct the written BloomFilter. 491 */ 492 public void writeTo(OutputStream out) throws IOException { 493 // Serial form: 494 // 1 signed byte for the strategy 495 // 1 unsigned byte for the number of hash functions 496 // 1 big endian int, the number of longs in our bitset 497 // N big endian longs of our bitset 498 DataOutputStream dout = new DataOutputStream(out); 499 dout.writeByte(SignedBytes.checkedCast(strategy.ordinal())); 500 dout.writeByte(UnsignedBytes.checkedCast(numHashFunctions)); // note: checked at the c'tor 501 dout.writeInt(bits.data.length); 502 for (long value : bits.data) { 503 dout.writeLong(value); 504 } 505 } 506 507 /** 508 * Reads a byte stream, which was written by {@linkplain #writeTo(OutputStream)}, into a 509 * {@code BloomFilter<T>}. 510 * 511 * The {@code Funnel} to be used is not encoded in the stream, so it must be provided here. 512 * <b>Warning:</b> the funnel provided <b>must</b> behave identically to the one used to populate 513 * the original Bloom filter! 514 * 515 * @throws IOException if the InputStream throws an {@code IOException}, or if its data does not 516 * appear to be a BloomFilter serialized using the {@linkplain #writeTo(OutputStream)} method. 517 */ 518 public static <T> BloomFilter<T> readFrom(InputStream in, Funnel<? super T> funnel) 519 throws IOException { 520 checkNotNull(in, "InputStream"); 521 checkNotNull(funnel, "Funnel"); 522 int strategyOrdinal = -1; 523 int numHashFunctions = -1; 524 int dataLength = -1; 525 try { 526 DataInputStream din = new DataInputStream(in); 527 // currently this assumes there is no negative ordinal; will have to be updated if we 528 // add non-stateless strategies (for which we've reserved negative ordinals; see 529 // Strategy.ordinal()). 530 strategyOrdinal = din.readByte(); 531 numHashFunctions = UnsignedBytes.toInt(din.readByte()); 532 dataLength = din.readInt(); 533 534 Strategy strategy = BloomFilterStrategies.values()[strategyOrdinal]; 535 long[] data = new long[dataLength]; 536 for (int i = 0; i < data.length; i++) { 537 data[i] = din.readLong(); 538 } 539 return new BloomFilter<T>(new BitArray(data), numHashFunctions, funnel, strategy); 540 } catch (RuntimeException e) { 541 String message = 542 "Unable to deserialize BloomFilter from InputStream." 543 + " strategyOrdinal: " 544 + strategyOrdinal 545 + " numHashFunctions: " 546 + numHashFunctions 547 + " dataLength: " 548 + dataLength; 549 throw new IOException(message, e); 550 } 551 } 552}